
Evolving Workflow Graphs Using Typed Genetic
Programming

Tomáš Křen, Martin Pilát
Charles University in Prague

Faculty of Mathematics and Physics

Malostranské nám. 2/25

Prague, Czech Republic

Email: Tomas.Kren@mff.cuni.cz

Email: Martin.Pilat@mff.cuni.cz

Roman Neruda
Institute of Computer Science

Academy of Sciences of the Czech Republic

Pod Vodárenskou věžı́ 2

Prague, Czech Republic

Email: roman@cs.cas.cz

Abstract—When applying machine learning techniques to
more complicated datasets, it is often beneficial to use ensembles
of simpler models instead of a single, more complicated, model.
However, the creation of ensembles is a tedious task which
requires a lot of human interaction and experimentation. In
this paper, we present a technique for construction of ensembles
based on typed genetic programming. The technique describes
an ensemble as a directed acyclic graph, which is internally
represented as a tree evolved by the genetic programming. The
approach is evaluated in a series of experiments on various
datasets and compared to the performance of simple models tuned
by grid search, as well as to ensembles generated in a systematic
manner.

I. INTRODUCTION

There have been many machine learning methods proposed
in the last decades, and new ones are appearing every day. Each
of these methods naturally performs differently for different
datasets and even for different instances in the same datasets. It
is well-known that the combination of several simple methods
into a single more complicated ones can improve the results
significantly. Such combinations of methods are also known as
ensembles. Ensemble methods have gained a lot of attention
recently after they have been able to win the famous Netflix
prize, and they are also successful in other types of com-
petitions. For example, almost all competitions organized by
the popular Kaggle community are won by ensemble models.
Among the simplest ensemble methods would be the voting
used for classification tasks. In this case, several models are
trained on the same data, and when a new instance shall be
classified, the models vote for the predicted class, i.e. each
model predicts a class and the most common one is used as
the prediction of the ensemble.

Typically, the creation of an ensemble requires a lot of
non-trivial work – tuning of parameters of different models,
combination of suitable models, and so on. This is a tedious
task depending on the experience of the person performing it.
In this work, we proposed an approach based on typed genetic
programming which is able to automatically create ensembles
of machine learning methods. The approach utilizes the fact
that each ensemble can be described as a directed acyclic
graph and uses the typed genetic programming to evolve such
graphs. The types ensure that the data flowing in the graph

are consistent and that the whole graph makes sense from the
data-mining point of view.

In the next chapter, we describe the work related to the
paper at hand, then we proceed to describe the proposed algo-
rithm, which is then evaluated on four classification datasets
from various application areas in Section IV. Some preliminary
results and ideas from this paper – namely concerning the
systematic generation of graphs – were already published as an
extended abstract [1], however, the vast majority of information
in this paper is new.

II. RELATED WORK

Most work regarding machine learning workflows focuses
on the creation of ontologies which describe the individual
parts of the workflow and allow for a more formal approach
to the problem. For example, Panov et al. [2] designed such
an ontology called OntoDM. The ontology contains definitions
of basic data-mining entities and also supports definition of
more complex concepts. Diamantini et al. [3] use a different
ontology to create a composition procedure that generates
knowledge discovery workflows which are later ranked using
various criteria.

From a more search-based point of view, Kazı́k et al. [4],
experiment with the combination of various preprocessing and
machine learning techniques, and they compare the results.
However, the workflows in this paper are rather simple linear
sequences of several preprocessing techniques followed by a
single data-mining one. Recently, Folino and Pisani [5] used
genetic programming to evolve function which would combine
the outputs of several machine learning techniques into an
ensemble.

The technique presented in this paper follows a slightly
different path than the ontology based techniques. Instead of
an ontology, which describes how the workflow can work,
we used types in genetic programming which encode similar
information, however, it also allows for natural search and
optimization of the possible workflows. We have already
published this basic idea in an abstract [1], however, in that
work we did not use any genetic programming, and the types
were used only to guide a systematic A*-based search of all
possible workflows. This work is largely extended in this paper

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.200

1407

and the types and genetic programming are described here in
much more detail for the first time.

There are several works [6], [7], [8] using typed GP with
parametric polymorphism. All those works, as far as we know,
evaluate their systems on rather simple benchmark problems
in means of time needed to evaluate one individual (e.g. even-
parity problem), whereas the problem of ensemble construction
is very time consuming, and thus it is closer to real world
applications. Here, we also present a novel approach to popu-
lation initialization and individual mutation based on uniform
generating of polymorphic trees which is rather complicated
due to expressive power of parametric polymorphic types. We
also demonstrate a technique of lifting natural numbers into
type system in order to tightly control a correct structure of
individuals. This technique is easily applicable in other typed
GP problems.

III. OUR APPROACH

A. Workflow graph described as a polymorphously typed tree

A classifier may be seen as a black box transforming data
(D) to labeled data (LD). Such black boxes may be combined
into more complicated ensembles. One way of combining them
is by splitting input data into several parts which are fed
into different classifiers. Finally, outputs of those classifiers
may be put together by some kind of merge (e.g. voting). A
slightly more complicated ensemble is depicted on the figure
1.A where a preprocessing node is also present.

One can see that such ensemble naturally forms a directed
acyclic graph (DAG). Another important observation is the fact
that not every DAG represent a correct ensemble; the inputs
must be connected to outputs in a way that respects the data
types flowing through them.

In order to describe, generate, and manipulate such correct
DAGs we use typed syntactic trees. Though, we are not
aiming exclusively at completeness (describing all the correct
DAGs), but more at sufficient compromise among description
simplicity, symmetry handling and completeness.

Let us describe our approach by means of terminal and
function set from which the individual trees are build. Terminal
nodes of trees correspond to specific machine learning methods
such as a single classifier, preprocessing, clustering, or voting
method. Function nodes represent operations combing several
DAGs into one DAG.

For the sake of clarity we first show how the example en-
semble from the figure1.A is constructed. We can demonstrate
it by successive decomposition1 of the DAG into the syntactic
tree representing the DAG (see Fig. 1).

In part (A), we see the whole DAG with data flow arrows.
In (B), the first top-level decomposition is shown; here the
whole DAG is decomposed into three DAGs connected serially.
This operation is called ens1 (which is described in greater
detail below). In (C) the decomposition is performed by
another serial operation called split. There is also a parallel
operation provided by cons function used in part (D). In (E),

1Note that we show the process of decomposition for illustrative purposes;
during the evaluation of tree individuals the process of building a DAG from
a tree has the opposite direction.

Fig. 1. Example of decomposition of a DAG into a syntactic tree

a situation after skipping few similar steps is depicted where
the whole tree representing the DAG is obtained.

In the process of generating DAGs by composing smaller
ones, there is one important issue that must be addressed:
When we want to serially compose two DAGs, the number
of outputs of the first DAG must be the same as the number
of inputs of the second one.

1408

We cope with this issue on the type level by using a type
system with parametric polymorphism. Namely, we use a data
type representing a list of a fixed length (vector). It is denoted
as (V a n), where a is a type variable standing for the type
of an element, and n is an auxiliary type variable standing for
the type encoding the length of such list. The construction
of numbers (on the type level) representing list lengths is
performed in a traditional way: There is an atomic type 0
standing for 0, and an auxiliary parametric type (S n) standing
for n+ 1. Thus, for example, the term (V Int (S (S (S 0))))
denotes a list of three integers.

In order to be able to construct fixed sized lists, the terminal
set T contains a polymorphic constant nil : (V a 0) which
stands for an empty list, and the function set F contains a
polymorphic function cons : a×(V a n)→ (V a (S n)) which
constructs a new list of length n+1 from a head element (first
input) and a tail list of length n (second input).

During DAG composition, not only the numbers of outputs
and inputs must match, but the same hold for their types.
We handle this constrain by using parametric type (Dag a b)
standing for a DAG with input type a and output type b
(where a or b may be a fixed length list). For example
(Dag D (V LD (S (S (S 0))))) is a type of a DAG that has
one input node for data and three outputs nodes for labeled
data (e.g., the middle DAG on the figure 1.B has this type).

Let us look on types of the machine learning methods in the
terminal set. Preprocessors (e.g. PCA) have type (Dag D D).
Splitters (e.g. k-means) have type (Dag D (VD (S (S n)))),
since we want them to split the data to at least two outputs,
but we do not want to specify the number of outputs by hand.
Classifiers (e.g. decision tree) have type (Dag D LD). And
mergers (e.g. voting) have type (Dag (V LD (S (S n))) LD).

The function set F contains three DAG constructing op-
erations ens0, ens1 and split. The split operation serially
connects a splitter with n parallel DAGs packed in a fixed size
list, each having the classifier type (Dag D LD) (cf. Fig. 1); i.e.
split has the type (Dag D (V D n))× (V (Dag D LD) n)→
(Dag D (V LD n)). The ens0 operation serially connects a
result of the split operation (which may be called splitter
into LD) with a merger resulting in a construction of an
ensemble with the classifier type; i.e. ens0 has the type
(Dag D (V LD n))× (Dag (V LD n) LD)→ (Dag D LD).
The ens1 operation is a variant of ens0 enriched with ad-
ditional argument for preprocessor (cf. Fig. 1); the ens1
operation has type (Dag D D) × (Dag D (V LD n)) ×
(Dag (V LD n) LD)→ (Dag D LD).

B. Generating typed trees with parametric polymorphism

Here we present a novel approach to uniformly generating
trees in the type system involving parametric polymorphism
such as Hindley-Milner type system [9]. More specifically, our
method uniformly picks a random tree for a given (goal) type
and tree size (see Algorithm 1). A pair (goalType, treeSize)
is called query. In order to make the generating of one tree very
fast, an auxiliary data structures are used to hold information
about numbers of trees for particular queries. The important
benefit of this approach is that once the auxiliary data are
computed the generating procedure is always able to generate
a well-typed individual without a need of backtracking from

dead ends – it generates trees in one pass. Moreover, the
auxiliary data information can be directly reused among many
runs of evolution, and even among different problems if they
share the same symbol set T ∪ F .

The auxiliary data are organized in the following way.
There is a QueryResult holding the information for a specific
query (see Algorithm 2). QueryResult also has a list of
SubResults holding the same kind of information but for a
more specific subquery specified by a particular root symbol
for the generated trees and by a particular size profile – that
is a specific choice of sizes for subtrees respecting the query
tree size.

In order to compute the auxiliary information effectively
in a dynamic programming fashion, we need to store more
detailed information than just a single number for each query.
This is mainly because a goal type of a query may be a general
type including a type variable (e.g. (Dag a b)), but we want to
count to this query even trees with a more specific type (e.g.
(Dag D LD)). To cope with this we use a key-value map2

with types as keys and numbers as values to store information
about numbers for types with greater or equal specificity (i.e.
the this.nums field in the QueryResult).

Let us comment on some notions from the pseudocode. A
substitution is denoted as σ. It is a mapping of type variables
to more specific types. A substitution can be understood as a
function, so we can apply substitution σ to to type t to obtain
a more specific type σ(t). A substitution can be also composed
by ◦ operator (since it is a function). In the pseudocode, there
is a widely used function MGU(type1, type2) that finds the
most general unifier, that is the most general substitution σ
such that σ(type1) = σ(type2) if it exists, or it fails.

A detailed explanation of our generating algorithm is
beyond the scope of this paper, however we provide simplified
but rather detailed pseudocode that is hopefully self explana-
tory for the reader familiar with type systems and with the
involved techniques such as substitutions and unifications. The
presented algorithm is a generalization for polymorphously
typed GP of our previous work on individual generating
introduced in [10].

The generating method can be straightforwardly used for
population initialization and for mutation. In the initializa-
tion phase, for each tree to be generated we first uniformly
select a treeSize ∈ {1, . . . , 15} and then generate it by
generateOne(Dag D LD, treeSize). For mutation, a random
subtree is picked and replaced by a newly generated alternative
of the same size.

Our method also evolves parameters for the machine
learning methods. In the initialization procedure, the trees are
generated without parameters which are generated in the post-
processing phase of initialization. More detailed discussion
of parameter tuning (including a special parameter mutation)
continues bellow.

We use simple typed crossover that uniformly chooses one
of all possible pairs of subtrees (one from each parent) with

2In the pseudocode we use a map.merge(key, newV al, op) method for
manipulating a map which inserts newV al if the map does not contain key,
or updates the value to op(oldV al, newV al).

1409

Algorithm 1: Uniformly generating one tree individual.

function generateOne(Type goal, Int treeSize)
qResults← query(goal, treeSize)
if qResult.num = 0 then

return null

else
i← select uniformly from {0, num− 1}
for subRes ∈ qResult.subResults do

if i < subRes.num then
sons← []
σ ← subRes.σ
for (sonGoal, sonSize) ∈ subRes.qs
do

goal2 ← σ(sonGoal)
son←
generateOne(goal2, sonSize)
σ ←MGU(son.type, goal2) ◦ σ
sons.add(son)

sym← subRes.sym
return new Tree(sym, sons, σ(goal))

i← i− subRes.num

Algorithm 2: Construction of a new query result.

function query(Type goal, Int treeSize)
qResult← qResults.get((goal, treeSize))
if qResult = null then

qResult← new QueryResult(goal, treeSize)
qResults.put((goal, treeSize), qResult)

return qResult

constructor QueryResult(goal, treeSize)
this.subResults← []
this.nums← {}
for sym ∈ T ∪ F do

(argTypes, outType)← freshenTVars(sym)
σ ←MGU(goal, outType)
if σ �= fail then

n← sym.arity
sizeProfiles← allProfiles(treeSize, n)
for sp ∈ sizeProfiles do

qs← []
for i ∈ {0, . . . , n− 1} do

qs.add((argTypes[i], sp[i]))
sr ← new SubResult(goal, sym, qs, σ)
if sr.num �= 0 then

this.subResults.add(g)
for (t, num) ∈ sr.nums do

nums.merge(t, num,+)

this.num = sum(nums)

the same type (so that the offspring is well-typed after the
crossover) and the chosen pair of subtrees is swapped.

Algorithm 3: Construction of a new query subresult.

constructor SubResult(goal, sym, qs, σ)
this.qs← qs
this.σ ← σ
this.nums← nums(goal, sym, qs, σ, 1)
this.num← sum(nums)

function nums(goal, sym, qs, σ, acc)
if qs.isEmpty() then

return { σ(goal) : acc }
else

result← {}
(sonGoal, sonSize)← qs.getHead()
goal2 ← σ(sonGoal)
sonResult← query(goal2, sonSize)
for (t, num) ∈ sonReult.nums do

σ2 ←MGU(t, goal2) ◦ σ
acc2 ← num× acc
rest← qs.getTail()
nums2 ← nums(goal, sym, rest, σ2, acc2)
for (t2, num2) ∈ nums2 do

nums2.merge(t2, num2,+)

return result

IV. EXPERIMENTS

To assess the performance of the above described tech-
nique, we run a series of experiments on four different datasets
obtained from the UCI machine learning repository [11]. In
this section, we first describe the datasets, then we discuss
the settings of the evolutionary algorithm and the evaluation
metrics, and finally we provide the results of the experiments
followed by discussion.

A. Datasets

We used four different datasets: winequality [12],
wilt [13], ml-prove [14], and magic [15]. All of them are
classification datasets with real attributes. The winequality
dataset contains 4,898 instances with 11 attributes describing
physical and chemical properties of white wine (e.g. pH,
density, acidity, . . .). The goal is to predict the quality of
the wine on a scale 1-9. The goal of the wilt dataset is
to classify image segments into two classes, – either contains
a deceased tree, or contains anything other – based on 6 real-
valued attributes obtained by image analysis. There are 4,839
in the dataset (we merged the training and testing set from
the UCI repository). The two classes are strongly imbalanced
(261 vs 4,578 instances). The ml-prove dataset consists of
6,118 instances (we have again merged the training, testing,
and validation sets from the UCI reposotory), each with 51
attributes describing various feature of automated theorem
proving tasks. The goal is to predict, which of five heuristics
would perform the best (i.e. prove the theorem in the shortest
time), there is also an option that none of the heuristics
is able to solve the given problem, thus the dataset asks
for classification into six classes. Finally, the magic dataset
contains 19,020 instances with 10 attributes generated by a
Monte Carlo programme to simulate the registration of high
energy gamma particles, i.e. the task is to classify the instances

1410

into two classes, either it is a gamma particle or a background
noise.

B. Evaluation Metrics

As can be seen from the descriptions above, we have cho-
sen a diverse set of problems to test the proposed method. To
be able to evaluate the performance of the algorithm, we need
a suitable scoring function. We have selected the quadratic
weighted κ, which expresses the agreement between two raters.
Its values range from -1 (complete disagreement) to +1 (com-
plete agreement), a constant rater always receives a score of 0.
The quadratic weighting means, that larger disagreements (i.e.
predicting 1 instead of 9 for the winequality dataset) is
quadratically more penalized than smaller disagreements. The
quadratic weighted κ is especially suitable for the evaluations
of models in tasks, where the order of classes actually has a
reason (like in the prediction of quality of wine). For tasks
with only two classes (magic and wilt) quadratic weighted
κ is equivalent to unweighted κ. Even in this cases, the κ
score is more informative than accuracy, especially in cases
with imbalanced classes.

We used the κ for all datasets except the ml-prove one.
The order of classes does not have any meaning in this case,
thus we used the accuracy of the model instead of the κ
statistic. Another reason to use the accuracy instead of κ is
that the original paper about the ml-prove dataset [14] also
uses accuracy and using the same metric allows us to compare
the results more directly.

C. Machine Learning Methods

The evolved workflow contains several types of machine
learning methods, these can be roughly divided into four
groups: splitters, mergers, preprocessors, and classifiers.

The splitters divide the dataflow into several branches,
we currently use two types of splitters: copy and k-means
clustering. The copy splitter obviously copies the same data
into several branches, while the k-means splitter divides the
data by means of k-means clustering and send each cluster
to a different branch. To improve the consistency of the k-
means clustering, the clusters are re-numbered in such a way
that clusters containing instances with lower ID have lower
number than cluster with instances with higher ID (only the
lowest instance ID in each cluster is considered). The number
of clusters k is given by the structure of the DAG representing
the workflow – it is the number of edges from the k-means
node.

Each splitter is associated with a merger to bring the data
back together. Data split by the k-means splitter can be easily
combined by a simple union of the outputs, as each instance
gets only one label between the split and the merge. Data split
by the copy splitter, on the other hand, obtain a number of
labels each, and are combined using a voting merger, each
instance obtains the most common label from those it was
assigned by the methods after the split. From a technical point
of view, both of these mergers are implemented using the same
algorithm – each instance obtains the most common label from
those computed before the merger. Instances split by the k-
means splitter are a special case and have only one label.

TABLE I. THE POSSIBLE VALUES OF PARAMETERS USED IN THIS

WORK. METHODS, WHICH ARE NOT MENTIONED IN THIS TABLE DO NOT

HAVE ANY TUNABLE PARAMETERS. THE NAMES OF THE PARAMETERS

CORRESPOND TO THE NAMES IN THE SCIKIT-LEARN LIBRARY. N DENOTES

THE NUMBER OF FEATURES.

Support Vector Classifier

C {0.1, 0.5, 1, 2, 5, 10, 15}
gamma {0.0, 0.0001, 0.001, 0.01, 0.1, 0.5}
tol {0.0001, 0.001, 0.01}

Logistic Regression

C {0.1, 0.5, 1, 2, 5, 10, 15}
penalty {l1, l2}
tol {0.0001, 0.001, 0.01}

Decision Tree Classifier

criterion {gini, entropy}
max features {0.05, 0.1, 0.25, 0.5, 0.75, 1}
max depth {1, 2, 5, 10, 15, 25, 50, 100}
min samples split {1, 2, 5, 10, 20}
min samples leaf {1, 2, 5, 10, 20}

PCA

whiten {true, false}
n components {�k · N�|k ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1}

kBest

k {�k · N�|k ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1}

Apart from the splitter and mergers which mostly control
the data flow in the ensemble, there are also data processing
nodes – the preprocessors process the data before they are fed
into the classifiers. In this work we consider only two types
of preprocessing – the PCA analysis and the k-best selector,
which selects the k features most correlated with the target
class.

Finally, there are the classifier nodes, which perform the
actual classification based on the preprocessed data. In this
work, we use four different classifiers – the decision tree,
logistic regression, gaussian naive Bayes, and support vector
classifier. All of these classifiers (as well as other methods
mentioned above) are implemented using the scikit-learn pack-
age for Python. Each of the classifiers has several options,
which are also set by the genetic programming. In order to
make the optimization easier each parameter can have only
values from a pre-defined set. The sets of values used in this
work are presented in Table I.

D. Evolution Settings

In order to find the optimized ensembles, the genetic
programming algorithm described in the previous section was
run for a maximum of 128 generations with the population
of 256 individuals. The fitness function was evaluated on a
cluster with 64 cores, and each evaluation consisted of 5-
fold crossvalidation. The average score (either κ or accuracy,
depending on the dataset) was used as the fitness which
is maximized. As some of the machine learning algorithms
are not deterministic, the fitness was re-evaluated in each
generation for all individuals, even those which did not change.
This makes the algorithm more robust and reduces the factor
of luck in the process.

Apart from the limit of generations, we also used the limit
for maximum runtime. This limit did not affect the experiments
with the smaller datasets (winequality and wilt), which
ended after approx. 2 hours, but it was the stopping criterion
actually used by the two larger datasets. The maximum runtime
was set to 10 hours for the magic dataset and to 12 hours for
the ml-prove dataset.

1411

The algorithm uses tournament selection with the probabil-
ity of 0.8 to select the better of the two individuals and a weak
elitism (the best individual in the population is guaranteed
to survive to the next generation). The crossover is realized
by a simple same-type-subtree swap between two individuals
with probability of 0.3 and with the maximum size of the
resulted tree limited by 50 nodes. The mutation selects a node
and with probability 0.3 generates a new subtree in this node
with the same size as the original subtree. The maximum size
of the mutated subtree is set to 10 nodes. As for the tuning
of the parameters of the various machine learning methods,
there is a mutation, which with probability 0.8 changes the
current value to a neighboring value in the set of possible
values (when ordered by the values), and with probability 0.2
changes the value to a value in the distance of two from the
current value. For example, if the set of possible values is
{0.01, 0.05, 0.1, 0.2, 0.5, 1} and the current value is 0.1, the
mutation with probability 0.8 changes the value to 0.05 or 0.2
and with probability 0.2 to either 0.01 or 0.5. There is also a
copy operator which copies a given individual. This operator
is run with the probability of 0.1.

During the initialization of the algorithm, trees of random
size (maximum depth 15) are randomly generated.

Most of the parameters mentioned above were set based
on our previous experience or some preliminary tuning, as the
whole evolutionary process is too time consuming to make any
serious parameter tuning.

E. Results

We present the results of the experiments in two parts. In
the first part, we discuss the results for the two smaller dataset
(winequality and wilt), and leave the two larger dataset
for the other part. There are two reasons for this distinction.
One of them is that we experimented with the two smaller
dataset earlier and we compare the new results to the old ones,
and the other reason is, that the two larger datasets may be
considered a more typical scenario for the approach presented
here and there are some interesting challenges for the algorithm
which are revealed only with this larger datasets.

The results for the two small datasets are presented in Table
II. The table also contains the results of each of the machine
learning method applied directly on the data with default and
with tuned hyper-parameters. The tuning was done using a grid
search.

The “systematic” line refers to an earlier experiment,
where instead of using genetic programming we generated
the possible ensembles using a systematic, A*-based approach
with fixed values of all hyper-parameters – either default values
or those obtained by hyper-parameter tuning of the single
models. The GP line shows the result obtained by the approach
described in this paper and it is the quadratically weighted
κ obtained by the best individual in the last generation and
averaged over five runs.

The difference between the systematic generating of work-
flows and the genetic programming approach seems rather
small, however, the GP technique is much more effective in
the searching. The systematic approach was used to generate
65,536 different workflows, while the GP generated only half

TABLE II. RESULTS FOR THE WILT AND WINEQUALITY DATASETS,
THE QUADRATIC WEIGHTED κ FOR THE DESCRIBED METHODS. FOR GP

THE NUMBERS ARE THE AVERAGE OF FIVE INDEPENDENT RUNS.

dataset winequality wilt
params default tuned default tuned

SVC 0.1783 0.3359 0.0143 0.8427
LR 0.3526 0.3812 0.3158 0.6341
GNB 0.4202 0.4202 0.2916 0.2917
DT 0.3465 0.4283 0.7740 0.8229
systematic 0.4731 0.4756 0.8471 0.8668
GP 0.4792 0.8702

of that. Moreover, GP is able to react to the performance of
various techniques and thus uses and evaluates mostly those
with better performance. In the case of these two datasets
this leads to significant savings of computational time, as
the slowest method (SVC) is only rarely used, and thus GP
obtained the results several times faster than the systematic
approach. This is also demonstrated in Figure 4, which shows
that the average evaluation time of an ensemble sometimes
drops despite the fact, that the size of the ensembles tend to
grow during the evolution.

The precise speed-up is hard to evaluate, as we run both the
experiments in different environments, however, the evaluation
of the systematically generated workflows took around 4 hours
using more than 200 CPU cores (a mix of Intel i7 at 2.66GHz
and Intel Core2 Quad at 2.83GHz, quadcore CPUs in both
cases), while the GP took less the two hours with 64 cores
(Intel Xeon at 2.4GHz, four 16-core machines).

For the winequality dataset, the difference between the
systematic and GP approaches is rather small and on average
the GP found a solution similar to the one found by the
systematic generating. This is probably caused by the fact that
the best systematic solution is rather simple and contains only
the GNB which has no parameters, it is easy to find such a
solution by the evolution. However, in two out of the five runs,
GP found a better solution, the best of them had the value of
κ = 0.4898.

The GP approach in four out of five runs found a better
solution than the systematic one for the wilt dataset, thus
proving to be superior in this case. The best solution had the
κ = 0.8756.

The evolution of ensembles for the two larger datasets was
again able to outperform the simple models. We did not try to
evaluate the systematically generated ensembles in this case,
as the whole process is much more time consuming. In this
case, the stopping criterion of the GP was set to 10 hours
for the magic dataset and to 12 hours for the ml-prove
dataset. This led to approximately 30 generations in the former
case, and to around 70 generations in the later case. With
this larger datasets the training time of the various models
becomes important. The SVCs are the slowest of the models
and in many cases there was a few individuals in the population
which contained a lot of them, thus slowing down the evolution
considerably (and making the use of computational resources
ineffective as many of the cores were idle waiting for the few
slow individuals). It may be interesting to study how to set the
number of individuals and the number of cores in order to use
the resources more effectively.

Apart from the numerical results, we also provide two types
of graphs, which show the behavior of the algorithm. In Figure

1412

3 we show how the score of the best and average individual
in the population changes with the number of generations. It
shows, that it is quite easy to outperform the simple methods
with an ensemble, as almost from the beginning there is are
some individuals which are better. However, overperforming
the systematically generated ensembles is much more compli-
cated.

Fig. 2. The best ensembles for the winequality, wilt, magic and
ml-prove datasets.

The resulting ensembles are depicted in Figure 2. The
parameters of the models are written in the same order as they
are in Table I, however, for the k-best and PCA, the pictures
contain the fraction of the input features which should be in the
output instead of the number as this value makes more sense
during the evolution. The pictures show that in most cases the
GP found interesting ensembles which would be hard to find

Fig. 3. The aggregated values (over 5 runs) of average and best score in the
population. The error bars show the minimum and maximum values, the line
is the average.

manually.

V. CONCLUSION

We have presented an approach for the creation of ensem-
bles based on typed genetic programming. The approach was
evaluated on four datasets coming from different areas and
shows promising results for all of them. The evolved ensembles
are clearly superior to the use of simple methods, and they

1413

Fig. 4. The aggregated values (over 5 runs) of the size of the average
evaluation time of the ensembles in the population. The error bars show the
minimum and maximum values, the line is the average.

TABLE III. RESULTS FOR THE ML-PROVE AND MAGIC DATASETS.
QUADRATIC WEIGHTED κ FOR THE MAGIC DATASET AND ACCURACY FOR

THE ML-PROVE DATASET. FOR GP THE NUMBERS ARE THE AVERAGE OF 5
INDEPENDENT RUNS.

dataset ml-prove magic

SVC 0.5361 0.6147
LR 0.4574 0.5178
GNB 0.1696 0.3289
DT 0.5190 0.6647
GP 0.5689 0.7084

are also better then systematically created ensembles. Another
advantage of the GP-based approach is that it evolves the shape
and the parameters of the methods at once and thus saving
computational resources.

Our tree generating method provides a novel approach
to effective population initialization and mutation for typed
genetic programming with parametric polymorphism. We have
also demonstrated a technique of lifting natural numbers into
type system which in turn opens doors for more involved type
level programming in the fashion of logic programming.

There are many possible areas for future extension of this
approach, it would be interesting to add more ensembling
techniques than voting. It is also important to make sure,
that the evolution is more effective, killing the long-computing
tasks may be an interesting option, which would improve the
runtime of the algorithm considerably, and could also lead to
faster models.

ACKNOWLEDGMENT

Martin Pilát and Roman Neruda have been supported by the
Czech Science Foundation project no. P103-15-19877S. Tomáš
Křen has been supported by the Grant Agency of the Charles
University project no. 187115 and by SVV project number
260 224. This work was supported by the IT4Innovations
Centre of Excellence project (CZ.1.05/1.1.00/02.0070), funded
by the European Regional Development Fund and the national
budget of the Czech Republic via the Research and Devel-
opment for Innovations Operational Programme, as well as

Czech Ministry of Education, Youth and Sports via the project
Large Research, Development and Innovations Infrastructures
(LM2011033).

REFERENCES

[1] T. Křen, M. Pilát, K. Pešková, and R. Neruda, “Generating work-
flow graphs using typed genetic programming,” in Proceedings of the
MetaSel 2015, 2015, in print.

[2] P. Panov, S. Dzeroski, and L. Soldatova, “Ontodm: An ontology of
data mining,” in Data Mining Workshops, 2008. ICDMW ’08. IEEE
International Conference on, Dec 2008, pp. 752–760.

[3] C. Diamantini, D. Potena, and E. Storti, “Ontology-driven kdd process
composition,” in Advances in Intelligent Data Analysis VIII, ser. Lecture
Notes in Computer Science, N. Adams, C. Robardet, A. Siebes, and
J.-F. Boulicaut, Eds. Springer Berlin Heidelberg, 2009, vol. 5772,
pp. 285–296. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
03915-7 25

[4] O. Kazı́k and R. Neruda, “Data mining process optimization in compu-
tational multi-agent systems,” in Agents and Data Mining Interaction -
10th International Workshop, ADMI 2014, Paris, France, May 5, 2014,
ser. LNAI 9145. Springer, 2015, p. in print.

[5] G. Folino and F. Pisani, “Combining ensemble of classifiers by
using genetic programming for cyber security applications,” in
Applications of Evolutionary Computation, ser. Lecture Notes in
Computer Science, A. M. Mora and G. Squillero, Eds. Springer
International Publishing, 2015, vol. 9028, pp. 54–66. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-16549-3 5

[6] F. Briggs and M. O’Neill, “Functional genetic programming and exhaus-
tive program search with combinator expressions,” International Jour-
nal of Knowledge-Based and Intelligent Engineering Systems, vol. 12,
no. 1, pp. 47–68, 2008.

[7] F. Binard and A. Felty, “Genetic programming with polymorphic
types and higher-order functions,” in Proceedings of the 10th annual
conference on Genetic and evolutionary computation. ACM, 2008, pp.
1187–1194.

[8] T. Yu, “Hierarchical processing for evolving recursive and modular
programs using higher-order functions and lambda abstraction,” Genetic
Programming and Evolvable Machines, vol. 2, no. 4, pp. 345–380,
2001.

[9] R. Milner, “A theory of type polymorphism in programming,” Journal
of computer and system sciences, vol. 17, no. 3, pp. 348–375, 1978.

[10] T. Křen and R. Neruda, “A dynamic programming approach to individ-
ual initialization in genetic programming,” in Proceedings of the IEEE
SMC 2015 conference, 2015, in print.

[11] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[12] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and
J. Reis, “Modeling wine preferences by data mining
from physicochemical properties,” Decision Support Systems,
vol. 47, no. 4, pp. 547 – 553, 2009, smart Business
Networks: Concepts and Empirical Evidence. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167923609001377

[13] B. A. Johnson, R. Tateishi, and N. T. Hoan, “A hybrid
pansharpening approach and multiscale object-based image analysis
for mapping diseased pine and oak trees,” Int. J. Remote Sens.,
vol. 34, no. 20, pp. 6969–6982, Oct. 2013. [Online]. Available:
http://dx.doi.org/10.1080/01431161.2013.810825

[14] J. Bridge, S. Holden, and L. Paulson, “Machine learning for first-order
theorem proving,” Journal of Automated Reasoning, vol. 53, no. 2, pp.
141–172, 2014. [Online]. Available: http://dx.doi.org/10.1007/s10817-
014-9301-5

[15] R. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck,
M. Jiřina, J. Klaschka, E. Kotrč, P. Savický, S. Towers, A. Vaiciulis,
and W. Wittek, “Methods for multidimensional event classification:
a case study using images from a cherenkov gamma-ray telescope,”
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 516, no. 2–3, pp. 511 – 528, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168900203025051

1414

