
Improving Convergence in Cartesian Genetic
Programming Using Adaptive Crossover, Mutation

and Selection

Roman Kalkreuth
TU Dortmund University

Department of Computer Science

44221 Dortmund, Germany

Email: roman.kalkreuth@tu-dortmund.de

Günter Rudolph
TU Dortmund University

Department of Computer Science

44221 Dortmund, Germany

Email: guenter.rudolph@tu-dortmund.de

Jörg Krone
South Westphalia University

of Applied Science

58644 Iserlohn, Germany

Email: krone.joerg@fh-swf.de

Abstract—Genetic programming (GP) can be defined as an
evolutionary algorithm-based methodology which opens the au-
tomatic derivation of programs for problem solving. GP as
popularized by Koza uses tree representation. The application of
GP takes place on several types of complex problems and became
very important for Symbolic Regression. Miller and Thomson
introduced a new directed graph representation called Cartesian
Genetic Programming (CGP). We use this representation for
very complex problems. CGP enables a new application on
classification and image processing problems. Previous research
showed that CGP has a low convergence rate on complex
problems. Like in other approaches of evolutionary computation,
premature convergence is also a common issue. Modern GP
systems produce population statistics in every iteration. In this
paper we introduce a new adaptive strategy which uses population
statistics to improve the convergence of CGP. A new metric for
CGP is introduced to classify the healthy population diversity.
Our strategy maintains population diversity by adapting the
probabilities of the genetic operators and selection pressure. We
demonstrate our strategy on several regression problems and
compare it to the traditional algorithm of CGP. We conclude this
paper by giving advice about parameterization of the adaptive
strategy.

I. INTRODUCTION

Genetic Programming (GP) was first introduced by
Cramer [2] in 1985. GP as popularized by Koza [8], [7],
[9] in 1990 uses LISP programs represented as parse trees.
GP is an automated method for creating computer programs
by defining a high-level problem statement. GP is often used
for Symbolic Regression, since the parse trees can represent
mathematical expressions, fitting a given dataset. In 1999
Miller and Thomson [15], [17] introduced Cartesian Genetic
Programming (CGP) which uses a directed graph representa-
tion. CGP is often used for classification and image processing
problems [14]. CGP originally uses only mutation as genetic
operator and is based on an integer genome representation. In
2007, Clegg et al. [1] introduced a new representation of CGP
called Real-Value-CGP which enables the use of crossover.
The new representation is based on floating points. Although,
on complex problem, CGP shows a low convergence rate
and suffers from a common issue in evolutionary computa-
tion called premature convergence. The algorithm traps into
local optima and the population is getting too homogeneous

to proceed towards global optima. Slany [20] improved the
convergence of integer-based CGP with the Age Layered
Population Structure (ALPS) [6] on image operator design
problems. But for more complex problems the convergence
gain decreased and became less superior. Miller and Smith
investigated the correlation between efficiency and node count
and achieved a better performance of integer-based CGP [16].
Clegg et al. outlined the problem of low convergence in
Real-Value-CGP on a regression problem and introduced a
variable crossover. Meier et al. [13] investigated the problem
in Real-Value-CGP by introducing a new genetic operator
called Forking which uses population statistics to fork ho-
mogeneous areas in the search space. Another approach to
achieve performance acceleration in genetic programming was
introduced by Langdon [10] which includes a multithreaded
CUDA interpreter. For our research, we tend more to handle
the problem by improving the CGP algorithm itself as through
increasing computational performance.

In the field of genetic algorithms [5],previous research
showed that adaptive genetic operators and selection are help-
ful to maintain population diversity and to prevent premature
convergence. Many adaptive strategies benefit from adapting
the probabilities of crossover and mutation [3], [19], [21]. Later
McGinley et al. [12] proposed an adaptive genetic algorithm
which also uses an adaptive selection method by measuring
the healthy population diversity. Clegg et al. introduced a
variable crossover operator for CGP, though it merely performs
a change to mutation only CGP by gradually decreasing the
crossover probability. The variable crossover is based on their
observation on regression problems and does not solve the
problem itself.

This paper introduces an adaptive strategy for Real-Value-
CGP which is based on the population statistics of modern
GP Systems. The paper shows in what way these statistics can
be used to maintain population diversity. The new strategy
has been tested on several regression problems. Our strategy
benefits from locating suitable points in the evolutionary
process to adapt the probabilities of the genetic operators.
As a result, population diversity is increased which may lead
to better convergence. On harder problems the new strategy
also benefits from adapting the selection pressure. To locate
opportunities for adaption, a new metric for CGP is introduced
which measures the healthy population diversity.

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.201

1415

Fig. 1. CGP genotype (sequence of numbers) and phenotype for an individual.
The phenotype is determined by decoding the genotype through backward
search. Source: Miller et al. [14]

In the following section we describe the background of
CGP, CGP population statistics and adaption of genetic op-
erators. In Section 3 the new adaptive strategy for CGP is
introduced. Section 4 shows the results of different regression
problems. In the last section we discuss conclusions and future
work. One purpose of our new strategy in the longterm is the
improvement of existing approaches which will be discussed
in this section.

II. BACKGROUND

In this section, we explain CGP in detail, the creation
of population statistics in CGP and the adaption of genetic
operators.

A. Cartesian Genetic Programming

Cartesian Genetic Programming is a form of Genetic
Programming which is often used for evolving digital circuits.
In contrast to conventional GP, CGP represents a program
via genotype-phenotype-mapping as an indexed, acyclic and
directed graph as shown in Figure 1. CGP is similar to another
technique called Parallel Distributed GP, which was introduced
by Poli [18]. Originally the structure of the graphs was a multi-
row representation, but later work focused on a representation
with at least one row. Figure 1 shows an CGP genotype
(sequence of numbers) and its corresponding phenotype for
an quadratic function. Each group in the genotype refers to a
node of the graph except the last one. The group consists of
two types of numbers which index the number in the function
set (underlined) and the inputs (non-underlined) for the node
where the number depends on the arity of the function. The
last group represents the index of the node which leads to the
output. A recursive backward search through the graph is used
to evaluate the program as shown in Figure 2. The backward
search starts from the program output and processes all nodes
which are linked in the genotype. In this way only active nodes
are processed during evaluation. The integer-based represen-
tation of the CGP phenotypes restricts CGP to use mutation
as genetic operator. The importance of crossover in genetic
programming has also been underlined in the past [8]. The
real value representation of the CGP genotype as shown in
Figure 3 allows the crossover of two genotypes by a weighted
average crossover where the genes vary in the interval ∈ [0, 1].
Merely swapping parts of the genotype slowed down the
efficiency on different problems [1]. By only using mutation
as genetic operator, integer-based and real-valued CGP show
similar convergence behaviour. Clegg et al. showed that the

Fig. 2. The decoding procedure of a CGP genotype. a) Output A (oA)
connects to the output of node 8. b) Node 8 is connected with the nodes 2
and 7, move to nodes 2 and 7. c) Nodes 2 and 7 are connected with the output
of node 6 and the two inputs 0 and 1, move to 6. d) Node 6 is connected with
the output of the nodes 2 and 4, move only to 4 because 2 has already been
decoded. e) Node 4 is connected with the output of nodes 2 and 3, move to 3
f) Node 3 is connected with the program input 1. Source: Miller et al. [14]

new representation in combination with crossover improves the
convergence behaviour for the first generations. For the latter
generations, Clegg et al. outlined that the use of crossover in
Real-Value-CGP influences convergence negatively.

B. Population Statistics in CGP

In CGP two types of population statistics can be used.
Information about the population can be received by exploring
the fitness landscape and the phenotype space. On the problem
of premature convergence many adaptive approaches react on
an homogeneous fitness landscape by increasing the influence
of the mutation operator to increase population diversity. In
addition to the classical approach of using population statistics
by exploring the fitness landscape, Meier et al. explored the
phenotype space for the forking operator [13]. The phenotype
of every individual can be expressed as a string representation
called fingerprint. In CGP different genotypes can refer to the
same phenotype. This property is an example of neutrality
in CGP and was outlined by Miller and Thomson [17]. The
fingerprint of a phenotype is used to determine its frequency
in the population. The number of unique phenotypes can be
used to classify the diversity of the population. On this way
homogeneous areas in the solution space can be detected.
This can be more effective than merely exploring the fitness
landscape.

o0 = * (- 1.0 (* 1.0 (* x x)))
(- (* 1.0 (* x x)) (* (* x x) (* x x)))

Listing 1. Textual representation of a phenotype of fitting the function x6−
2x4 + x2

C. Adaption of genetic operators

Evolutionary algorithms handle with two main abilities.
Exploitation of the genetic material in the population and the
exploration of the search space. In CGP, exploitation is mostly
done by crossover where mutation is used for exploration. Ex-
ploitation and exploration can be controlled by the probabilities

1416

Fig. 3. Decoding from real-value to integer based genotype Source: Meier
et al. [13]

of crossover and mutation. Let crossover probability be the
probability that the crossover occurs when two parents have
been selected, otherwise one of the parents is passed through
by random. Let mutation probability be the probability that a
gene of the genotype is mutated (replaced by a random num-
ber). Finding the right probabilities of the genetic operators
is the key for an efficient search. Running the algorithm with
inappropriate probabilities can lead to premature convergence
or to excessive diversity. During the evolutionary process, the
conditions are changing among generation to the next so that
the probabilities can be adapted to the current conditions.
Previous research showed that increasing crossover probability
at high population diversity and increasing mutation proba-
bility at low diversity has a beneficial effect [12]. The key
of success for an adaptive strategy is the estimation of the
right moments for converting the population or exploring the
solution space. Beside to adaption of the probabilities of the
genetic operators, controlling selection pressure has also shown
a beneficial effect [12].

D. Related Work

In this paper we utilize the computational effort (CE) as a
measure introduced by Koza in [7]. The CE statistic is used to
report the amount of computational effort to solve a problem
with 99% probability by a GP System. We use the minimum
of the computational effort as shown in Equation (5). This
methodology has been used by Koza to describe experiments
on several problems. For this methodology we first have to
define a cumulative probability of success P (N, l) (Equation
(1)) which represents the number of runs which have been
successful after l generations (Ns(l)) in relation to the number
of total runs Ntotal. by using N individuals in each run.

P (N, l) :=
Ns(l)

Ntotal
(1)

Since we hope that our GP System can solve the problem
with 99% probability we have to determine the number of runs
which are required to find the solution. Because of premature
convergence a 99% probability of success in every run may
never occur. If R runs are independent the odds of failure for
all runs can be calculated by

Pall fail := (1− P (N, l))R (2)

and with odds of failure we can compute the number of
independent runs R(z) which are required to get a solution
with a confidence interval of z where z is often chosen as a

probability of 99%.

R(z) :=

⌈
log(1− z)

log(1− P (N, l))

⌉
(3)

The CE statistic I(N, z, l) describes the number of evaluations
which have to be performed to solve a problem to a proportion
of z. This is done by multiplying the total number of individ-
uals processed at the end of generation number l to R(z).

I(N, z, l) := (N · l ·R(z)) (4)

Koza defined the statistic over all generation numbers l to
find the minimum computational effort Imin(N, z) to solve a
given problem. For the determination of Imin(N, z) we take
the minimum of all sampled I(N, z, l) as shown in Equation
(5).

Imin(N, z) := arg min
l
(N · l ·R(z)) (5)

III. INTRODUCING THE NEW STRATEGY

A. Measuring Phenotype Space Diversity

Measuring the diversity of the phenotype space is the core
of our adaptive strategy. Where other strategies measure the
diversity only in genotype space, our strategy benefits also
from measuring the diversity in phenotype space. Let S be
the phenotype space. Individual s ∈ S with s = Σ∗ over the
alphabet Σ is the textual representation of a certain phenotype.
An example of a textual representation of s is shown in Listing
1. Let N be the number of individuals and S∗ ⊂ S the subset
of phenotypes described by all individuals. Phenotype space
diversity θ can be split into two terms, standard phenotype
diversity θs and healthy phenotype diversity θh. We receive
information about the diversity of the whole phenotype space
from θs, where θh refers to the ratio of healthy phenotypes
in the population. A healthy phenotype is of high fitness and
unique in the phenotype space which is of high value for the
evolutionary process. To determine θs we define a dictionary
M : S → N0 which shares all fingerprints of the phenotype
space. As value of M the frequency of a phenotype in the
population is stored. The value of θs is calculated by the size
of the dictionary in ratio to the number of individuals as shown
in Equation (9). When every individual refers to one phenotype
the dictionary size is equal to the population size which is the
best standard diversity in phenotype space. For θh we first have
to determine the phenotype health of every individual in the
population. For calculating the phenotype health, the fitness
rate FRate (Equation (7)) of an individual and the frequency of
the phenotype in relation to the diversity of the population fRate

(Equation (6)) have to be determined. In Equation (7) F (i)
stands for the fitness value of i-th individual in the population.
Furthermore, FWorst and FBest represent the best and worst
fitness value in the population. The frequency rate fRate is
multiplied with an amplifier α as shown in Equation (8) to
amplify lower frequencies and is limited to a maximum with
a value of 1. In the discussion section we give advice for
the parametrization of the amplifier which is based on our
experiments. Finally phenotype health can be determined as the
product of the fitness rate and negated frequency rate, since
lower frequency rates are better. The sum of the phenotype
health values over the population can be used to describe θh

and is normalized by N , consider Equation (10). To calculate
θ, we average θs and θh as shown in Equation (11).

1417

fRate(j) :=
M(j)

|M | , for all j ≤ |S∗| (6)

FRate(i) :=
F (i)− FWorst

FBest − FWorst
, for all i ≤ N (7)

w(j) := min(α · fRate(j), 1), for all j ≤ |S∗| (8)

θs :=
|M |
N

(9)

θh :=
1

N

N∑

i=1

(1− w(i)) · FRate(i), for all i ≤ N (10)

θ :=
θs + θh

2
(11)

B. Adapting crossover probability

With information about the phenotype space diversity, the
crossover probability can be adapted to the current conditions.
When θ is high, the population consists of healthy phenotypes
and less homogeneous areas which is a good point to increase
crossover probability to proceed the population towards the
global optima. Otherwise when θ is low, we have to han-
dle with more homogeneous areas where a high crossover
probability can convert the population to a local optimum. In
this case crossover probability is reduced to increase diversity
through mutation. The crossover probability is limited by a
lower and upper limit. This prevents the crossover probability
from getting exceed boundaries. Equation (12) shows the
adaption of the crossover probability with the limits CL and
CH . We define the limits CL and CH empirically. In CGP, the
crossover probability often vary between the value 0.5 and 1.

PCross = θ · (CH − CL) + CL (12)

C. Adapting mutation probability

In contrast to adapt a global crossover probability, mutation
probability is adapted locally. Since mutation has a strong
effect on the phenotype in CGP, a global adaptive mutation
is not recommendable. By increasing the mutation probability
for all phenotypes, good solutions with high fitness would
not protected by altering their genotype through mutation.
Also the population is getting too homogeneous when the
mutation probability is too low. The mutation probability is
adapted directly in phenotype space based on the health of
the phenotype. Healthy phenotypes are protected by a lower
probability where unhealthy phenotype will be mutated with
higher probability. As a result diversity is increased in areas
where the population is too homogeneous. The need of a
higher mutation rate for a phenotype can be determined by
its frequency. The mutation probability is calculated as shown
in Equation (13) with the limits ML and MH. Since each
individual has its own mutation probability the probabilities
of two individuals are averaged if crossover occurs. Like
the limits of the crossover probability, ML and MH are

set empirically. In GGP, the mutation probability often vary
between a value of 0.01 and 0.3.

PMut(i) = w(i) · (MH −ML) +ML (13)

D. Adapting selection pressure

On more complex problems we also adapt the selection
pressure in relation to θh. When θh is high, the selection
pressure is increased to select individuals with high fitness.
At low θh, selection pressure is decreased, to give lower
fitting individuals a greater chance to get selected. Normally
we handle with the principle of survival of the fittest but in
situations with a homogeneous population a higher selection
pressure is not beneficial. By selecting lower fit individuals
which are of higher diversity, θh is increased. As we use
tournament selection, the tournament size is adapted as shown
in Equation (14). Like in traditional GP we tend to use higher
selection pressure. The limits are set empirically as we show
in the next section.

T Size = θh(TH − T L) + T L (14)

IV. RESULTS

In this section we compare our new strategy with the
traditional Real-Value-CGP [1] on four different regression
problems. We perform two different types of experiments. The
first experiment is similar to the experiments of Meier et al.
with a fixed tournament size to evaluate the use of adaptive
crossover and mutation. We intend to use both adaptive oper-
ators in further research to develop a combined strategy with
the forking operator. For the first experiment we chose the
regression problems f1 and f2. The second experiment was
performed on the more complex regression problems f3 and
f4. For this experiment we also use adaptive selection pressure.

Let T =
{
xp

}P
p=1

, xp ∈ [−1, 1] be a training dataset of P
random points and find(xp) the value of an evaluated individual
and fref(xp) the true function value. Let

C :=
P∑

p=1

|find(xp)− fref(xp)|

be the cost function. When the difference of all absolute
values becomes less then 0.01, the algorithm is classified as
converged. To evaluate the results, we use a methodology
based on Meier et al. and Clegg et al. which includes the
average number of generations until convergence and the
computational effort. For the calculation of the computational
effort, we take the minimum computational effort (Min. CE)
as shown in Equation (5). For each average number, e.g.
89 ± 216, the first number refers to the average value and
the second to the standard deviation. Furthermore, we classify
every run which exceeds 1000 generations as slow run and
summarized the number of slow runs for each problem. We
perform 1000 independent runs with different random seeds
on every regression problem and use the Mann-Whitney-U-
Test [11] to classify the significance of the results. The average
number of generations is denoted with a∗ if the significance
level is P < 0.05 or a† if the significance level is P < 0.01.
Diagrams which show the detailed convergence behaviour, the

1418

TABLE I. ALGORITHM CONFIGURATION FOR THE FIRST EXPERIMENT

Property Traditional Adaptive

Maximum node count 10 same
Function lookup table + (0), - (1), * (2), / (3) same
Population size 50 same
Maximum Generations 20,000 same
Crossover operator weighted average same

Crossover probability (P Cross) 0.75 0.5 - 1.0 (general)
Mutation operator Reset gene ∈ [0, 1] same

Mutation probability (PMut) 0.2 0.2 - 0.3 (general)

Tournament selection size (T Size) 20 same
Elitism size 2 same
Amplifier - 3 (general)

TABLE II. THE AVERAGE NUMBER OF GENERATIONS AND

COMPUTATIONAL EFFORT REQUIRED BY CGP FOR THE PROBLEM

f1(x) = x6 − 2x4 + x2

Algorithm Avg. Generations Min. CE Slow Runs

Traditional 151 ± 712 22622 17
Adaptive (general) 101 ± 169∗ 20380 5

Adaptive (specific) 89 ± 128† 17828 3

function value of the best solution has been averaged for each
generation over all runs.

f1(x) = x6 − 2x4 + x2 (15)

f2(x, y) = (x2 · y2)/(x+ y) (16)

f3(x) = x5 − 2x3 + x (17)

f4(x) = x4 + x3 + x2 + x (18)

A. Experiment I

For the first experiment we use the same parameter configu-
ration as Meier et al. for the traditional Real-Value-CGP which
has been found to be the best probabilities for mutation and
crossover on regression problem. The parameter configuration
for the traditional Real-Value-CGP and our adaptive approach
is shown in Table (I). Our adaptive strategy uses the same
configuration except the mutation and crossover probability.
For the adaptive probabilities and the amplifier we define a
general configuration for all problems which is marked as
general. Furthermore we use a specific configuration for the
adaptive strategy which is marked as specific and represents
the optimal strategy parametrization for the given problem.
For example for Problem 1 we use a crossover probability
ranging from 0.7 to 1.0 and α is set to 5. The optimal strategy
parametrization has been determined empirically. Since our
strategy maintains population diversity, we are able to use
higher crossover probabilities with less risk of trapping into
local optima. Table II shows the results for the first problem
which outlines that the adaptive strategy convergences faster
with general and specific settings. Figure 4 shows a comparison

TABLE III. THE AVERAGE NUMBER OF GENERATIONS AND

COMPUTATIONAL EFFORT REQUIRED BY CGP FOR THE PROBLEM

f2(x, y) = (x2 · y2)/(x+ y)

Algorithm Avg. Generations Min. CE Slow Runs

Traditional 313 ± 612 60689 71

Adaptive (general) 222 ± 444† 44559 31

Adaptive (specific) 214 ± 422† 42915 33

Fig. 4. Average convergence for the first generations covering traditional
Real-Value CGP and adaptive Real-Value CGP with specific settings on
f1(x) = x6 − 2x4 + x2.

of the average convergence between the traditional Real-Value
CGP and our adaptive approach with specific settings for the
first generations. Our adaptive approach converges faster and
reaches the convergence criteria faster as illustrated in Figure 5.
Table III shows the result for the second regression problem.
As illustrated, the number of generations until convergence
and the computational effort is better in comparison to the
traditional Real-Value-CGP. Figure 6 and 7 underline the
faster convergence of our adaptive approach.

B. Experiment II

For the second experiment we use the same algorithm
configuration as shown in Table I except the tournament size.
The configuration of the tournament size is shown in Table IV.
For the problems f3 (Equation 17) and f4 (Equation 18) we
also use the general and specific set of probabilities as we did
in our first experiment. For this experiment we use the plot
style as shown in Figure 8 because the presented problems
use high polynomials, which produce high fitness values. As a
result the detailed convergence for the given problems is dif-
ficult to plot. Table V shows the result for the third regression
problem and as illustrated the average generation number and
the computational effort is also better. The adaptive selection
pressure is beneficial in maintaining population diversity but
also in processing the population towards the global optimum
by adjusting high selection pressure at the right time. Table VI
shows the result for the last regression problem which shows
also a better result for our adaptive approach. Also the number
of generations to convergence is better as shown in Figure 9.
Our adaptive approach has also slow runs but prevents the
occurrence of very slow runs.

1419

Fig. 5. Average convergence for the latter generations covering traditional
Real-Value CGP and adaptive Real-Value CGP with specific settings on
f1(x) = x6 − 2x4 + x2.

Fig. 6. Average convergence for the first generations covering traditional
Real-Value CGP and adaptive Real-Value CGP with specific settings on
f2(x, y) = (x2 · y2)/(x+ y).

TABLE IV. TOURNAMENT SIZE CONFIGURATION FOR THE SECOND

EXPERIMENT

Algorithm Tournament Size (T Size)

Traditional 8
Adaptive 4-10

Fig. 7. Average convergence for the latter generations covering traditional
Real-Value CGP and adaptive Real-Value CGP with specific settings on
f2(x, y) = (x2 · y2)/(x+ y).

TABLE V. THE AVERAGE NUMBER OF GENERATIONS AND

COMPUTATIONAL EFFORT REQUIRED BY CGP FOR THE PROBLEM

f3(x) = x5 − 2x3 + x

Algorithm Avg. Generations Min. CE Slow Runs

Traditional 524 ± 1005 104965 126

Adaptive (general) 351 ± 564† 70337 70

Adaptive (specific) 349 ± 551† 69892 67

C. Diversity Comparison

Since f4(x) is our most complex problem we use for the
results, we choose this problem for a diversity comparison
in phenotype space. We average the diversity value θ (Equa-
tion 11) of 100 runs which exceed 500 generations for each
generation. Based on our second Experiment, we use adap-
tive genetic operators and selection pressure for the adaptive
strategy. Since the diversity value θ is normalized and ranges
between 0 and 1, a number of 1 represents a phenotype space
where every phenotype is unique. The diversity comparison is
shown in Figure (10) and as visible the average diversity value
of the adaptive algorithm is higher.

V. DISCUSSION

Our experiments on the four regression problems shows
that using adaptive genetic operators and selection could be

TABLE VI. THE AVERAGE NUMBER OF GENERATIONS AND

COMPUTATIONAL EFFORT REQUIRED BY CGP FOR THE PROBLEM

f4(x) = x4 + x3 + x2 + x

Algorithm Avg. Generations Min. CE Slow Runs

Traditional 1009 ± 1425 252378 328
Adaptive (general) 713 ± 909∗ 178296 265

Adaptive (specific) 620 ± 820† 155246 217

1420

Fig. 8. The number of generations to convergence over the slowest 200 runs
for traditional Real-Value CGP and adaptive Real-Value CGP with specific
settings on f3(x) = x5 − 2x3 + x.

Fig. 9. The number of generations to convergence over the slowest 200 runs
for traditional Real-Value CGP and adaptive Real-Value CGP with specific
settings on f4(x) = x4 + x3 + x2 + x.

Fig. 10. Phenotype space diversity comparison for traditional Real-Value
CGP and adaptive Real-Value CGP with specific settings on f4(x) = x4 +
x3 + x2 + x.

beneficial for CGP. By maintaining population diversity, the
occurrence of premature convergence could be prevented. As
shown in our first experiment, our strategy improves the
convergence in the former and latter generations by maintain-
ing population diversity. In the first generations our strategy
benefits from the ability of using higher probabilities of
crossover. Using high crossover probabilities with traditional
CGP increases the risk of the occurrence of premature con-
vergence. The population converges to local optima and the
effect of mutation for the exploration of the search space is
too low. In this case our new strategy reacts with increasing
the effect of mutation which prevents the populations getting
too homogeneous. The use of a general set of parameters
showed the flexibility of our new strategy when the optimal
configuration is not set. Our adaptive strategy uses one new
parameter which depends on the complexity of the problem
and the size of the population. For the choice of the amplifier
value we have found no general approach yet. Since this value
was chosen empirically, we observed that an higher value
for the harder problems of our tested regression problems
was beneficial. Since modern evolutionary computation sys-
tems produce population statistics which can be used for our
strategy, the determination of the phenotype space diversity
becomes easier. Since our strategy handles with two types of
population statistics, the use of our strategy with an GP system
which has no build-in statistic module is difficult. But our
analysis of the most used evolutionary computation systems
showed that nearly every modern system produces statistics.
This includes also fingerprints for genetic programming. Since
the most genetic programming systems produce fingerprints for
tree representation, the use of our new strategy in traditional
GP is feasible. For the selection we only used the fitness value
as selection criterion. In our experiments we showed that the
crossover of unique and high fitted individuals is beneficial
for CGP. For a better selection in our strategy, an improved
selection method is necessary which works with two selection
criteria, fitness and the frequency of the phenotype in the
population. Using the textual representation as fingerprint is
a simple form to map the phenotype space but has the disad-
vantage that textual different phenotypes are similar in their

1421

function. These behavior of neutrality in phenotype space has
to be investigated in detail to develop more precise mapping
techniques. In our experiments we only used four possible
functions and ten nodes per CGP program but Miller and Smith
showed that increasing node count improves convergence,
too [16]. Further research is needed to investigate how our
strategy can be applied on this behavior. Since our strategy is
able to measure opportunities for high crossover probabilities,
a combined use of the forking operator and our strategy is
feasible.

VI. CONCLUSIONS AND FUTURE WORK

A first adaptive strategy for CGP has been proposed. Our
strategy maintains population diversity by adapting the prob-
abilities of the genetic operators and selection pressure based
on measurements in phenotype space. Also our new metric for
measuring the ratio of healthy phenotypes helps to determine
opportunities for the adaption. Our strategy works similar to
the adaptive strategy of McGinley et al. [12] by adapting
crossover probability globally and mutation probability locally.
Since some adaptive shemes handle with a global mutation
probability this approach showed no beneficial effect in our ex-
periments. Also increasing mutation and crossover probability
simultaneously if the population diversity becomes to less as
proposed by Srinivas et al. [21], this behaviour influenced the
convergence in our experiments negatively. Increasing muta-
tion probability in homogeneous areas of the search space and
reducing crossover probability if the population diversity is low
as proposed by McGinley et al. [12] was the most successful
approach to adapt the genetic operators. It has been shown that
mapping phenotype space is beneficial for CGP on several
symbolic regression problems so that our future work will
focus on the improvement of these measurement techniques.
Choosing the textual representation as fingerprint of a CGP
program is the simplest form of mapping phenotype space. To
improve the measurement of phenotype space, more detailed
methods have to be found which are able to handle with
phenotype neutrality which means that phenotypes which are
different in their textual representation are semantically equal.
Since we only benchmarked symbolic regression problems we
will test our strategy on several image processing problems.
Another focus of our further work lies on the development
of a multi-objective selection method for our strategy which
may lead to better convergence. Since the parametrization of
our strategy has been determined empirically, we also intend
to investigate methods for an automated determination. At
this time, several effective approaches for CGP have been
found [13], [4], [16]. For the future of CGP it will be important
to investigate in which way different approaches are working
together. As a first step we intend to perform experiments
which include a combined use of the forking operator [13] and
our adaptive strategy. Inspired by the forking operator which
samples new individuals in the near of a solution, an adaption
of the principle for our strategy is feasible. Further research is
needed to investigate the use of an adaptive mutation operator
with adaptive step size control.

VII. ACKNOWLEDGEMENT

We thank Dominik Kopczynski from the Department of
Computer Science of the TU Dortmund University who sup-

ported our work by giving advice for the improvement of the
layout of this paper.

REFERENCES

[1] J. Clegg, J. A. Walker, and J. F. Miller, “A new crossover technique
for cartesian genetic programming,” in Proceedings of the 9th annual
conference on Genetic and evolutionary computation. ACM, 2007, pp.
1580–1587.

[2] N. L. Cramer, “A representation for the adaptive generation of simple
sequential programs,” in Proceedings of the First International Confer-
ence on Genetic Algorithms, 1985, pp. 183–187.

[3] L. Davis, “Adapting operator probabilities in genetic algorithms,” in
International Conference on Genetic Algorithms\’89, 1989, pp. 61–69.

[4] S. L. Harding, J. F. Miller, and W. Banzhaf, “Self-modifying cartesian
genetic programming,” in Cartesian Genetic Programming. Springer,
2011, pp. 101–124.

[5] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1,
pp. 66–72, 1992.

[6] G. S. Hornby, “Alps: the age-layered population structure for reducing
the problem of premature convergence,” in Proceedings of the 8th
annual conference on Genetic and evolutionary computation. ACM,
2006, pp. 815–822.

[7] J. Koza, Genetic programming: on the programming of computers by
means of natural selection. MIT press Cambridge, 1992, vol. 1.

[8] J. R. Koza, Genetic programming: A paradigm for genetically breeding
populations of computer programs to solve problems. Stanford
University, Department of Computer Science, 1990.

[9] J. R. Koza and J. P. Rice, Genetic programming II: automatic discovery
of reusable programs. MIT press Cambridge, 1994, vol. 40.

[10] W. B. Langdon, “A many threaded cuda interpreter for genetic pro-
gramming,” in Genetic Programming. Springer, 2010, pp. 146–158.

[11] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[12] B. McGinley, J. Maher, C. O’Riordan, and F. Morgan, “Maintaining
healthy population diversity using adaptive crossover, mutation, and
selection,” Evolutionary Computation, IEEE Transactions on, vol. 15,
no. 5, pp. 692–714, 2011.

[13] A. Meier, M. Gonter, and R. Kruse, “Accelerating convergence in
cartesian genetic programming by using a new genetic operator,” in
Proceedings of the 15th annual conference on Genetic and evolutionary
computation. ACM, 2013, pp. 981–988.

[14] J. Miller, Cartesian genetic programming. Springer, 2011.

[15] J. F. Miller, “An empirical study of the efficiency of learning boolean
functions using a cartesian genetic programming approach,” in Proceed-
ings of the Genetic and Evolutionary Computation Conference, vol. 2,
1999, pp. 1135–1142.

[16] J. F. Miller and S. L. Smith, “Redundancy and computational efficiency
in cartesian genetic programming,” Evolutionary Computation, IEEE
Transactions on, vol. 10, no. 2, pp. 167–174, 2006.

[17] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in
Genetic Programming. Springer, 2000, pp. 121–132.

[18] R. Poli, “Parallel distributed genetic programming,” School of Computer
Science, University of Birmingham, Tech. Rep., 1999.

[19] J. D. Schaffer and A. Morishima, “An adaptive crossover distribution
mechanism for genetic algorithms,” in Genetic Algorithms and their
Applications: Proceedings of the Second International Conference on
Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc,
1987, pp. 36–40.

[20] K. Slanỳ, “Comparison of cgp and age-layered cgp performance in
image operator evolution,” in Genetic Programming. Springer, 2009,
pp. 351–361.

[21] M. Srinivas and L. M. Patnaik, “Adaptive probabilities of crossover and
mutation in genetic algorithms,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 24, no. 4, pp. 656–667, 1994.

1422

