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Abstract—In the neural network context, the phenomenon of
saturation refers to the state in which a neuron predominantly
outputs values close to the asymptotic ends of the bounded
activation function. Saturation damages both the information
capacity and the learning ability of a neural network. The degree
of saturation is an important neural network characteristic that
can be used to understand the behaviour of the network itself,
as well as the learning algorithm employed. This paper suggests
a measure of saturation for bounded activation functions. The
suggested measure is independent of the activation function range,
and allows for direct comparisons between different activation
functions.

I. INTRODUCTION

Saturation occurs when the hidden units of a neural net-
work (NN) predominantly output values close to the asymp-
totic ends of the activation function range. Saturation reduces
the NN to a binary state, thus limiting the overall information
capacity of the NN. Saturated units make gradient descent
learning slow and inefficient due to small derivative values near
the asymptotes. Glorot and Bengio [1] observed the activation
function outputs in order to better understand the difficulty
of training deep neural networks. It was recently shown that
non-gradient descent learning can also be rather sensitive to
the degree of saturation present in the NN [2]. In general, the
degree of saturation is an important NN characteristic that can
provide insight into both the model and the learning algorithm
behaviour.

No standardised way to measure the degree of saturation
exists, though. Glorot and Bengio [1] graphed the activation
function output ranges over algorithm iterations to observe the
level of saturation. In both [1] and [2] frequency distributions
were used to compare the spread of activation function outputs
across a selection of different activation functions. Even though
graphical representations are easy to interpret, they provide
no means of a statistical comparison between the degree of
saturation as exhibited by the methods being compared.

This paper suggests a simple measure of saturation for
bounded activation functions. The suggested measure generates
a single value in a predefined range independent of the
activation function range, allowing for statistical comparisons
between different activation functions. The rest of the paper is
structured as follows: Section II presents the problem of sat-
uration. Section III presents the suggested numeric saturation
measure. Section IV tests the suggested measure on a selection
of problems. Section V summarises the paper and outlines the
suggested measures necessary in a saturation behaviour study.

II. SATURATION IN NEURAL NETWORKS

Activation functions used in NN hidden and output layers
are usually chosen to be non-linear and bounded. Non-linearity
of the hidden units allows a NN to approximate any non-linear
mapping between inputs and outputs provided that enough
neurons are used in the hidden layer [3]. Upper and lower
bounds ensure that the signal does not grow uncontrollably as
it propagates from one layer to the next. Functions with a sig-
moidal curve such as the logistic function and the hyperbolic
tangent are often used as activation functions. Sigmoidal func-
tions exhibit linear behaviour in the active range determined
by the function slope, and saturate (approach asymptotes) for
large positive and negative input values.

Thus, if the magnitude of the input signal lies outside the
active range of a sigmoidal activation function, the output
signal will be close to an asymptotic value. The net input
signal is a weighted sum of inputs from the previous NN layer:

net =
I+1∑
i=1

wizi (1)

where I + 1 is the number of incoming connections plus the
bias, wi is the weight of the i-th connection, and zi is the i-th
input signal. Now, suppose that wi for a certain i is set to a very
large value, causing net to always lie outside of the activation
function’s active range. If a bounded sigmoidal activation
function is used, the output for such net will be very close
to either the lower or the upper asymptotic value, depending
on the net’s sign. In such case, saturation is observed: the
phenomenon when a NN unit is reduced to a binary state,
predominantly outputting values close to the asymptotic ends
of the activation function.

Why is saturation undesirable? For a saturated unit, a small
change in the incoming weights will have almost no influence
on the output of the unit. Therefore, a training algorithm used
for weight optimisation will struggle to determine whether the
weight change had a positive or a negative effect on the NN’s
performance. As a result, the training algorithm will stagnate,
and no further learning will occur.

If a sigmoidal function is used in the output NN units, and a
classification problem with binary-coded targets is considered,
then “binary” saturated outputs may seem appropriate. How-
ever, a saturated output unit does not indicate the “confidence”
level of the NN [4], in other words, all patterns, even the ones
not fitted very well by the NN, will be classified with the same
“strength”, preventing the training algorithm from refining the
solution.
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Even though excessive saturation is undesirable throughout
the NN, a certain degree of saturation is in fact necessary in the
output layer to accommodate the binary-coded classification
targets. Overly linear hidden units will not compute a non-
linear mapping, therefore some saturation is required in the
hidden layers, too. Thus, we face a difficult problem of finding
a balance between too little saturation (trivial model) and too
much saturation (imprecise model immune to further training)
[1]. It was also shown in [5] that there is a correlation between
excessive saturation and overfitting, thus controlling saturation
may be beneficial to the generalisation capabilities of the
constructed model. In order to control saturation, a way of
quantifying, or measuring saturation is necessary.

III. MEASURING SATURATION

An obvious way to check for the presence of saturation
is to examine the activation function outputs in the non-linear
layers of a NN. If the activation outputs on the given data set
are concentrated around the asymptotic ends, then saturation is
present. Raw activation output data can be analysed graphically
to approximate the extent of saturation. Glorot and Bengio [1]
graphed the activation function output ranges over algorithm
iterations to observe the level of saturation. In both [1] and
[2] frequency distributions were used to compare the spread
of activation function outputs across a selection of different
activation functions. However, graphical analysis provides no
means of a statistical comparison between different models.
A single-valued saturation measure would be much more
convenient and meaningful.

In [5], a simple single-valued measure of saturation based
on the magnitudes of net was proposed:

ςh =

∑P
i=1

∑H
j=1 |netij |

PH
(2)

where h is the hidden layer index, P is the number of data
patterns, and H is the number of units in the hidden layer.
Saturation measure ςh effectively measures the growth of the
input signal magnitudes. As discussed in Section II, saturation
occurs when the value of net lies outside the active range
of the activation function. Thus, monitoring the growth of
average net gives an indication of the extent of saturation
present in the given hidden layer. The disadvantage of ςh is
that the same net value will yield different levels of saturation
for different activation functions. Thus, ςh can only be used
to compare saturation level in layers that employ the same
activation function.

Another disadvantage of using net magnitudes is that
the resulting measure of saturation is unbounded, which is
somewhat counterituitive given that the concept of saturation
applies to bounded activation functions only. A single-valued
saturation measure based on activation function outputs rather
than inputs may be easier to interpret.

Consider the outputs of an arbitrary bounded activation
function g(net) for all values of net. If a frequency distribution
of g(net) for all values of net is constructed, the level
of saturation can be approximated by observing the output
frequencies. Figure 1 shows a typical histogram produced
by a saturated unit over all patterns in the data set: highest
frequencies are concentrated around the extremes of g’s range
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Fig. 1. Frequency histogram of a saturated NN unit

(in this case, [−1, 1]). The higher the frequency in the leftmost
and the rightmost bin, the higher the saturation. A completely
saturated unit would have a frequency of zero in all bins except
the leftmost and the rightmost one. A non-saturated unit will
have frequencies of similar magnitude across all the bins.

A single-valued saturation measure can be derived from a
g(net) frequency distribution. The average output signal value
for each bin b can be calculated as follows:

ḡb =

{(∑fb
k=1 g(net)k

)
/fb if fb > 0

0 otherwise
(3)

where fb is the number of output signals g(net) in bin b. If
the range of g is centred around zero, the absolute average |ḡb|
will be higher for the bins closer to the asymptotic values, and
lower for bins closer to the centre. If the range of g is [gL, gU ],
ḡb can be scaled to the [−1, 1] range as follows:

ḡ′b =
2(ḡb − gL)

gU − gL
− 1 (4)

A weighted mean magnitude is then calculated as

ϕB =

∑B
b=1 |ḡ

′

b|fb∑B
b=1 fb

(5)

where B is the total number of bins, and fb constitutes
the weight of each bin. The weighted mean is the same as
the arithmetic mean if all weights are equal. Thus, if ḡ′ is
uniformly distributed in [−1, 1], the value of ϕB will be close
to 0.5, since absolute activation values are considered, thus
all ḡ′ values are squashed to the [0, 1] interval. For a normal
distribution of ḡ′, the value of ϕB will be smaller than 0.5. The
higher the assymptotic frequencies of ḡ′, the closer ϕB will
be to 1. Thus, ϕB can be used as a measure of saturation that
tends to 1 as the degree of saturation increases, and tends to
zero otherwise. The relationship between the ϕB values and the
different g(net) histogram shapes are illustrated in Figure 2.

The rest of the paper presents the empirical study where
ϕB is shown to be a valid NN saturation measure.

IV. EMPIRICAL STUDY

The purpose of the experiments was to test the saturation
measure ϕB proposed in Section III. In order to test the
robustness and universality of the measure, a number of
benchmarks, activation functions, and training algorithm set-
ups were considered. The proposed measure ϕB was compared
with the previously used saturation measure ςh. The rest of this
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Fig. 2. Values of ϕ for different histogram shapes

section is structured as follows: Section IV-A summarises the
benchmarks used. Section IV-B discusses the activation func-
tions considered. Section IV-C presents the training algorithm
used. Empirical results are discussed in Section IV-D.

A. Benchmarks

For the purpose of this study, four well-known benchmark
classification problems were considered. Problems with a
known optimal number of hidden units were chosen to simplify
the parameter optimisation process. The benchmark problems
along with the corresponding architectures are summarised in
Table I. The specified sources point to papers from which the
NN architectures were adopted.

TABLE I. BENCHMARK PROBLEMS

Problem # Input # Hidden Source

Iris 4 4 Gupta and Lam [6]
Glass Identification 9 9 Gupta and Lam [6]

Heart 35 6 Carvalho and Ludermir [7]
Diabetes 8 6 Carvalho and Ludermir [7]

The data sets were pre-processed according to the sugges-
tions given in [4]: The inputs were standardised such that the
average of each input variable over the data set was close
to zero. The targets were scaled to the appropriate activation
function output ranges.

B. Activation Functions

Feedforward NNs with a single hidden layer were used
in the experiments. The identity (linear) activation function
was used in the input layer, while the hidden layer and the
output layer both used a non-linear activation function g(net).
The proposed saturation measure ϕB is independent of the
activation function parameters, and allows to directly compare
saturation levels exhibited by different activation functions. To
illustrate this quality, the following activation functions, shown
in Fig.3, were considered:

1) Sigmoid: The sigmoid function is defined as

g(net) =
1

1 + e−net
(6)

The sigmoid function is the most commonly used activation
function. The output of the sigmoid function is in the range
(0, 1).
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Fig. 3. Activation function slopes

2) TanH: The hyperbolic tangent function, further referred
to as tanH, is defined as

g(net) =
enet − e−net

enet + e−net
(7)

The output of tanH is in the range (−1, 1).

3) LeCun tanH: A modified hyperbolic tangent activation
function was suggested by LeCun et al in [4], and is defined
by

g(net) = 1.7159 tanh

(
2

3
net

)
(8)

Compared to the traditional sigmoid, LeCun tanH (shown
in Fig. 3) has a softer slope and a wider output range,
(−1.7159, 1.7159).

4) Elliott: The last activation function used in this paper
is the Elliott function [8], further referred to as Elliott and
defined as

g(net) =
net

1 + |net|
(9)

The output range of Elliott is also (−1, 1), but it has a shal-
lower gradient than TanH, and thus approaches the asymptotes
slower.

C. Training Algorithm: Particle Swarm Optimisation

For the purpose of this study, particle swarm optimisation
(PSO) was used to train the NNs. PSO, first introduced by
Kennedy and Eberhart in [9], is a nature-inspired population-
based optimisation technique. PSO works on a set of particles,
referred to as a swarm, where every particle represents a
candidate solution to the optimisation problem. For an n-
dimensional optimisation problem, a particle is represented by
an n-dimensional vector, �x, also referred to as the particle’s
position. Every particle has a fitness value, indicating the
quality of the candidate solution, and a velocity vector, �v,
which determines the step size and direction of the particle’s
movement. Social interaction is imitated by forming neigh-
bourhoods within a swarm. Each particle remembers its own
best position found so far, and can query the neighbourhood
for the best position as discovered by the neighbour particles.
PSO searches for an optimum by moving the particles through
the search space. At each time step, t, the position �xi(t) of

1425



particle i is modified by adding the particle velocity �vi(t) to
the previous position vector:

�xi(t) = �xi(t− 1) + �vi(t) (10)

Particle velocity determines the step size and direction of the
particle. Velocity is updated using

�vi(t) = ω�vi(t− 1) + c1�r1(t)(�xpbest,i(t− 1)− �xi(t− 1))

+ c2�r2(t)(�xnbest,i(t− 1)− �xi(t− 1))
(11)

where ω is the inertia weight [10], controlling the influence
of previous velocity values on the new velocity; c1 and c2
are acceleration coefficients used to scale the influence of the
cognitive (second term of Equation (11)) and social (third term
of Equation (11)) components; �r1(t) and �r2(t) are vectors with
each component sampled from a uniform distribution U(0, 1);
�xpbest,i(t) is the personal best of particle i, in other words,
the best position encountered by this particle so far; similarly,
�xnbest,i(t) is the neighbourhood best of particle i, or the best
position found by any of the particles in the neighbourhood
of particle i. Thus, each particle is attracted to both the best
position encountered by itself so far, as well as the overall best
position found by the neighbourhood.

A particle’s neighbourhood is determined topologically
rather than spatially, meaning that the distance between par-
ticles is determined by the particle indices and not the actual
position in the search space [9]. Two neighbourhood topologies
were considered in this study: the gBest topology [9], and the
Von Neumann (VN) topology [11]. In the gBest topology, the
entire swarm constitutes the neighbourhood of a particle. In the
VN topology, particles are connected in a grid-like structure,
where every particle is directly connected to four neighbours:
above, below, to the left and to the right. For all experiments, a
swarm of 20 particles was used. PSO with the gBest topology
is further referred to as gBest PSO, and PSO employing the
VN topology is further referred to as VN PSO.

In all experiments, the inertia weight ω was set to 0.729844
while the values of the acceleration coefficients c1 and c2 were
set to 1.496180. This choice is based on [12], where it was
shown that such parameter settings give convergent behaviour.

A maximum velocity �Vmax [10] is sometimes used to
limit (or clamp) particle velocity in every dimension. Velocity
clamping is done to prevent particles from traversing the
search space too fast, since unreasonably large steps prevent
particles from exploiting good regions. It was observed in [13]
that PSO tends to diverge on NN training problems unless
swarm expansion is restricted. With velocity clamping, �Vmax

is enforced by restricting �vi(t) per dimension j as follows:

vij(t) =

⎧⎨
⎩
Vmax,j if vij(t) > Vmax,j

−Vmax,j if vij(t) < −Vmax,j

vij(t) otherwise
(12)

For the purpose of this study, �Vmax was set to �1 for all
experiments.

All reported results are averages over 30 simulations.
Every simulation ran for 1000 iterations. Every data set was
divided into a training set and a test set; 80% of data patterns
constituted the training set, and the remaining 20% were used

for testing. Test data used to calculate the final generalisation
error values was not used for parameter optimisation.

D. Experimental Results

Table II summarises the average mean classification error
(EC), ςh, and ϕB for different number of bins, B, obtained
for the Iris data set. The largest values are shown in bold for
each row, and the lowest values are shown in italics. For the
sake of brevity, gBest PSO and VN PSO are referred to as
gBest and VN, respectively.

According to the proposed saturation measure, ϕB , most
saturation was observed in NNs that used the sigmoid acti-
vation function in the hidden layer, trained with VN PSO.
This observation can be confirmed by looking at the frequency
distribution of the hidden layer outputs obtained at the last
iteration of the algorithm, shown in Figure 4(a). Indeed, most
output signals fall into either the leftmost or the rightmost bin,
indicating high saturation.

According to ςh, most saturation was observed in NNs that
used the Elliott g(net) trained with gBest PSO. This disagrees
with the ϕB result. To resolve the matter, consider Figure 4(b)
that shows the frequency distribution of the Elliott g(net) val-
ues obtained using gBest PSO as the training algorithm. Even
though the highest frequencies are concentrated in the leftmost
and the rightmost bins, the remaining bins in Figure 4(b) have
higher frequencies than the corresponding bins in Figure 4(a).
Thus, Elliott was less saturated than the sigmoid, as correctly
indicated by ϕB . Conclusions based on ςh will therefore be
erroneous, because ςh is based on net alone, and the same
values of net yield different g(net) values for the different
activation functions.

According to both ςh and ϕB shown in Table II, the
least saturation was observed in NNs with the LeCun tanH
activation function in the hidden layer. Figure 5 shows the
corresponding frequency distributions for gBest PSO and VN
PSO. Mid-range bin frequencies are higher for LeCun tanH
than for the other activation functions as depicted in Figure 4.
Evidently, LeCun tanH exhibited less saturation.

The two saturation measures agree on the least saturated
activation function, but disagree on the algorithm yielding the
least saturation: according to ςh, LeCun tanH g(net) trained
with VN PSO saturated the least. According to ϕB , gBest

TABLE II. AVERAGE EC , ςh , AND ϕ VALUES FOR THE IRIS DATA SET,
WITH CORRESPONDING STANDARD DEVIATION IN PARENTHESIS

g(net) Sigmoid TanH LeCun TanH Elliott
Alg.: gBest VN gBest VN gBest VN gBest VN

EC 0.0422 0.0322 0.0411 0.0289 0.0467 0.0367 0.0444 0.04
(0.0315) (0.0321) (0.0358) (0.0324) (0.0416) (0.0354) (0.0343) (0.0355)

ςh 9.8375 8.2117 5.5728 5.1136 4.0721 3.6347 11.4278 9.4702
(4.1496) (2.3794) (1.4583) (1.5274) (1.797) (1.2032) (4.3423) (1.9462)

ϕ5 0.88 0.9065 0.8945 0.9016 0.7367 0.7631 0.8158 0.8138
(0.0887) (0.0472) (0.0595) (0.049) (0.1004) (0.0951) (0.0501) (0.0337)

ϕ10 0.8825 0.9078 0.8964 0.9039 0.7414 0.768 0.8174 0.8151
(0.0864) (0.0459) (0.0585) (0.0464) (0.0968) (0.0915) (0.0491) (0.0332)

ϕ20 0.8825 0.9078 0.8964 0.9039 0.7414 0.768 0.8174 0.8151
(0.0864) (0.0459) (0.0585) (0.0464) (0.0968) (0.0915) (0.0491) (0.0332)

ϕ30 0.8825 0.9078 0.8964 0.9039 0.7421 0.7681 0.8174 0.8151
(0.0864) (0.0459) (0.0585) (0.0464) (0.0971) (0.0916) (0.0491) (0.0332)

ϕ50 0.8825 0.9078 0.8964 0.9039 0.7421 0.7681 0.8174 0.8151
(0.0864) (0.0459) (0.0585) (0.0464) (0.0971) (0.0916) (0.0491) (0.0332)
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(b) Elliott, GBest PSO

Fig. 4. Hidden unit output values frequency distributions for the Iris data set
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Fig. 5. Iris, LeCun TanH, last iteration frequency histograms

PSO with the same g(net) achieved the lowest saturation. The
matter can be resolved by putting the frequency distributions
next to one another, as shown in Figure 5. Both histograms are
similar in shape, but VN has a noticeably higher frequency in
the leftmost and the rightmost bins, while gBest has higher
frequencies in the middle bins. Thus, it is not unreasonable
to conclude that VN saturated more than gBest. The proposed
measure ϕB once again describes the data more correctly than
ςh in this example.

Figure 6 provides another graphical comparison between
ϕB and ςh. In Figure 6, profiles of ϕB for B = 10 (further
referred to as ϕ10) and ςh over iterations 1 to 1000 are shown
for the VN PSO algorithm. According to ςh, Elliott exhibited
the most saturation out of the four activation functions con-
sidered. According to ϕ10, the most saturation was exhibited
by sigmoid and tanH, and Elliott in fact saturated less than
both these functions. Figures 7(a) and 7(b) show the frequency
distributions for Elliott and tanH obtained under VN PSO
training. Clearly, tanH exhibited more saturation than Elliott, as
most output signals fall into either the leftmost or the rightmost
bin on the corresponding histogram. Thus, once again ϕB

provided a more precise description of the saturation level than
ςh. The superiority of ϕB in all of the above examples is due to
scaling outputs of any g(net) to the same range [−1, 1], as well
as using the g(net) output values to determine the saturation
instead of the input net values. Figure 6 illustrates that both
ϕB and ςh show similar dynamics in saturation growth, but
ϕB makes the results comparable by scaling them to the same
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Fig. 6. ϕ10 and ςh profiles for the Iris data set

range.

Table II lists values of ϕB obtained for B ∈
[5, 10, 20, 30, 50]. The first two significant digits of the ϕB

values are identical for most values of B for all algorithms
considered, indicating that ϕB is not very sensitive to the value
of B. Using five bins seems to give a somewhat rough estimate
of saturation, but ten bins or more converge on the same value.
Thus, sufficient granularity was obtained with B = 10 on the
Iris data set.

Table III summarises the average EC , ςh, and ϕB for dif-
ferent number of bins, B, obtained for the Glass data set. The
largest values are shown in bold for each row, and the lowest
values are shown in italics. According to ςh, highest saturation
on the Glass data set was observed with the Elliott g(net)
using the gBest PSO as the training algorithm. According to
ϕB , tanH using the gBest PSO for training saturated the most.
Figures 8(a) and 8(b) show frequency distributions for the
corresponding hidden layer outputs. Figure 8(b) clearly shows
higher frequencies in the leftmost and the rightmost bins, and
lower frequencies in the mid-range bins than Figure 8(a). Thus,
ϕB correctly indicated tanH as more saturated than Elliott, and
ςh provided misleading results.

Both ςh and ϕB agree that LeCun tanH using the VN
PSO for training saturated the least. The values of ϕB on
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Fig. 7. Hidden unit output values frequency distributions for the Iris data set
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Fig. 8. Hidden unit output values frequency distributions for the Glass data set

LeCun tanH for both gBest and VN PSO are very close
to 0.5, indicating no saturation, as discussed in Section III.
Figures 8(c) and 8(d) show the corresponding frequency dis-
tributions. Indeed, highest frequencies are observed in the
middle bins, indicating no saturation, and thus confirming the
interpretation of the ϕB values.

The values of ϕB obtained on the Glass data set for
different values of B once again converge on the same value
for B ≥ 10, indicating that B = 10 provides enough
granularity.

Tables IV and V summarise the average EC , ςh, and ϕB

for different number of bins B obtained for the Heart data set

and the Diabetes data set, respectively. The largest values are
shown in bold for each row, and the lowest values are shown in
italics. There are once again discrepancies between the ςh and
the ϕB estimates of saturation, and ϕB once again describes
the experimental data correctly, while ςh provides ambiguous
results. The corresponding frequency distributions are omitted
for brevity, but the picture is quite similar to that observed on
the Iris and the Glass data sets. Values of ϕB converge on the
same value for B ≥ 10 for both data sets. Thus, ϕB is not very
sensitive to B, and B need not be optimised as a parameter. On
all data sets considerd, B ≥ 10 provided sufficient granularity.
Therefore, this value is suggested as a default number of bins
for the ϕB measure.
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TABLE III. AVERAGE EC , ςh , AND ϕ VALUES FOR THE GLASS DATA

SET, WITH CORRESPONDING STANDARD DEVIATION IN PARENTHESIS

g(net) Sigmoid TanH LeCun TanH Elliott
Alg.: gBest VN gBest VN gBest VN gBest VN

EC 0.438 0.4884 0.4372 0.455 0.4744 0.4891 0.4357 0.4535
(0.0822) (0.0728) (0.0764) (0.0648) (0.0657) (0.0653) (0.078) (0.0709)

ςh 3.4534 2.8163 2.2161 1.9336 1.3895 1.3452 3.8907 3.3354
(0.7454) (0.4972) (0.4478) (0.4274) (0.2983) (0.351) (0.8526) (0.4817)

ϕ5 0.7205 0.6841 0.741 0.7009 0.4901 0.4769 0.656 0.6357
(0.059) (0.0644) (0.0543) (0.0728) (0.0548) (0.0581) (0.0454) (0.04)

ϕ10 0.729 0.693 0.7483 0.71 0.508 0.4968 0.6614 0.6417
(0.0568) (0.0613) (0.052) (0.0694) (0.0507) (0.0538) (0.0436) (0.0381)

ϕ20 0.729 0.693 0.7483 0.71 0.508 0.4968 0.6614 0.6417
(0.0568) (0.0613) (0.052) (0.0694) (0.0507) (0.0538) (0.0436) (0.0381)

ϕ30 0.729 0.693 0.7483 0.71 0.5082 0.497 0.6614 0.6417
(0.0568) (0.0613) (0.052) (0.0694) (0.0507) (0.0539) (0.0436) (0.0381)

ϕ50 0.729 0.693 0.7483 0.71 0.5082 0.497 0.6614 0.6417
(0.0568) (0.0613) (0.052) (0.0694) (0.0507) (0.0539) (0.0436) (0.0381)

TABLE IV. AVERAGE EC , ςh , AND ϕ VALUES FOR THE HEART DATA

SET, WITH CORRESPONDING STANDARD DEVIATION IN PARENTHESIS

g(net) Sigmoid TanH LeCun TanH Elliott
Alg.: gBest VN gBest VN gBest VN gBest VN

EC 0.2018 0.1918 0.208 0.1984 0.1915 0.1906 0.1897 0.1933
(0.0308) (0.0276) (0.0245) (0.0262) (0.0243) (0.0264) (0.0269) (0.0297)

ςh 7.5938 6.6772 4.4627 3.771 3.9794 3.7456 7.0287 5.7845
(1.3151) (1.3077) (0.8374) (0.6072) (0.6476) (0.7286) (1.6021) (0.9499)

ϕ5 0.8774 0.8636 0.8891 0.8709 0.8095 0.8008 0.7747 0.752
(0.0205) (0.0291) (0.0204) (0.0208) (0.0349) (0.0417) (0.0315) (0.0238)

ϕ10 0.8806 0.8674 0.8921 0.8744 0.8148 0.8064 0.7772 0.7548
(0.0199) (0.0283) (0.0198) (0.0201) (0.0338) (0.0401) (0.0309) (0.0234)

ϕ20 0.8806 0.8674 0.8921 0.8744 0.8148 0.8064 0.7772 0.7548
(0.0199) (0.0283) (0.0198) (0.0201) (0.0338) (0.0401) (0.0309) (0.0234)

ϕ30 0.8806 0.8674 0.8921 0.8744 0.8151 0.8065 0.7772 0.7548
(0.0199) (0.0283) (0.0198) (0.0201) (0.0337) (0.0401) (0.0309) (0.0234)

ϕ50 0.8806 0.8674 0.8921 0.8744 0.8151 0.8065 0.7772 0.7548
(0.0199) (0.0283) (0.0198) (0.0201) (0.0337) (0.0401) (0.0309) (0.0234)

TABLE V. AVERAGE EC , ςh , AND ϕ VALUES FOR THE DIABETES

DATA SET, WITH CORRESPONDING STANDARD DEVIATION IN PARENTHESIS

g(net) Sigmoid TanH LeCun TanH Elliott
Alg.: gBest VN gBest VN gBest VN gBest VN

EC 0.2526 0.2483 0.2604 0.2574 0.2578 0.2541 0.2682 0.2569
(0.0336) (0.0263) (0.0364) (0.0325) (0.0244) (0.0225) (0.0265) (0.0348)

ςh 4.7613 4.2917 2.729 2.3961 2.5968 1.9721 3.7401 3.1226
(1.3284) (1.1398) (0.5767) (0.4632) (0.8283) (0.5306) (0.7939) (0.5866)

ϕ5 0.7499 0.7511 0.7858 0.7748 0.67 0.6239 0.6555 0.6359
(0.0795) (0.0593) (0.0502) (0.0391) (0.0694) (0.0689) (0.0357) (0.0329)

ϕ10 0.7575 0.7584 0.7922 0.7814 0.6805 0.6362 0.6611 0.6418
(0.0764) (0.0572) (0.0482) (0.0378) (0.0663) (0.0657) (0.0346) (0.0318)

ϕ20 0.7575 0.7584 0.7922 0.7814 0.6805 0.6362 0.6611 0.6418
(0.0764) (0.0572) (0.0482) (0.0378) (0.0663) (0.0657) (0.0346) (0.0318)

ϕ30 0.7575 0.7584 0.7922 0.7814 0.6807 0.6362 0.6611 0.6418
(0.0764) (0.0572) (0.0482) (0.0378) (0.0664) (0.0657) (0.0346) (0.0318)

ϕ50 0.7575 0.7584 0.7922 0.7814 0.6807 0.6362 0.6611 0.6418
(0.0764) (0.0572) (0.0482) (0.0378) (0.0664) (0.0657) (0.0346) (0.0318)

Algorithms were ranked based on their mean ϕ10 values,
and the resulting ranks are reported in Table VI. The two-
tailed non-parametric Mann-Whitney U test [14] was used to
determine whether the difference in ϕ10 values between any
two algorithms was statistically significant. The choice of the
significance test is based on [15], where the authors showed
that the Mann-Whitney U test is safer than the parametric
tests such as the t-test, since the Mann-Whitney U test
assumes neither normal distributions of data, nor homogeneity
of variance. The null hypothesis H0 : μ1 = μ2, where μ1

and μ2 are the means of the two samples being compared,
was evaluated at a significance level of 95%. The alternative
hypothesis was defined as H1 : μ1 �= μ2.

TABLE VI. AVERAGE ALGORITHM RANKS: ϕ10

Algorithm g(net) Iris Glass Heart Diabetes Average Rank

GBest PSO Sigmoid 6.5 5.5 6.5 6.5 6.25 }
4.65625

TanH 6.5 5.5 6.5 6.5 6.25

LeCun TanH 1.5 1.5 3.5 3.5 2.5

Elliott 3.5 5.5 2 3.5 3.625

VN PSO Sigmoid 6.5 5.5 6.5 6.5 6.25 }
4.34375

TanH 6.5 5.5 6.5 6.5 6.25

LeCun TanH 1.5 1.5 3.5 1.5 2

Elliott 3.5 5.5 1 1.5 2.875

Table VI shows that on average across all problems consid-
ered, LeCun tanH saturated the least. This observation agrees
with the theory, as the whole idea of using the modified tanH
was to improve NN learning ability and decrease saturation
[4]. Elliott with its soft slope came second-lowest in terms of
saturation, which corresponds to the observations made in [2].
Both sigmoid and tanH exhibited the same level of saturation,
higher than that of LeCun tanH and Elliott. On average, VN
PSO saturated less than gBest PSO. This makes sense, as gBest
is a fully connected topology: all particles share the global
attractor (the social component in Eq.(11)), which may result
in faster algorithm convergence and overfitting. The behaviour
of neighbourhood topologies is very problem-specific, though:
Figure 5 confirms that on the Iris data set, it is the VN topology
that yielded higher saturation.

No conclusions regarding the classification efficiency can
be made at this point for two reasons: firstly, PSO parameters
were not optimised for each problem, thus any comparison
would be unfair; secondly, no statistically significant differ-
ence was observed between the EC values. Determining the
relationship between the saturation level and classification
accurancy is out of the scope of this study.

V. CONCLUSIONS

This paper presented a simple single-valued saturation
measure for NNs based on activation function outputs. The
degree of saturation is an important characteristic of a trained
NN that can provide insight into both the model and the
training algorithm. The proposed measure is applicable to all
bounded activation functions, is independent of the activation
function output range, and allows direct statistical comparisons
between NNs employing different activation functions. The
proposed measure was tested on four different classification
problems, four different activation functions, and two different
training algorithms. The results were easy to interpret, and de-
scribed the observed saturation behaviour well. The proposed
saturation measure is bounded: it tends to 1 as the degree of
saturation increases, and tends to zero otherwise. Compared to
a saturation measure used previously in literature, the proposed
measure is much more robust and unambiguous. The single
tunable parameter of the proposed measure, number of bins
B, converges for B ≥ 10. Thus, B = 10 can be used without
any further tuning.

Out of the four activation functions considered in the
experiments, LeCun tanH saturated the least. This corresponds
well with the original paper, where the modified version of
tanH was suggested as a saturation-resistant activation function
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[4]. Out of the two PSO topologies considered, VN PSO
saturated less than GBest PSO.

Further studies will include an analysis of NN saturation
in relation to such qualities of NNs as the ability to learn,
the ability to generalise, and classification accuracy. Means of
controlling saturation in PSO training, and using saturation as
an extra NN learning guide will be considered. The suggested
measure will also be used to quantify the propensity to saturate
for different training algorithms.

REFERENCES

[1] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International conference on artificial
intelligence and statistics, 2010, pp. 249–256.

[2] A. Rakitianskaia and A. P. Engelbrecht, “Training high-dimensional
neural networks with cooperative particle swarm optimiser,” in Inter-
national Joint Conference on Neural Networks (IJCNN). IEEE, 2014,
pp. 4011–4018.

[3] S. Lawrence, A. C. Tsoi, and A. D. Back, “Function approximation with
neural networks and local methods: bias, variance and smoothness,”
in Proceedings of the Australian Conference on Neural Networks.
Canberra, Australia: Australian National University, 1996, pp. 16–21.

[4] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 9–48.

[5] A. Rakitianskaia and A. Engelbrecht, “Saturation in PSO neural network
training: Good or evil?” in IEEE Congress on Evolutionary Computa-
tion (CEC). IEEE, 2015.

[6] A. Gupta and S. M. Lam, “Weight decay backpropagation for noisy
data,” Neural Networks, vol. 11, no. 6, pp. 1127–1138, 1998.

[7] M. Carvalho and T. B. Ludermir, “Particle swarm optimization of feed-
forward neural networks with weight decay,” in Sixth International
Conference on Hybrid Intelligent Systems (HIS’06). IEEE, 2006, pp.
5–8.

[8] D. L. Elliott, “A better activation function for artificial neural networks,”
Institute for Systems Research, University of Maryland, Tech. Rep. 93-
8, 1993.

[9] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Networks,
vol. IV. Piscataway, USA: IEEE, 1995, pp. 1942–1948.

[10] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
Proceedings of the IEEE International Conference on Evolutionary
Computation. IEEE, 1998, pp. 69–73.

[11] J. Kennedy and R. Mendes, “Population structure and particle swarm
performance,” in Proceedings of the Congress on Evolutionary Compu-
tation. Piscataway, USA: IEEE, 2002, pp. 407–412.

[12] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Proceedings of the IEEE
Congress on Evolutionary Computation, vol. 1. Piscataway, USA:
IEEE, 2000, pp. 84–88.

[13] A. B. van Wyk and A. P. Engelbrecht, “Overfitting by PSO trained
feedforward neural networks,” in Proceedings of the IEEE Congress on
Evolutionary Computation, 2010, pp. 1–8.

[14] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” Annals of
Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 1947.

[15] J. Dems̆ar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

1430


