
An Evolutionary Approach to the Discovery of
Hybrid Branching Rules for Mixed Integer Solvers

Kjartan Brjánn Pétursson
School of Engineering and Natural Science

University of Iceland

Reykjavik, Iceland

Email: kbp4@hi.is

Thomas Philip Runarsson
School of Engineering and Natural Science

University of Iceland

Reykjavik, Iceland

Email: tpr@hi.is

Abstract—An evolutionary algorithm is used to search for
problem specific branching rules within the branch-and-bound
framework. For this purpose an instance generator is used
to create training data for an integer programming problem,
in particular the multi-dimensional 0/1 knapsack problem. An
extensive experimental study will illustrate that new and more
effective rules can be found using evolutionary computation.

I. INTRODUCTION

The key motivation for this work is to use evolutionary

algorithms to design and improve search algorithms, rather

than designing evolutionary algorithms to solve the problems

directly.

An effective approach to solving integer programming

problems is using a mixed integer programming (MIP) solver.

MIPs, in general, are commonly solved by a dedicated MIP-

solver, employing a branch-and-bound algorithm. One ap-

proach to improving the efficiency of the branch-and-bound

algorithm is by using an effective branch selection rule. In

this work we will try to improve this rule for a specific

integer programming problem. The approach taken will be to

apply an evolutionary algorithm to search for a better rule.

This research is related to evolutionary approaches presented

previously, see [1]. However, this is the first time it has been

applied to a MIP solver directly.

SCIP is a software framework for solving constraint

programming (CP), mixed integer programming (MIP), and

satisfiability (SAT) by integrating the solving techniques for

each via constraint integer programming (CIP) [2]. SCIP was
developed at the Zuse-Institute in Berlin (ZIB). The source

code is available freely for academic and non-commercial

use at the SCIP website: http://scip.zib.de. SCIP
is currently one of the fastest, if not the fastest, non-

commercial mixed integer programming (MIP) solvers [3],

[4]. For solving MIP, CP or SAT problems, SCIP uses a

branch-and-bound approach. The branch and bound process

is complemented by linear programming (LP) relaxations and

cutting plane separators as they are used in MIP solving an as

well by constraint domain propagation and conflict analysis

as is used for solving CP and SAT problems [2]. For this

type of study an available source code for a state-of-the-art

solver is a prerequisite.

A specific type of a MIP and one of the most extensively

studied combinatorial optimization problem is the Multidi-

mensional 0/1 Knapsack Problem (MKP) [5]. Due to it’s

simplicity, and the fact it is well studied, makes it for an ideal

candidate for our study. It can be loosely described as that

one is given a set of n items, each with a profit cj > 0, and
m resources, each with a capacity bi > 0 where each item
j consumes an amount aij ≥ 0 from resource i. The goal
is then to choose a subset of items that gives the maximum

sum of profits while not exceeding the capacity of any of

the resources. The problem can be formalized as the mixed

integer program:

z∗ = maximize cTx (1a)

s.t. Ax ≤ b (1b)

x ∈ {0, 1}n (1c)

where A is an m× n non-negative matrix, x is the variable
vector of dimension n, and b and c are non-negative vectors
of dimension m and n respectively. Each element xj of the

vector x is a 0−1 decision variable indicating whether item
j should be selected.
The paper is organized as follows. In Section II an

overview of the branch and bound procedure is given and

a detailed description of branching rules. Then in Section III

we give the details of the evolutionary algorithm imple-

mented. Since the evaluation of fitness functions will be

very costly, we have chosen the computationally efficient

(1+1)CMA-ES algorithm with a Cholesky factor update

[6]. In Section IV the experimental study is presented and

followed by its setup in Section IV and results of Section IV.

A summary of main findings is then presented in conclusion.

Notation for MIP-related theory closely follows that of [7].

II. BRANCH AND BOUND AND BRANCHING RULES

The branch-and-bound algorithm iteratively divides each

MIP problem into subproblems, each having smaller solution

space than the parent problem. At each step the LP-relaxation

of each subproblem is solved where the MIP requirements of

integrality have been cancelled. The MIP is NP-hard while

the LP is solvable in polynomial time. After solving the LP,

the problem is usually split into two parts by applying two

disjoint bounds on a variable. For each subproblem, the new

bounds are determined by using the upwards and downwards

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.204

1436

rounded LP relaxation values, that is for variable xj with LP

solution of x̂j , the new bounds are xj ≤ �x̂j� and xj ≥ �x̂j�,
or in the case of binary problems xj = 0 and xj = 1.
During the solution process the algorithm creates a tree

structure where each node represents a subproblem while the

root of the tree corresponds to the initial problem instance.

The leaves of the tree are problems that either have been
solved or have yet to be solved. Unsolved leaf nodes are

stored in a priority queue to be processed later. Leaf subprob-

lems are considered solved if one of three criteria applies: 1)

The subproblem is infeasible, 2) A feasible optimal solution

has been found for the subproblem, 3) It has been proven

that an optimal solution of the subproblem can not be any

better than the best known feasible solution (the global upper

bound) of the original problem. After a leaf node has been

solved that particular subproblem is not divided any further

and the corresponding node is said to have been pruned.
Other important components of the branch-and-bound

based MIP solver are node selection rules that decide on what
subproblem should be processed next after processing of each

node [8], presolving/propagation [9], [10] that transform the

problem into an equivalent one that should be easier to solve,

cut seperation [11], [12] which finds a linear inequality that
separates the current LP-optimum from the feasible integer

domain and primal heuristics [8], [13] that try to find good
feasible (incumbent) solutions without spending to much

computing time while working outside the branch and bound

framework.

One of the key factors in any branch-and-bound procedure

is the decision of choosing which variable to select as

the next branching variable. The set of potential branching

variables are integer variables that are non-integer in the

LP relaxation. Choosing the best candidate may significantly

enhance the performance of the branch-and-bound procedure.

This requires some sort of scoring function score() ∈ R

based on a set 	 of given measurements of quality. Let q+j
and q−j be some measures of quality for branching up and

down respectively on a variable xj . A possible score function
could be defined as in [7] as

score(q+j , q
−
j) = (1− μ) ·min {q+j , q−j }+ μ ·max {q+j , q−j }

(2)

where the score factor μ is some number between 0 and 1.
However SCIP uses as a default a different score function

[7]

score(q+j , q
−
j) = max {q−j , ε} ·max {q+j , ε} (3)

where ε = 10−6. For each of these scoring functions the

variable with the highest score is chosen as the variable to

branch on, i.e. index of the next branching variable selected

is j = arg maxk∈F {sk}. Here sk = score(q+k , q
−
k) and F is

the set of branching variables.

The pseudocost branching rule [14] estimates the quality
of branching on a variable from past gains in objective

function obtained by branching on the variable in question. In

SCIP this rule is implemented as follows [7]: Let λ−j and λ
+
j

be the gains in objective value (Δ) per unit change in variable

xj at a particular node after branching in the corresponding

direction or

λ−j =
Δ−j
f−j

, λ+
j =

Δ+
j

f+
j

(4)

where f−j = x̂j−�x̂j� and f+
j = �x̂j�−x̂j are the fractional

values of the LP solutions of the branched to subproblems.

The pseudocosts of variable xj are the arithmetic means

Ψ−j =
σ−j
η−j

, Ψ+
j =

σ+
j

η+j
(5)

Here σ−j is the sum of λ−j over all problems where the

variable xj was branched on downwards and where the LP

relaxation was solved and was feasible. η−j is the number

of these problems. σ+
j and η+j are analogously defined for

cases where the variable xj was branched on upwards. Then

the score function value for variable xj , is

pscs(j) = score(f−j Ψ−j , f
+
j Ψ+

j) (6)

With strong branching [15], [16] the idea is to test for
progress in the dual bound for each of the candidate variables

before selecting the best one. The potential LP subproblems

are solved to get estimates of the objective function gains.

Strong branching is computationally expensive so usually

some restrictions are set on either the number of variables

tested and/or on the number of simplex iterations performed

while solving the LPs.

Combining the two rules, reliability branching [2] uses

strong branching estimates for unreliable pseudocosts. The
pseudocost of a variable xj is said to be unreliable if

min {η+j , η−j } < ηrel where ηrel is the so called reliability
parameter.

As opposed to past gains in the bound due to variable

selection, an alternative measure of branching quality is

the number of domain deductions on other variables made

after branching on the variable in question. Analogous to

pseudocosts the inference branching [2] value of a variable
xj , j ∈ I , is defined as

Φ−j =
ϕ−j
ν−j

, Φ+
j =

ϕ+
j

ν+j
(7)

with score function

infs(j) = score(f−j Φ−j , f
+
j Φ+

j) (8)

where ϕ−j , ϕ
+
j are the total number of inferences deduced

after branching in the corresponding direction on the variable

xj . ν
−
j and ν+j are weighted counts of corresponding sub-

problems where domain propagation has been applied. The

idea is that a variable with a large historic inference value

will be likely to produce more domain propagations and thus

smaller subproblems in the future.

SAT solvers learn so called conflict clauses from the

analysis of infeasible subproblems. A branching rule based

on this approach is conflict branching [17] which takes into
account whether corresponding candidate variables have been

1437

used in recent conflict graph analysis to produce conflict

constraints. The appearence of each variable in a clause is

counted while periodically the counted sum is divided by a

constant. A similiar rule, conflict length branching, uses the
average lengths of the conflict clauses a variable appears in

[17].

Lastly, cutoff branching favours branching variables in

relation to the average incidences, where branching on the

variable in question has led to either infeasible subproblems

or to nodes pruned by bound, that is the number of cutoffs
[17].

Similarly as in [17], but more generally, we define a

hybrid branching rule as a branching rule whose score

function is a linear combination of scaled versions of various

quality measures and their scores according to eq. (3). Other

components not traditionally used as quality measures in

SCIP can also be integrated into the rule. We will refer to

these components of the hybrid rule as features. The score
function output for variable j would then be:

(9)
shy(j) = ω1g1

(
z1(j)

z̃1

)
+ ω2g2

(
z2(j)

z̃2

)

+ ω3g3

(
z3(j)

z̃3

)
+ . . .

where zk(j) is the k-th component, or feature, of the rule and
ωk its assigned weight. z̃k is an appropriate normalization
factor, often the feature mean over all j, and gk(τ) is an
appropriate scaling function.

The default branching rule in SCIP is a hybrid branching

rule. It combines scores obtained from the score function

of five different branching rules. As well as combining

reliability branching and inference branching, SCIP’s hybrid
reliability/inference branching rule also weighs in scores

from conflict branching, conflict length branching, as well

as cutoff branching [17]. This type of hybrid branching rule

is the current state-of-the-art [13]. For this reason its seems

reasonable that new hybrid branching rules, customized

for solving a class of instances such as multidimensional

knapsack problems, could potentially be found whith an

application of a direct search algorithm. Such an algorithm,

and the one chosen for this study, is described in the

following section.

III. (1+1)CMA-ES

The (1+1) covariance matrix adaptation evolutionary strat-

egy is a single parent search strategy [6]. The parent solutions

g are replicated (imperfectly) to produce the next generation
h← g+σ N (0,C). Here σ is a global step size andC is the

covariance matrix of the d-dimensional zero mean Gaussian
distribution. The replication is implemented in three basic

steps:

z ∼ N (0, I) (10a)

s←Dz (10b)

h← g + σs (10c)

where the covariance matrix has been decomposed into

Cholesky factors DDᵀ. The normally distributed random
vector z is sampled from the standard normal distribution

N (0, I). The success probability of this replication is up-
dated by

psucc ← (1− η)psucc + η Itrue(υ(h) ≤ υ(g)) (11)

where υ(·) if the objective function or the fitness, that needs
to be minimized. Here Itrue(·) is the indicator function and
takes the value one if its argument is true otherwise zero.

The parameter η is the learning rate (0 < η ≤ 1) and is set
to η = 1/12. The initial value of psucc = 2/11 is also the
target success probability p̌succ. Following the evaluation of
the success probability the global step size is updated by

σ ← σ exp

(
psucc − p̌succ
δ(1− p̌succ)

)
(12)

where δ = 1 + d/2. The initial global step size will be
problem dependent but should cover the intended search

space. The parameter settings used are suggested by [18].

If the replication was successful, that is if υ(h) ≤ υ(g),
then h will replace the parent search point g. Futhermore,
the Cholesky factors D will be updated. Initially D and

D−1 are set to the identity matrix I and s is set to 0. For
ccov = 2/(d2 + 6) and the threshold probability p̄ = 0, 44,
the update of the covariance matrix is then as follows [18]:

1. If psucc < p̄ then set

s← (1− δ−1)s+
√

δ−1(2− δ−1)Dz (13a)

α← (1− ccov) (13b)

Else set

s← (1− δ−1)s (14a)

α← 1− c2covδ
−1(2− δ−1) (14b)

2. Compute

γ ←D−1s (15a)

β ←
√
1 + ccov‖γ‖2/α (15b)

3. Compute

D ← √
αD +

√
α(β − 1)sγᵀ/‖γ‖2 (16)

4. Compute

D−1 ← 1√
α
D−1− 1√

α‖γ‖2 (1−1/β)γ[γ
ᵀD−1] (17)

The vector s of eq. 13a and 13a is already computed in
eq. 10b. It has been shown that D−1 requires Θ(d2) time,
whereas a factorization of the covariance matrix requires

Θ(d3) time [18]. The Cholesky version of the (1+1)CMA
is therefore computationally more efficient. The parameter

values above are the same as in [18]. The maximum number

of iterations, kmax was set at 1000.

The search algorithm described will now be implemented

in an experimental study in order to discover new branching

rules for the branch-and-bound procedure.

1438

IV. EXPERIMENTAL STUDY

Multiple 0/1 knapsack instances were generated with sim-

ilar methods as in [5]. All generated problem instances have

the form of

z∗ = maximize cTx (18a)

s.t. Ax ≤ b (18b)

x ∈ {0, 1}n, (18c)

c ∈ R
n
≥0, b ∈ N

m
0 , A ∈ N

m×n
0 (18d)

The coefficients were randomly generated as

aij ∼ U{0, amax} (19a)

bi = �τ
n∑

j=1

aij� (19b)

cj =
m∑
i=1

aij/m+ ρujamax (19c)

Here U is the uniform distribution and τ is the so called
tightness ratio. Along with the uniformly (and continuously)

distributed parameter uj ∼ U(0, 1), ρ sets the degree of
correlation between the objective coefficients ci and the
constraint coefficients a1j through amj .

The implementation of the (1+1)CMA-ES algorithm for

this study can be described in the basic steps below:

1) Select a set of features or feature map φ : x̂j → R
d.

2) Initialize: k ← 0, D,D−1 ← I , σ ← 0.1 and s,ω ←
0.

3) Estimate a new weight vector from eq. 10 with eq. 10c

becoming ω′ ← ω + σs.
4) Evaluate fitness υ of ω′ by solving all problems in
training set Ptr using branching score function sj =

ω′Tφ(x̂j). Set k ← k + 1. Update psucc and σ.
5) If υ(ω′) ≤ υ(ω), then set ω ← ω′ and update D and

D−1.

6) If k < kmax and σ > σmin repeat from step 2. Else

return ω.

For this implementation of the (1+1)CMA-ES algorithm, the

fitness value υ is calculated in each iteration as the sum of

all performances for a particular performance measure yυ
over all training instances in Ptr. The optimization can the
be formally defined as:

ω∗ = arg min
ω

υ(ω) =
∑
p∈Ptr

yυ(ω
Tφ, p) (20)

with yυ(ω
Tφ, p) being the performance associated with

using score function ωTφ when solving instance p. The
computation time needed then for creating (training) of a

branching rule is ttr = t̄× |Ptr| × k∗, where t̄ is the average
runtime over all problems in Ptr over all iterations and k∗ is
the total number of iterations performed by the evolutionary

algorithm over training set Ptr.
As with regard to the performance of the evolved branch-

ing rules, the ideal number of training problems |Ptr| was
unknown. Also unknown were the ideal combination as well

as the number of features comprising the score function of

the evolved branching rules. Therefore for the purposes of

this experiment, these components were varied and multiple

rules evolved for each combination of these components. The

number of problems used for training was |Ptr|∈ {1, 5, 10}×
103.

The features used as building blocks for the evolved rules

used in this study are:

• rel(·) - Reliability branching features
• psc(·) - Pseudocost branching features
• cons - Conflict branching score
• conls - Conflict length branching score
• infs - Inference branching score
• cuts - Cutoff branching score
• fra - Fractionality or min {f−j , f+

j }
• ncon - Fraction of problem constraints the variable xj

appears in

• eff - Item efficiency measure as suggested by [19]

Used as features, from reliability and pseudocost branching

rules as described in Section II, were the scores and the

up/down quality measures q+j and q
−
j as well as their minima,

min {q+j , q−j }, and maxima, max {q+j , q−j }. Also used were
the scores of the conflict, conflict length, inference and cutoff

branching rules, as is the case with the SCIP hybrid/inference

branching rule described in Section II. Further features are

fractionality, the fraction of problem constraints a variable

appears in, and item efficiency measure [19]. The last three

features were deemed worthy to be included in the experi-

ment since they might be especially valid for the knapsack

problems.

Since the training problems are very small, runtime was

not considered a reliable measure of performance for training

purposes. The goal was then to minimize the total number

of nodes Q and/or the total number of simplex iterations ς
needed to solve the problems which are known to be highly

correlated with runtime. Both performance measures were

used as fitness measures for rule evolution while multiple

rules were evolved in both cases. To increase the chance

of discovering a good branching rule, as many branching

rules as possible were created. By fully utilizing the available

resources of computing power a total of Nr = 146 rules
were created with the evolutionary algorithm. The feature

maps (or in effect, branching rules) used in this study were

of four types, denoted as EB1, EB2, EB3 and EB4, with

each type composed of a unique set of features (Table I).

Rules of type EB1 have the same features as the SCIP’s

default hybrid inference/reliability branching rule. Shown are

also the default weight values for the HIB rule. The low

weight values for three of it’s features, when compared to

the reliability branching score weight value, are indicative

of these features being mainly used for tie-breaking. While

pseudocost measures are hybridized with strong branching

measures in reliability branching, as described in Section II,

the pseudocost branching quantities used in rules of types

EB2 and EB3 are "pure" pseudocosts (without any strong

branching starting), as are used in the pseudocost branching

1439

Table I
TYPES OF RULES USED AND THEIR FEATURE BUILDING BLOCKS

Rule
rel(·) psc(·) cons

+/- m/m s +/- m/m

HIB 1 10−4

EB1 � �
EB2 � � �
EB3 � � � � � �
EB4 � � �

conls infs cuts fra ncon eff

HIB 0 10−4 10−2

EB1 � � �
EB2 � � �
EB3 � � � � � �
EB4

−
1

1
2

3
4

psc(−)
psc(+)

rel(−)
rel(+)

relmin
relmax

rels

EB1 EB2 EB3 EB4

−
3

−
1

1
3

pscmin
pscmax

cons
conls infs cuts

ncon fra eff

ω~

i

Figure 1. Distribution of evolved weight values returned for each feature
by type of rule

rule described in the same section. The feature make-up of

the experimental rules was chosen relatively ad hoc. The

distribution of weight values of the Nr rules returned by the

ES algorithm is summarized by the box plot of Fig. 1. For

feature i, the weight value of component ωi of weight vector

ω is normalized according to

ω̃i =
dimω

|ω|1
ωi (21)

with |ω|1 being the 1-norm of the vector ω. Positive weight
values are associated with features whose increase in value

is associated with decrease in fitness value (better perfor-

mance).

The ncon feature, which is a part of rules EB2 and EB3,

has negative weight values for most of the evolved rules

of that type. This indicates that variables involved in fewer

constraints are, on average, better choices than others, at

least while solving the instances of the training set. Negative

Table II
SETS OF PARAMETERS USED FOR GENERATION OF TESTING INSTANCES

Parameter set Parameters

n30 n ∈ {30, 32, 34, ..., 48}
n40 n ∈ {40, 42, 44, ..., 58}
n90 n ∈ {90, 92, 94, ..., 108}
n100 n ∈ {100, 250, 500}
m5 m ∈ {5, 6, 7, 8}
m7 m ∈ {7, 8, 9, 10}
m30 m ∈ {5, 10, 15, 20, 25, 30}
τ65 τ ∈ {65, 70, 75, 80, 85}
τ25 τ ∈ {25, 50, 75}
ρ40 ρ ∈ {0.40, 0.45, 0.50, 0.55, 0.60}

weight values are more prominent for the cutoff branching

score and the conflict length score, especially when used in

the EB3 rule. The fractionality, efficiency and conflict length

score features seem to be the least effective when it comes

to minimizing the fitness value, having the corresponding

weights distributed around zero. The weights relating to the

psc(·) and rel(·) features seem to have the largest impact

on the fitness value. The weights of these pseudocost and

strong branching related features are mostly in the positive, as

would have been expected. For both pseudocost as well as the

reliability branching features, the upwards measure appears

more effective than the downwards measure and so do the

maximums when compared to the corresponding minimums.

These differences are more pronounced for the reliability

branching features. Except for the reliability branching score,

all of the score features used by the HIB rule have low ap-

parent effectiveness which coincides with their tie-breaking

status in the HIB rule.

V. EXPERIMENTAL SETUP

For analysis of the performance of the branching rules

created during this study a number of test instances were

generated and solved by applying these rules with the SCIP

solver. Some of the instances used for testing purposes are

generated using the same instance generation parameters

as the instances used for training. Further instances were

generated by using different choice of generation parameters.

These were then used for evaluation of rule performance

over more general classes of instances. The testing instances

were split into problem sets according to which sets of

combinations (Table II) of the parameters n,m, τ, ρ and

amax were used to generate them (Table III). Table III shows

which sets of parameters were used when generating each

problem set. |Pte| is the number of test problems generated
for each problem set. The first four test sets are for evaluation

of the generalization abilities of the evolved rules with

respect to the performance measures used as fitness variables,

i.e. nodes and iterations. The fifth class of instances have

similar values and combination of parameters as the instances

used in [5]. The results for test set five are intended to show

if using the evolved rules for solving instances much larger

than the instances used for training will have the effect of

1440

Table III
COMBINATIONS OF PARAMETER SETS USED FOR GENERATION OF

TRAINING AND TESTING INSTANCES

Pr. set |Pte| n m τ ρ amax

1 1000 n30 m5 τ65 ρ40 9

2 1000 n30 m5 τ65 ρ40 999

3∗ 1000 n40 m5 τ65 ρ40 9

4 1000 n90 m7 τ65 ρ40 9

5 540 n100 m30 τ25 .50 9

tr† - n30 m5 τ65 ρ40 9
*Unbounded integer knapsack instances

†Training instances

1
.1
2

1
.2
1

2
.1
3

2
.4

3
.8
9

4
.5
1

3
2

3
8

7
7
0

9
3
0

6
3
0
0

7
6
0
0

3
4
.6

3
8
.2

0
.2
8

0
.3
1

0
.6
0

0
.6
6

1
.3
4

1
.5
1

8
.4

1
0
.7

1
6
3

2
4
2

6
2
0

1
2
6
0

7
.7

9
.6

0
.1
3

0
.1
4

0
.3
6

0
.3
8

0
.5
8

0
.6
9

1
.9
7

2
.3
7

4
1
.9

5
1
.0

0
.1
5

0
.2
2

0
.8
7

0
.9
8

Set 1 Set 2 Set 3 Set 4 Set 5(e) Set 5(h) Mean

t̄
Q̄

ς̄

Figure 2. Distribution of average performances of all rules by problem set
as well as the geometric mean ("Mean") over all sets. Averages for the HIB
rule are shown for comparison (dashed lines).

decreasing runtime over the large instances. Each evolved

rule was tested by solving all of the problems of the test sets

with time limit set at t = 500 seconds. During testing all
SCIP parameters, except of course those parameters which

govern the choice of branching rule, were set at their default

values.

VI. EXPERIMENTAL RESULTS

Fig. 2 shows the distribution of results for all rules over

each of the test sets. Shown separately are distribution of

average number of nodes Q̄, iterations ς̄ , as well as runtime
t̄. Test set 5 is split into easy (e) and hard (h) instances. For
the hard instances of set 5 the average relative gap %̄LP in

percentages is used instead of the runtime, that is the relative

gap of obtained solution values z, to the optimal objective
value zLP of the LP-relaxation (%LP = (zLP−z)/zLP). Except
for the tough instances of set 5, the majority of the evolved

rules seem to perform better than the HIB rules over all

test sets when considering number of iterations performed.

The reverse is true for number of nodes performed, the

evolved rules generally did worse than the HIB rule. When

EB1 EB2 EB3 EB4

0.46

0.47

0.48

0.46

0.47

0.48

44
45
46
47
48
49

43

45

47

y
υ
=

Q
y
υ
=

ς
y
υ
=

Q
y
υ
=

ς

1k 5k 10k 1k 5k 10k 1k 5k 10k 1k 5k 10k

|Ptr|

t̄ 1
,2
,4

t̄ 5
(
e
)

Figure 3. Distribution of the geometric mean of average runtimes over test
sets 1,2 and 4 (top two rows) and average runtimes over the easy instances
of test set 5 (bottom two rows), by rule type and type of fitness variable
yυ . Averages for the HIB rule are shown for comparison (dashed lines).

considering runtime, test set 4 is the only set where majority

of the rules did better than the HIB rule while about half

the rules did better over test sets 1 and 2. Looking at the

distributions of the geometric means shown in the rightmost

boxplots, it is clear that a majority of the rules perform better

than the HIB rule, when considering iterations. However, a

majority of the evolved rules perform less well than the HIB

rule over when considering both the number of nodes as well

as runtime.

Fig. 3 shows distribution of the geometric mean of run-

times averaged over sets 1,2 and 4 and the average runtimes

over the easy instances of set 5 respectively. Since the

distributions of runtimes vary a great deal between test sets,

the geometric mean is used rather than the arithmetic one.

The distributions shown are according to rule type and type

of fitness variable yυ used by the ES algorithm. For most
of the boxplots shown, the rules trained with |Ptr|= 5000
instances perform better than rules trained with |Ptr|= 1000
instances. Roughly speaking, the rules of type EB4 trained

with |Ptr|= 10000 instances do better than their counterparts
trained with |Ptr|= 5000 instances if the fitness variable was
nodes while the opposite is true if the fitness variable was

iterations. There were to few rules of type EB1 trained with

|Ptr|= 10000 instances for making any conclusions about
their performance. For the easy instances of test set 5, rules

trained with both types of fitness variable yυ have shorter
runtimes than the HIB rule.

Table IV shows the average number of nodes generated for

each test set for 5 individual rules. Shown are results for the

rules that had the best performance among all rules, averaged

over test sets 1-4, when comparing total number of nodes

1441

Table IV
AVERAGE NUMBER OF NODES IN THOUSANDS (TIME IN SECONDS)

PRODUCED BY THE 5 RULES WITH THE FEWEST NODES PRODUCED ON

AVERAGE

Q̄(thousand)

Rule |Ptr| yυ Set 1 Set 2 Set 3 Set 4 Set 5 (easy)

HIB - 0.279 0.601 1.36 8.47 164 (44.9)

RB - 0.280 0.605 1.35 8.57 167 (45.3)

EB4 5k Q 0.278 0.594 1.33 8.35 171 (44.9)

EB3 5k Q 0.274 0.596 1.35 8.37 171 (43.7)
EB1 1k Q 0.278 0.603 1.35 8.36 170 (44.8)
EB1 5k Q 0.278 0.603 1.35 8.35 165 (44.7)
EB1 5k Q 0.275 0.601 1.36 8.37 166 (45.5)

|Pte| 1000 1000 1000 1000 270

generated. Table V shows the analogous resulting number

of iterations performed by the 5 best performing rules when

comparing total number of iterations performed. Results are

shown for all test sets except for the tougher instances of set

5 since for these instances time limit had an effect on the

number of nodes/iterations generated/performed. For test set

5 the average runtimes in seconds are shown in parenthesis.

The order of the rules is in accordance of their average

rank, with better performing rules above the less well per-

forming rules. The values shown are each rule’s average over

all instances belonging to a particular set. Also shown are

the performances of the hybrid inference/reliability branching

rule (HIB) and the reliability branching rule (RB). For each

rule considered, shown are the rule type, number of training

problems |Ptr| iterated over while evolving the rule, and
the type of fitness variable yυ used (Q indicating nodes

and ς iterations). Shown in bold are results for rules that
outperform both the HIB and RB rules. Over-lined numbers

state significantly better performance than both the HIB and

RB rules at the 95% significance level. Significance was

tested with the Wilcoxon signed-rank test.

The highest ranking rules when comparing number of

nodes have all been evolved using total number of nodes as

a measure of fitness. Analogously, the highest ranking rules

when comparing number of iterations have all been evolved

using iterations as a measure of fitness. With the exception of

test set 1, the performances according to number of iterations

of the rules of Table V are more often significantly better

than the SCIP rules when compared to the performances in

nodes of Table IV, especially for test sets 2 and 5. For the

results of rules of both tables over set 5, half of the rules

show improvement in runtime when compared to the HIB

and RB rules, all of them significantly so. The rules of Table

IV do so despite all of them having inferior performance

with respect to nodes generated. Table VI shows the average

runtime for 10 individual rules over the instances of set 5 split

into six subsets according to hardness. Shown are results for

rules with the lowest ranks among all rules, averaged over

test sets 1,2 and 4, when comparing average runtime. The

Table V
AVERAGE NUMBER OF SIMPLEX ITERATIONS IN THOUSANDS (TIME IN
SECONDS) PERFORMED BY THE 5 RULES WITH THE FEWEST ITERATIONS

PERFORMED ON AVERAGE

ς̄(thousand)

Rule |Ptr| yυ Set 1 Set 2 Set 3 Set 4 Set 5 (easy)

HIB - 1.17 2.31 4.20 35.8 867 (44.9)

RB - 1.17 2.31 4.22 36.3 868 (45.3)

EB4 10k ς 1.14 2.13 4.00 32.3 817 (45.5)
EB4 10k ς 1.11 2.12 3.95 32.6 820 (46.2)
EB4 5k ς 1.14 2.16 3.88 32.4 830 (44.8)
EB4 1k ς 1.13 2.17 3.97 32.3 811 (44.3)
EB3 5k ς 1.12 2.14 4.02 32.3 823 (46.0)

|Pte| 1000 1000 1000 1000 270

Table VI
AVERAGE RUNTIME IN SECONDS/GAP IN PERCENTAGES FOR 6 SUBSETS

OF TEST SET 5. RESULTS ARE FOR THE 10 RULES WITH LOWEST

AVERAGE RANKING, OVER SETS 1,2 AND 4, OF RUNTIME SPENT

Rule |Ptr| yυ Set 5 (easy)[t̄] Set 5 (hard)[%̄LP]

HIB - - 7.56 49.3 77.9 0.182 0.150 0.171

RB - - 7.34 48.1 80.6 0.182 0.155 0.165

EB4 5k ς 6.93 45.5 81.2 0.234 0.152 0.177

EB4 10k Q 7.23 48.1 77.5 0.186 0.157 0.176

EB4 5k ς 6.99 45.9 74.6 0.231 0.154 0.174

EB4 10k Q 7.41 47.3 76.4 0.194 0.144 0.177

EB4 5k ς 7.19 45.1 77.2 0.239 0.152 0.180

EB4 10k Q 7.25 48.1 77.6 0.188 0.157 0.171

EB4 10k ς 6.76 47.9 81.9 0.242 0.155 0.182

EB4 10k Q 7.46 47.8 77.7 0.190 0.151 0.175

EB4 5k ς 7.42 47.1 75.6 0.234 0.149 0.184

EB4 5k Q 6.82 50.2 76.1 0.184 0.153 0.176

|Pte| 90 90 90 90 90 90

runtimes shown in Table VI are in general not significantly

lower than the runtimes of the HIB and RB rule. The 10 rules

perform relatively better over the easy instances than over the

hard instances. Since rules of type EB4 have on average the

lowest runtimes for test sets 1,2 and 4, the results of Table

VI happen to be all for rules of that type.

VII. SUMMARY AND CONCLUSIONS

As was shown in Fig. 2 the evolved rules were in general

well suited to minimize the overall number of simplex

iterations performed while solving the instances of all the

test sets. The same can not be said for minimizing number

of nodes generated however. There is evidence that 1000
instances are not sufficient for training an effective branching

rule on, while it might be beneficial to train with more than

5000 instances. As well as being promising for set 5, the
results for runtime are especially encouraging for test set

4. The set consists of instances that were generated with

the same sets of parameters τ ,ρ and amax as the training

problems while the values of n and m are larger. The

runtimes for test set 1, which instances were generated with

1442

the same sets of parameters as the training set, are on average

not as good when compared to the HIB rule. Although the

rules did better on average on set 4 with respect to iterations,

it does not by it self explain the overall reduction in runtime.

However, since the rules are optimized so as to minimize

the sum, or average of the fitness values over the training

instances, the rules might be better adapted to the hard

instances of the training problems. Then solving test set of

larger instances, generated with otherwise the same set of

parameters as the training instances, might perhaps be a well

suited task for these rules.

For this study to be deemed successful only a single

rule that can consistently outperform the state-of-the-art

HIB branching rule needs to be discovered. For future

study however, it might be feasible to examine the overall

performance of all rules in order to be better able to save

resources later. Indeed, when looking at overall performance

in runtime of the evolved rules, they are not particularly

good at solving the integer instances of test set 3 or the

harder problems of test set 5. Furthermore, the geometric

mean of average runtimes over all test sets might indicate that

the evolved rules outperform the comparison rules only by

chance. However, as can be seen by the performance in nodes

and iterations of Tables IV and V, some of the rules, as well

as spending less runtime than the HIB and RB rules solving

the easy instances of set 5, significantly outperform both the

HIB and RB rules consistently over most of the other test

sets, and more often than one would expect would happen by

chance alone. As shown in these tables as well as in Table VI,

the results for runtime spent solving the easy instances of set

5 are encouraging. The results for the gap percentage shown

in Table VI are poorer. These might be an indication that the

method of using (1+1)CMA-ES in this way, to use multiple

small instances to train branching rules or other decision

rules, to be better at solving instances of larger size, might

not be sound. On the other hand it might be possible to train

decision rules using the relative gap as a measure of fitness

while solving small parts of larger instances. This could be

investigated in a possible future study. Further study might

also involve adapting (1+1)CMA-ES or another algorithm to

be able to select which features to use, as well as optimizing

the weights, so as to eliminate the need for choosing the

features beforehand.

We have shown that it is possible to use the (1+1)CMA-

ES algorithm for training of branching rules to be efficient

at solving a special class of mixed integer programs, specif-

ically multidimensional knapsack problems. We showed that

it is possible to use as a fitness variable the number of nodes

generated, as well as number of simplex iterations performed,

to create branching that were faster than the HIB and RB

rules solving the test instances. We further showed that the

evolved rules generalize to a wider class of instances as well

as those larger in size. It remains to be seen whether this

method, or a modification of it, is practical for the creation

of effective branching rules for solving of instances of even

larger sizes.

REFERENCES

[1] E. K. Burke, M. Gendreau, M. Hyde, G. Ochoa, G. Kendall, E. Özcan,
and R. Qu, “Hyper-heuristics : A Survey of the State of the Art,”
Journal of the Operational Research Society, 2013.

[2] T. Achterberg, “SCIP: solving constraint integer programs,”
Mathematical Programming Computation, vol. 1, no. 1, pp. 1–41, Jan.
2009. [Online]. Available: http://link.springer.com/10.1007/s12532-
008-0001-1

[3] B. Meindl and M. Templ, “Analysis of commercial and free and
open source solvers for linear optimization problems,” Technische
Universität Wien (Vienna University of Technology), Tech. Rep., 2012.

[4] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold,
R. E. Bixby, E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz,
A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin, D. E. Steffy, and
K. Wolter, “Miplib 2010,” Mathematical Programming Computation,
vol. 3, no. 2, pp. 103–163, Jun. 2011. [Online]. Available:
http://link.springer.com/10.1007/s12532-011-0025-9

[5] J. Puchinger, G. R. Raidl, and U. Pferschy, “The multidimensional
knapsack problem: Structure and algorithms,” INFORMS Journal on
Computing, vol. 22, no. 2, pp. 250–265, 2010.

[6] C. Igel, T. Suttorp, and N. Hansen, “A computational efficient co-
variance matrix update and a (1+1)-cma for evolution strategies,” in
Proceedings of the 8th annual conference on Genetic and evolutionary
computation. ACM, 2006, pp. 453–460.

[7] T. Achterberg, “Constraint Integer Programming,” Ph.D. dissertation,
2007.

[8] L. A. Wolsey, “Mixed integer programming,” Wiley Encyclopedia of
Computer Science and Engineering, 2008.

[9] T. J. Van Roy and L. A. Wolsey, “Solving mixed integer program-
ming problems using automatic reformulation,” Operations Research,
vol. 35, no. 1, pp. 45–57, 1987.

[10] M. W. Savelsbergh, “Preprocessing and probing techniques for mixed
integer programming problems,” ORSA Journal on Computing, vol. 6,
no. 4, pp. 445–454, 1994.

[11] R. E. Gomory, “Outline of an algorithm for integer solutions to linear
programs,” 1958.

[12] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj, “Gomory cuts
revisited,” Operations Research Letters, vol. 19, no. 1, pp. 1–9, 1996.

[13] A. Lodi, “Mixed Integer Programming Computation,” in 50 Years
of Integer Programming 1958-2008, M. Jünger, T. M. Liebling,
D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt,
G. Rinaldi, and L. A. Wolsey, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, ch. 16, pp. 619–645. [Online]. Available:
http://www.springerlink.com/index/10.1007/978-3-540-68279-0

[14] M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere,
and O. Vincent, “Experiments in mixed-integer linear programming,”
Mathematical Programming, vol. 1, no. 1, pp. 76–94, 1971.

[15] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, “Finding cuts in
the tsp,” 1995.

[16] J. T. Linderoth and M. W. P. Savelsbergh, “A Computational Study of
Search Strategies for Mixed Integer Programming,” INFORMS Journal
on Computing, vol. 11, no. 2, pp. 173–187, Jan. 1999. [Online].
Available: http://joc.journal.informs.org/cgi/doi/10.1287/ijoc.11.2.173

[17] T. Achterberg and T. Berthold, “Hybrid Branching,” pp. 309–311,
2009.

[18] T. Suttorp, N. Hansen, and C. Igel, “Efficient covariance matrix
update for variable metric evolution strategies,” Machine Learning,
vol. 75, no. 2, pp. 167–197, Jan. 2009. [Online]. Available:
http://link.springer.com/10.1007/s10994-009-5102-1

[19] A. Freville and G. Plateau, “An efficient preprocessing procedure for
the multidimensional 0-1 knapsack problem,” Discrete Applied Math-
ematics, vol. 49, no. 1-3, pp. 189–212, Mar. 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0166218X94902097

1443

