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Abstract—Recently, subspace learning methods for
Dimensionality Reduction (DR), like Subclass Discrim-
inant Analysis (SDA) and Clustering-based Discrimi-
nant Analysis (CDA), which use subclass information
for the discrimination between the data classes, have
attracted much attention. In parallel, important work
has been accomplished on Graph Embedding (GE),
which is a general framework unifying several sub-
space learning techniques. In this paper, GE has been
extended in order to integrate subclass discriminant
information resulting to the novel Subclass Graph
Embedding (SGE) framework. The kernelization of
SGE is also presented. It is shown that SGE comprises a
generalization of the typical GE including subclass DR
methods. In this context, the theoretical link of SDA
and CDA with SGE is established. The efficacy and
power of SGE has been substantiated by comparing
subclass DR methods versus a diversity of unimodal
methods all pertaining to the SGE framework via a
series of experiments on various real-world data.

I. INTRODUCTION

In recent years, various subspace learning algo-
rithms for dimensionality reduction (DR) have been
developed. Locality Preserving Projections (LPP) [1]
and Principal Component Analysis (PCA) [2] are
two of the most popular unsupervised linear DR
algorithms with multiple applications. Besides, su-
pervised methods like Linear Discriminant Analysis
(LDA) [3] have shown superior performance in many
classification problems, since through the DR pro-
cess they aim at achieving data class discrimination.

Usually in practice, there is the case where
many data clusters appear inside the same class
imposing the need to integrate this information in
the DR approach. Along these lines, techniques
such as Clustering Discriminant Analysis (CDA)
[4] and Subclass Discriminant Analysis (SDA) [5]
have been proposed. Both of them utilize a specific
objective criterion that incorporates the data subclass
information in an attempt to discriminate subclasses
that belong to different classes, while they put no
constraints to subclasses within the same class.

In parallel to the development of subspace learn-
ing techniques, a lot of work has been carried out
in DR from a graph theoretic perspective. Towards
this direction, Graph Embedding (GE) has been
introduced as a generalized framework, which unifies
several existing DR methods and furthermore offers
as a platform for developing novel algorithms [6]. In
[1], [6] the connection of LPP, PCA and LDA with
the GE framework has been illustrated and in [6],
employing GE, the authors propose Marginal Fisher
Analysis (MFA), while a Subclass Marginal Fisher
Analysis (SMFA) method has also been proposed in
[7]. In addition, the ISOMAP [8], Locally Linear
Embedding (LLE) [9] and Laplacian Eigenmaps
(LE) [10] algorithms have been interpreted within
the GE framework [6].

From the perspective of GE, the data are consid-
ered as vertices of a graph, which is accompanied by
two matrices, the intrinsic and the penalty matrix,
weighing the edges among vertices. The intrinsic
matrix encodes the similarity relationships, while the
penalty matrix encodes the undesirable connections
among the data. In this context, the DR task is
translated to the problem of transforming the initial
graph into a new one in a way that the weights of
the intrinsic matrix are reinforced, while the weights
of the penalty matrix are suppressed.

Apart from the core idea on GE presented in [6],
some other interesting works have also been pub-
lished recently in the literature. A graph-based super-
vised DR method has been proposed in [11] for cir-
cumventing the problem of non-Gaussian distributed
data. The importance degrees of the same-class and
not-same-class vertices are encoded by the intrinsic
and extrinsic graphs, based on a monotonically de-
creasing function. Moreover, the kernel extension of
the proposed approach is also presented. In [12], the
selection of the neighbor parameters of the intrinsic
and extrinsic graph matrices is adaptively performed
based on the different local manifold structure of
different samples, enhancing in this way the intra-
class similarity and inter-class separability.
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Methodologies that convert a set of graphs into a
vector space have also been presented. For instance,
a novel prototype selection method from a class-
labeled set of graphs has been proposed in [13].
A dissimilarity metric between a pair of graphs
is established and the dissimilarities of a graph
from a set of prototypes are calculated providing an
n-dimensional feature vector. Several deterministic
algorithms are used to select the prototypes with
the most discriminative power [13]. The flexibility
of GE has also been combined with the generaliza-
tion ability of the support vector machine classifier
resulting to improved classification performance. In
[14], the authors propose the substitution of the
support vector machine kernel with sub-space or sub-
manifold kernels, that are constructed based on the
GE framework.

Despite the intense activity around GE, no exten-
sion has been proposed to integrate subclass infor-
mation. In this paper, such an extension is proposed,
leading to the novel Subclass Graph Embedding
(SGE) framework, which is the main contribution
of our work. Using subclass block form in both the
intrinsic and penalty graph matrices, SGE optimizes
a criterion which preserves the subclass structure and
simultaneously the local geometry of the data. One
big advantage of SGE and generally of graph-based
methods is that their functionality is based merely
on the existence of the two above graph matrices
regardless of the way they have been constructed.
This allows for employing any similarity measure
for modelling the local geometry and any clustering
approach for extracting the subclasses of the data.

Choosing the appropriate parameters, SGE be-
comes one of the well-known aforementioned algo-
rithms. Along these lines, in this paper it is shown
that a variety of unimodal DR algorithms are encap-
sulated within SGE. Furthermore, the theoretical link
between SGE and CDA, SDA methods is also estab-
lished, which is another novelty of our work. Finally,
the kernelization of SGE (K-SGE) is also presented.
The efficacy of SGE and K-SGE is demonstrated
through a comparison between subclass DR methods
and a diversity of unimodal ones – all pertaining to
the SGE framework – via a series of experiments on
various datasets.

The remainder of this paper is organized as
follows. The subspace learning algorithms CDA and
SDA are presented in Section II in order to pave
the way for their connection with SGE. The novel
SGE framework along with its kernelization is pre-
sented in Section III. The connection between the
SGE framework and the several subspace learning
techniques is given in Section IV. A comparison of
the aforementioned methods on real-world datasets

is presented in Section V. Finally, conclusions are
drawn in Section VI.

II. SUBSPACE LEARNING TECHNIQUES

In this section, we provide the mathematical for-
mulation of the subspace learning techniques CDA
and SDA in order to allow their connection with the
SGE framework. The other methods mentioned in
the Introduction are encapsulated in the proposed
SGE framework as well. However, their detailed
description is omitted, as they have already been
described in [6].

In the following analysis, we consider that each
data sample denoted by x is an m-dimensional real
vector, i.e., x ∈ R

m. We also denote by y ∈ R
m′

its projection y = VTx to a new m′-dimensional
space using a projection matrix V ∈ R

m×m′ . CDA
and SDA attempt to minimize:

J(v) =
vTSWv

vTSBv
, (1)

where SW is called the within and SB the between
scatter matrix [15]. These matrices are symmetric
and positive semi-definite. The minimization of the
ratio (1) leads to the following generalized eigen-
value decomposition problem to find the optimal
discriminant projection eigenvectors:

SWv = λSBv . (2)

The eigenvalues λi of the above eigenproblem are
by definition positive or zero:

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm . (3)

Let v1,v2, · · · ,vm be the corresponding eigen-
vectors. Then the projection y = VTx, from
the initial space to the new space of reduced di-
mensionality employs the projection matrix V =
[v1,v2, · · · ,vm′ ] whose columns are the eigenvec-
tors vi, i = 1, . . . ,m′ and m′ � m.

Looking for a linear transform that effectively
separates the projected data of each class, CDA
makes use of potential subclass structure. Let us
denote the total number of subclasses inside the i-th
class by di and, for the j-th subclass of the i-th class,
the number of its samples by nij , its q-th sample by
xij
q and its mean vector by μij . CDA attempts to

minimize (1), where S
(CDA)
W is the within-subclass

and S
(CDA)
B the between-subclass scatter matrix,

defined in [4]:

S
(CDA)
W =

c∑
i=1

di∑
j=1

nij∑
q=1

(
xij
q − μij

) (
xij
q − μij

)T
,

(4)
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S
(CDA)
B =

c−1∑
i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

(
μij − μlh

)(
μij − μlh

)T
.

(5)

The difference between SDA and CDA mainly
lies on the definition of the within scatter matrix,
while the between scatter matrix of SDA is a mod-
ified version of that of CDA. The exact definitions
of the two matrices are:

S
(SDA)
W =

n∑
q=1

(xq − μ) (xq − μ)
T
, (6)

S
(SDA)
B =

c−1∑
i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

pijplh
(
μij−μlh

)(
μij−μlh

)T
,

(7)
where pij =

nij

n is the relative frequency of the j-th
cluster of the i-th class [5]. It is worth mentioning

that S
(SDA)
W is actually the total covariance matrix

of the data.

The previously described DR methods along with
LPP, PCA and LDA can be seen under a common
prism, since their basic calculation element towards
the construction of the corresponding optimization
criteria is the similarity among the samples. Thus
we can unify them in a common framework if we
consider that the samples form a graph and we set
criteria on the similarities between the nodes of this
graph. In the following section we describe in detail
this approach.

III. SUBCLASS GRAPH EMBEDDING

In this section, the problem of dimensionality
reduction is described from a graph theoretic per-
spective. Before we present the novel SGE, let us
first briefly provide the main ideas of the core GE
framework.

A. Graph Embedding

In the GE framework, the set of the data samples
to be projected in a low dimensionality space is rep-
resented by two graphs, namely, the intrinsic Gint =
{X ,Wint} and the penalty Gpen = {X ,Wpen}
graph, where X = {x1,x2, · · · ,xn} is the set
of the data samples in both graphs. The intrinsic
graph models the similarity connections between
every pair of data samples that have to be reinforced
after the projection. The penalty graph contains the
connections between the data samples that must
be suppressed after the projection. For both of the
above matrices these connections might have nega-
tive values imposing the opposite effects. Choosing

the values of both the intrinsic and the penalty graph
matrices, may lead to either supervised, unsupervised
or semi-supervised DR algorithms.

Along these lines, it is desirable to project the
initial data to the new low dimensional space, such
that the geometrical structure of the data is pre-
served. The corresponding objective function for
optimization is:

argmin
tr{YBYT }=d

J(Y) , (8)

J(Y)=
1

2
tr{

∑
q

∑
p

(yq−yp)Wint(q, p)(yq−yp)
T } ,
(9)

where Y = [y1,y2, · · · ,yn] are the projected
vectors, d is a constant, B is a constraint matrix,
defined to remove an arbitrary scaling factor in the
embedding and Wint(q, p) is the value of Wint at
position (q, p) [6]. The structure of the objective
function (9) postulates that, the larger the value
Wint(q, p) is, the smaller the distance between the
projections of the data samples xq and xp has to
be. By using some simple algebraic manipulations,
equation (9) becomes:

J(Y) = tr{YLintY
T } , (10)

where Lint = Dint−Wint is the intrinsic Laplacian
matrix and Dint is the degree matrix defined as
the diagonal matrix, which has at position (q, q) the
value Dint(q, q) =

∑
p Wint(q, p).

The Laplacian matrix Lpen = Dpen − Wpen

of the penalty graph is often used as the constraint
matrix B. Thus (8) becomes:

argmin
tr{YLintY

T }
tr{YLpenYT } . (11)

The optimization of the above objective function is
achieved by solving the generalized eigenproblem:

Lintv = λLpenv , (12)

keeping the eigenvectors, which correspond to the
smallest eigenvalues.

This approach leads to the optimal projection of
the given data samples. In order to achieve the out of
sample projection, the linearization [6] of the above
approach should be used. If we employ y = VTx,
the objective function (9) becomes:

argmin
tr{VTXLpenXTV}=d

J(V) , (13)

where J(V) is defined as:

1

2
tr{VT

(∑
q

∑
p

(xq−xp)Wint(q, p)(xq−xp)
T

)
V} ,
(14)
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where X = [x1,x2, . . . ,xn]. By using simple alge-
braic manipulations, we have:

J(V) = tr{VTXLintX
TV} . (15)

Similarly to the straight approach, the optimal eigen-
vectors are given by solving the generalized eigen-
problem:

XLintX
Tv = λXLpenX

Tv . (16)

B. Linear Subclass Graph Embedding

In this section, we propose a GE framework that
allows the exploitation of subclass information. In
the following analysis, it is assumed that the subclass
labels are known. We attempt to minimize the scatter
of the data samples within the same subclass, while
separating data samples from subclasses that belong
to different classes. Finally, we are not concerned
about samples that belong to different subclasses of
the same class.

Usually, in real-world problems, local geome-
try of the data is related to the global supervised
structure. Samples that belong to the same class or
subclass, should be “sufficiently close” to each other.
SGE actually exploits this fact. It simultaneously
handles supervised and unsupervised information.
As a consequence, it combines the global labeling
information with the local geometrical characteristics
of the data samples. This is achieved by weighing the
above connections with the similarities of the data
samples. The Gaussian similarity function (see eq.
17), has been used in this paper for this purpose.

Sqp = S(xq,xp) = exp

(
−d2(xq,xp)

σ2

)
, (17)

where d(xq,xp) is a distance metric (e.g., Euclidean)
and σ2 is a parameter (variance) that determines the
distance scale.

Let us denote as P an affinity matrix. Without
limiting the generality, we assume that this matrix
has block form, depending on the subclass and
the class of the data samples. Using the linearized
approach, we attempt to optimize a more general
discrimination criterion. We consider again that y =
VTx is the projection of x to the new subspace. Let
Pij(q, p) be the value of P at position (q, p) of the
submatrix that contains the j-th subclass of the i-th
class. Then, the proposed criterion is:

argmin J(Y) , (18)

J(Y) =
1

2
tr{

c∑
i=1

di∑
j=1

nij∑
q=1

nij∑
p=1

(
yij
q − yij

p

)
Pij(q, p)

(
yij
q − yij

p

)T } (19)

=
1

2
tr{VT

(
c∑

i=1

di∑
j=1

nij∑
q=1

nij∑
p=1

(
xij
q − xij

p

)

Pij(q, p)
(
xij
q − xij

p

)T
)
V} (20)

= tr{VTX (Dint −Wint)X
TV} (21)

= tr{VTXLintX
TV} . (22)

The derivation of (22) is omitted due to lack of space.
The matrix Wint is block diagonal with blocks that
correspond to each class and is given by:

Wint =

⎛
⎜⎜⎝

W1
int

W2
int 0

0
. . .

Wc
int

⎞
⎟⎟⎠ . (23)

Wi
int are block diagonal submatrices, with blocks

that correspond to the subclasses and are given by:

Wi
int =

⎛
⎜⎜⎜⎝

Pi1

Pi2 0

0
. . .

Pidi

⎞
⎟⎟⎟⎠ . (24)

Pij is the submatrix of P that corresponds to the
data of the j-th cluster of the i-th class. By looking
carefully at the form of Wint, it is clear that the
degree intrinsic matrix Dint has values

Dint(
i−1∑
s=0

j−1∑
t=0

nst+q,
i−1∑
s=0

j−1∑
t=0

nst+q) =
∑
p

Pij(q, p) ,

(25)
where p runs over the indices of the j-th cluster of
i-th class.

In parallel, we demand to maximize a criterion,
which encodes the similarities among the centroid
vectors of the subclasses. Let the value Qlh

ij express

the similarity between the centroid vectors μij and
μlh. The more similar two centroids that belong to
different classes are, the further apart their projec-
tions mij = VTμij have to be from each other:

argmaxG(mij) , (26)

G(mij) = tr{
c−1∑
i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

(
mij −mlh

)
Qlh

ij

(
mij −mlh

)T } (27)
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= tr{VT

⎛
⎝c−1∑

i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

(
μij − μlh

⎞
⎠

Qlh
ij

(
μij − μlh

)T )
V} (28)

= tr{VTX (Dpen −Wpen)X
TV} (29)

= tr{VTXLpenX
TV} . (30)

The block matrix Wpen in (29) consists of block
submatrices:

Wpen =

⎛
⎜⎜⎜⎝

W1,1
pen W1,2

pen · · · W1,c
pen

W2,1
pen W2,2

pen · · · W2,c
pen

...
...

. . .
...

Wc,1
pen Wc,2

pen · · · Wc,c
pen

⎞
⎟⎟⎟⎠ .

(31)
The submatrices Wi,i

pen lying on the main block
diagonal are given by:

Wi,i
pen =

⎛
⎜⎜⎜⎝

Wi1

Wi2 0

0
. . .

Widi

⎞
⎟⎟⎟⎠ , (32)

where Wij corresponds to the j-th subclass of the
i-th class and is given by:

Wij = −
(∑

ω �=i

(∑dω

t=1 Q
ωt
ij

))
(nij)

2 enij (enij )
T
,

(33)

where enij = [

nij-times︷ ︸︸ ︷
11 · · · 1 ]T . Respectively, the off-

diagonal submatrices of Wpen are given by:

Wi,l
pen =

⎛
⎜⎜⎜⎝

Wl1
i1 Wl2

i1 · · · Wldl
i1

Wl1
i2 Wl2

i2 · · · Wldl
i2

...
...

. . .
...

Wl1
idi

Wl2
idi

· · · Wldl

idi

⎞
⎟⎟⎟⎠ , i �= l ,

(34)
where:

Wlh
ij =

Qlh
ij

nijnlh
enij (enlh)

T
. (35)

It can be easily shown that D = 0, so that Lpen =
−Wpen.

C. Kernel Subclass Graph Embedding

In this section, the kernelization of SGE is pre-
sented. Let us denote by X the initial data space, by
F a Hilbert space and by f the non-linear mapping
function from X to F . The main idea is to firstly map
the original data from the initial space into another

high-dimensional Hilbert space and then perform
linear subspace analysis in that space. If we denote
by mF the dimensionality of the Hilbert space, then
the above procedure is described as:

X �xq→yq=f(xq)=

( ∑n
p=1 a1pk(xq,xp)

...∑n
p=1 amFpk(xq,xp)

)
∈F ,

(36)
where k is the kernel function. From the above
equation it is obvious that

Y = ATK , (37)

where K is the Gram matrix, which has at position
(q, p) the value Kqp = k(xq,xp) and

A = [a1 · · ·amF ] =

⎛
⎜⎝ a11 · · · amF1

...
. . .

...
a1n · · · amFn

⎞
⎟⎠ (38)

is the map coefficient matrix. Consequently, the final
SGE optimization becomes:

argmin
tr{ATKLintKA}
tr{ATKLpenKA} . (39)

Similarly to the linear case, in order to find the op-
timal projections, we resolve the generalized eigen-
problem:

KLintKa = λKLpenKa , (40)

keeping the eigenvectors that correspond to the
smallest eigenvalues.

IV. SGE AS A GENERAL DIMENSIONALITY

REDUCTION FRAMEWORK

In this section, it is shown that SGE is a gen-
eralized framework that can be used for subspace
learning, since all the standard approaches are spe-
cific cases of SGE. Let us use the Gaussian simi-
larity function (17), in order to construct the affinity
matrix.

In the following analysis, we initially let the
variance of Gaussian σ2 tend to infinity. Hence,

S(xq,xp) = 1, ∀(q, p) ∈ {1, 2, · · · , n}2 .
Let the intrinsic matrix elements be:

Pij(q, p) =

{
S(xq,xp)

nij
= 1

nij
, if xq,xp ∈ Cij

0 , otherwise
,

(41)
where Cij is the set of the samples that belong to
the j-th subclass of the i-th class. Obviously, (20)
becomes the within-subclass criterion of CDA (also
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see eq. 4). Thus, in this case, Wint is the intrinsic
graph matrix of CDA. Let also:

Qlh
ij = S(μij ,μlh) = 1, ∀ i, j, h, l (42)

the penalty matrix elements. Then, (28) becomes the
between-subclass criterion of CDA (also see eq. 5).
Thus, Wpen is the penalty graph matrix of CDA
and the connection between CDA and GE has been
established.

Let us consider that each data sample constitutes
its own class, i.e., c = n, di = 1 andni = 1, ∀i ∈
{1, 2, · · · , c}. Thus, each class-block of the penalty
graph matrix reduces to a single element of the
matrix. Obviously, each data sample coincides with
the mean of its class. By setting:

Ql1
i1 =

S(μi,μl)

n
=

1

n
, ∀ (i, l) ∈ {1, 2, · · · , c}2 ,

(43)
then:

−
(∑

ω �=i

(∑dω

t=1 Q
ωt
i1

))
(ni)

2 = −
∑
ω �=i

(
1

n

)
=

1

n
− 1 .

(44)
These values lie on the main diagonal of the penalty
graph matrix. Regarding the off diagonal elements
we have:

Ql1
i1

ninl
=

1

n
. (45)

It can be easily shown that the degree penalty matrix
is D = 0, so that Lpen = −Wpen. Obviously,

Lpen = I − 1
ne

n (en)
T

and XLpenX
T becomes

the covariance matrix C of the data. By using
as intrinsic graph matrix the identity matrix, SGE
becomes identical to PCA:

argmin
tr{VTXLintX

TV}
tr{VTXLpenXTV} = argmin

tr{VT IV}
tr{VTCV}

(46)
leading to the following generalized eigenproblem:

Iv = λCv , (47)

solved by keeping the smallest eigenvalues, or by
setting μ = 1

λ , since λ �= 0, this leads to:

Cv = μIv , (48)

solved by keeping the greatest eigenvalues, which is
obviously the PCA solution.

Now, consider that every class consists of a
unique subclass, thus di = 1, ∀i ∈ {1, 2, . . . , c}. If
we set:

P(q, p) =

{
S(xq,xp)

ni
= 1

ni
, if xq,xp ∈ Ci

0 , otherwise
,

(49)

then the intrinsic graph matrix becomes that of LDA.
Furthermore, if we set:

Ql1
i1 =

ninl

n
, ∀ (i, l) ∈ {1, . . . , c}2 (50)

then

−
(∑

ω �=i

(∑dω

t=1 Q
ωt
i1

))
(ni)

2 =
ni − n

nni
(51)

and
Ql1

i1

ninl
=

1

n
. (52)

These are the values of the penalty graph matrix
of LDA. So, by taking the Laplacians of the above
matrices, we end up to the LDA algorithm.

Let us now reject the assumption that the vari-
ance of Gaussian tends to infinity. Consider that there
is only one class which contains the whole set of
the data, i.e., c = 1. Also consider that there are no
subclasses within this unique class, i.e., d1 = 1. In
this case the intrinsic graph matrix becomes equal to
P. Thus, by setting P equal to the affinity matrix S,
the intrinsic Laplacian matrix becomes that of LPP.

We observe that by utilizing the identity matrix
as the penalty Laplacian matrix, obviously we get
the LPP algorithm. Since we consider a unique class,
which contains a unique subclass, from (31) and (32)
we have that Wpen = W11. The values of W11 are
given from (33), which in this case reduces to:

W11 = −Q11
11

n2
en (en)

T
. (53)

If we set:

Q11
11 =

n2

1− n
, (54)

then Wpen = W11 = 1
n−1e

n (en)
T

. Consequently,

Lpen =

⎛
⎜⎜⎜⎝

1 1
1−n · · · 1

1−n
1

1−n 1 · · · 1
1−n

...
...

. . .
...

1
1−n

1
1−n · · · 1

⎞
⎟⎟⎟⎠ . (55)

Thus, if we make the assumption that the number of
the data-samples becomes very large, then asymp-
totically we have Lpen = I.

Finally, to complete the analysis, if we consider
as the intrinsic Laplacian matrix, the matrix

Lint = I− 1

n
en (en)

T
(56)

and if we set:

Qlh
ij =

nijnlh

n
, (57)
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TABLE I: Dimensionality Reduction Using SGE Framework.

P(Lint) Q(Lpen) σ2 c di d

LPP P11(q, p) = exp

(
− d2(xq,xp)

σ2

)
, ∀xq,xp Q11

11 = n2

1−n (Lpen = I) σ2 1 1 1

PCA Lint = I Ql1
i1 = 1

n ∞ n 1 n

LDA Pi1(q, p) = 1
ni

,xq,xp ∈ ci Ql1
i1 =

ninl
n ∞ c 1 c

CDA Pij(q, p) = 1
nij

,xq,xp ∈ cij Qlh
ij = 1 ∞ c di d

SDA Lint = I− 1
nen (en)T Qlh

ij =
nijnlh

n ∞ c di d

in (33) and (35), SGE becomes identical to SDA.
The parameters that determine the connection of the
several methods with SGE are pooled in Table I.

V. EXPERIMENTAL RESULTS

We conducted 5-fold cross-validation classifi-
cation experiments on several real-world datasets
using the proposed linear and kernel (RBF) SGE
framework. For extracting automatically the subclass
structure, we have utilized the multiple Spectral
Clustering technique [16], keeping the most plau-
sible partition for each dataset. For classifying the
data, the Nearest Centroid (NC) classifier has been
used with LPP, PCA and LDA algorithms, while
the Nearest Cluster Centroid (NCC) [17] has been
used with CDA and SDA algorithms. In NCC, the
cluster centroids are calculated and the test sample is
assigned to the class of the nearest cluster centroid.
NC and NCC were selected because they provide the
optimal classification solutions in Bayesian terms,
thus proving whether the DR methods have reached
the goal described by their specific criterion.

A. Classification experiments

For the classification experiments, we have used
diverse publicly available datasets offered for vari-
ous classification problems. More specifically, FER-
AIIA, BU, JAFFE and KANADE were used for
facial expression recognition, XM2VTS for face
frontal view recognition, while MNIST and SE-
MEION for optical digit recognition. Finally, IONO-
SPHERE, MONK and PIMA were used in order to
further extend our experimental study to diverse data
classification problems.

The classification accuracy rates for the several
subspace learning methods over the utilized datasets
are summarized in Table II. The optimal dimension-
ality of the projected space that returned the above
results is depicted in parenthesis. For each dataset,
the best performance rate among linear and kernel
methods separately is highlighted with bold, while
the best overall performance rate among all methods,
both linear and kernel, is surrounded by a rectangle.
The classification performance rank of each method

is also referred in the last two rows of Table II.
Specific Rank denotes the method rank for the linear
and the kernel methods, independently. Overall Rank
refers to the rank of each method among both the
linear and the kernel methods. The ranking has been
achieved through a post-hoc Bonferroni test [18].

An immediate remark from Table II is that in
both linear and kernel case, multimodal methods
exhibit better classification performance than the
unimodal ones. In particular, the top overall perfor-
mance is shown by SDA followed by CDA, while the
worst performance is shown by KLPP and KPCA.
This result undoubtedly shows that the inclusion
of subclass information in the DR process offers a
strong potential to improve the performance of the
state-of-the-art in many classification domains.

In comparing linear with kernel methods, a sim-
ple calculation yields mean overall rank equal to 5.08
for the linear methods and 5.90 for the kernel ones.
Although the average performance of linear methods
is clearly better than that of kernel ones, we must
admit that there is ample space for improving the
kernel results by varying the RBF parameter, as the
selection of this parameter is not trivial and may eas-
ily lead to over-fitting. Actually, the top performance
rates presented in this paper have been obtained by
testing indicative values of the above parameter. As
a matter of fact, it is interesting to observe that
the use of kernels proves to be beneficial for some
methods in certain datasets, while deteriorates the
performance of others.

VI. CONCLUSIONS

In this paper, data subclass information has been
incorporated within Graph Embedding (GE) lead-
ing to a novel Subclass Graph Embedding (SGE)
framework, which constitutes the main contribution
of our work. In particular, it has been shown that
SGE comprises a generalization of GE, encapsulat-
ing a number of state-of-the-art unimodal subspace
learning techniques already integrated within GE.
Besides, the connection of SGE with subspace learn-
ing algorithms that use subclass information in the
embedding process has been analytically proven. The
kernelization of SGE has also been presented.
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TABLE II: Classification accuracy (%) of linear and kernel methods on several real-world datasets.

DATASET LPP PCA LDA CDA SDA KLPP KPCA KDA KCDA KSDA

FER-AIIA 40.9(3) 31.0(120) 64.6(6) 73.2 75.5(11) 50.2(252) 41.5(29) 54.9(6) 56.1(12) 53.5(12)

BU 39.4(298) 38.1(49) 51.6(6) 49.1(16) 52.3(15) 52.7(317) 35.9(290) 46.6(6) 41.0(13) 48.0(14)

JAFFE 46.8(18) 37.6(39) 53.2(6) 40.0(15) 54.1(6) 28.8(98) 25.9(58) 42.4(6) 36.1(18) 46.3(5)
KANADE 34.2(92) 43.3(46) 67.1(6) 59.7(7) 67.1(5) 32.7(99) 33.2(88) 44.3(6) 40.0(6) 38.5(6)

MNIST 71.1(259) 79.9(135) 84.6(9) 84.8(15) 85.1(14) 81.4(299) 64.5(155) 86.0(9) 83.4(19) 85.2(15)

SEMEION 53.6(99) 83.2(55) 88.2(9) 89.2(19) 89.4(19) 83.8(99) 77.4(77) 95.3(9) 94.1(19) 95.9(19)
XM2VTS 95.7(54) 92.0(86) 70.5(1) 98.1(3) 97.4(2) 71.3(297) 74.7(56) 61.3(1) 71.5(3) 57.3(4)

IONOSPHERE 84.6(23) 72.3(15) 78.9(1) 80.6(2) 83.4(2) 83.7(23) 70.3(2) 92.9(1) 93.1(1) 92.9(1)

MONK 1 66.7(3) 68.3(5) 50.8(1) 70.0(4) 74.2(3) 63.3(2) 72.5(1) 55.8(1) 58.3(4) 61.7(3)

MONK 2 56.0(1) 53.3(4) 52.0(1) 54.2(1) 54.0(2) 54.8(1) 59.8(3) 69.7(1) 78.7(1) 54.5(1)

MONK 3 77.2(5) 80.9(4) 49.4(1) 74.6(2) 66.3(2) 62.5(2) 79.2(5) 51.7(1) 67.5(2) 58.3(1)

PIMA 61.8(1) 63.5(6) 56.5(1) 60.5(3) 73.5(3) 50.7(3) 67.5(4) 48.9(1) 52.5(3) 52.9(1)

SPECIFIC RANK 3.3 3.8 3.6 2.5 1.6 3.5 3.4 2.9 2.4 2.7

OVERALL RANK 5.8 6.4 6.0 4.2 3.0 6.7 6.7 5.4 5.2 5.5

Through an extensive experimental study, it has
been shown that subclass learning techniques outper-
form a number of state-of-the-art unimodal learning
methods in many real-world datasets pertaining to
various classification domains. In addition, although
the superiority of linear methods over kernel ones is
evident, there is ample space for improving kernel
methods by optimizing the involved parameters.

In the near future, we intend to employ SGE as a
template to design novel DR methods. For instance,
as current subclass methods are strongly dependent
on the underlying distribution of the data, we antic-
ipate that novel methods, which use neighbourhood
information among the data of the several subclasses,
will succeed in alleviating this sort of limitations.
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