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Abstract—This paper proposes a library for computational
intelligence using functional programming to address the com-
plexities in algorithm implementation and highlighting specific
concerns that are often ignored in the algorithm descriptions.
Useful abstractions, common in the paradigm of functional
programming, are used to make implementation specifics of
algorithms part of the algorithm definition, resulting in the
tracking of these effects, together with the control of the effects.
Effects, requiring management within an algorithm, include the
use of pseudo-random number generators, writing data to files or
the console, or providing the control parameter configuration of
the algorithm in an experiment. By defining the units of work for
an algorithm in a general and generic form, composition of these
different algorithmic units is possible, thereby creating larger,
more complex computational units. The software library provid-
ing such reusable, peer-reviewed composable computational unit,
is called CIlib.

I. INTRODUCTION

The continuing growth of Computational Intelligence (CI)
research results in a continual increase of different algorithms
which perform well on different classes of problems. Such
algorithms include artificial neural networks, evolutionary al-
gorithms, swarm-based algorithms, fuzzy systems and artificial
immune systems [1]. Moreover, research in other areas of
computer science, such as programming language design, are
naturally also continuing in parallel, providing improvements
that are applicable to the design of CI algorithms. Not taking
advantage of such improvements may result in potentially
missed opportunities to express ideas in ways that may not
only be new and novel, but in ways that allow for more
expressiveness thereby reducing boilerplate code, which is
the additional syntax and code required by the programming
language in order to express the desired intention, and allowing
the true intention of the program to be more obvious.

CI researchers follow a “throw away” culture whereby
researchers develop an algorithm or other concept, proceed
to experiment with the idea, obtain empirical evidence for the
discovery, which then ultimately culminates in a conference
paper or journal article. Once the research is published, and
the idea is not pursued further, it often happens that all work
related to producing the research output is then pushed to one
side. Hopefully, the work is archived, so that upon receiving a
query from a reader of the research output, the work can once
again be inspected in order to clarify questions of the reader.
Generally speaking, the development life cycle for a research
study involves:
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• design and implement an algorithm or some kind of
variant,

• select appropriate benchmark problems to determine
algorithm effectiveness, and

• evaluate the obtained results for the given set of
benchmark problems, comparing to results obtained
from a set of other algorithms.

This is a very tedious process, particularly for researchers
consuming the research output. The replication of the provided
empirical results may not be an obvious task. It requires a large
time investment in order to correctly duplicate the results of
others, allowing the comparison of the results, finally allowing
the production of a research output, and then continue the cycle
by archiving the research, thereby perpetuating the problem.
Furthermore, in addition to the time investment required to
duplicate the results, the following effects may occur:

• The published literature may neglect to correctly
specify all implementation details, making the repro-
duction of the published results impossible because
subtleties may be removed due to space constraints or
are simply ignored in error.

• Errors in programming implementations remain unno-
ticed and may have a drastic impact on the generated
results.

Preventing the additional effort to re-implement an algo-
rithm is very beneficial. Furthermore, consolidating this effort
into a common set of tools will allow for faster verification and
/ or the dismissal of previous results, eliminating the need for
algorithm re-implementation and expensive re-computation of
published results. Previously, such an effort was started by the
computational intelligence research group (CIRG) at the Uni-
versity of Pretoria. A framework, known as the computational
intelligence library (CIlib) [2], [3], [4], was created as an open-
source project (http://github.com/cirg-up/cilib)
which welcomed contributions and participation from other
researchers. CIlib aimed to be a framework of components
that may easily be combined and reused in order to facilitate
experimentation and exploration of CI algorithms and related
ideas. The framework allowed the “weaving” together of
algorithm components using an XML based scripting language.

The objective of this paper is to highlight the evolution of
CIlib into a piece of software that allows for faster experi-
mentation, whilst remaining extremely principled by tracking
the important effects of an algorithm in order to address
specific concerns in CI research, such as the management of
the pseudo-random number generator. The changes from the
initial releases of CIlib have been drastic, yet simple, resulting
in a better set of tools for researchers to use through the use
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of functional programming. The rest of the paper is organized
as follows: Section II discusses the background of CIlib,
and identifies specific problems that have necessitated change.
Section III describes the benefits that Functional Programming
(FP) can provide, in particular to CI algorithm development.
The new design of CIlib is discussed in Section IV, contrasting
it to the older framework design. The current status of the
project is provided in Section V, with a discussion on planned
future work given in Section VI.

II. BACKGROUND

Cilib is a project that was created organically based on the
requirements of CIRG, a computational intelligence research
group at the University of Pretoria, consisting of a relatively
large number of students that are all working on overlapping CI
research areas. This overlap in research was significant enough
that a common set of program code started forming a project.
The project was formally started [5], [6] in order to minimize
development time for all students, and to also facilitate the
sharing of knowledge between research group members.

The project started using Java as the programming language
of choice, due to the popularity and also due to the num-
ber of research group members who were familiar with the
language. CIlib started evolving to contain implementations
of algorithms that are, above everything else, generic and
concise. Over time, different CI paradigms were added to
the project, adding different algorithm implementations and
integrating components that started to span across the different
CI algorithm paradigms. As a trivial example, it became quite
simple to use Particle Swarm Optimization (PSO) to train a
Neural Network (NN), or to apply mutation operators to a
particle swarm optimizer. Abstractions started forming that hid
away very specific intricacies of algorithms allowing simpler
composition of differing components.

Over time the project became more and more complex,
eventually becoming a framework with an embedded language
based on XML to describe experimental designs. The frame-
work was used very successfully for many years, but users
started to experience severe problems due to the fact that
very specific algorithmic concerns were not addressed from
project inception. Most notably, experiments started to become
more difficult to reproduce as the design started hiding the
pseudo-random number generator within deep object-oriented
class hierarchies, preventing setting the seed value for the
pseudo-random number generator in a simple way, allowing
for experimental reproducability. Furthermore, deep object-
oriented inheritance hierarchies posed a challenge as small
changes in design started requiring considerable implementa-
tion effort due the cascading effect that a small change in a
super class of the hierarchy required. Additionally, application
state related errors started becoming more common, resulting
in strange behavior that took considerable time and effort to
both trace and resolve. The largest identified problem was
actually the XML-based language that described and declared
the algorithm compositions. The manner of operation of XML-
based language interpreter (called the “simulator”) forced a
specific programming style on users for both the algorithm
declaration and implementation. This style is known as the
JavaBean [7] pattern, whereby every program class member
required both a “getter” and a “setter” method definition.

Using JavaBeans, a declared algorithm could be instantiated
through the use of the reflection [8] API in Java. This decision
ultimately limited the expressiveness of the framework and
forced a specific flow of logic, which often resulted in the
application of workarounds to achieve desired implementa-
tions. Furthermore, the interpreter for the XML-based language
imposed specific behavior with respect to concurrency, often
blocking to perform synchronization of runtime threads so that
data may be written to disk. This synchronization effectively
made program executions largely sequential, removing most
of the benefit offered by parallelism.

It became clear that the current CIlib implementation was
not one that could be maintained. The core development
team, responsible for the framework, started to experiment
with other designs and looked to other areas for inspiration.
Inspiration was found, by examining current trends in pro-
gramming language design and identifying that algorithms are,
unsurprisingly, structures that can be reduced to be simple
functions that are concerned with input and produce output.
This introduced Functional Programming (FP), and as a result,
allowed the usage of the many tools of FP, such as curried
functions and partial application to name only two very simple
elementary features.

III. FUNCTIONAL PROGRAMMING IN CI

Functional Programming (FP) [9] is a programming style
that is heavily focused on the use of functions. These functions
model computation as the evaluation of mathematical func-
tions, eschewing mutable and state-changing data. Within FP,
computation is declared using expressions which always return
a value, whereas imperative programming is centered around
the use of statements to perform computation. Because expres-
sions return values (which are the result of the computation),
expressions can easily be composed into larger expressions
which declare more complex computations. As a result the
expressiveness of function-based programming is rather high
in contrast to an imperative style.

Examining the manner in which CI algorithms operate, it
can clearly be seen that generally these algorithms require
some form of input and return some output, which may or
may not be different from the input data. An algorithm can
therefore be seen as nothing more than a function of input
to output, without concerning oneself with the internals of the
algorithm. This is the fundamental underpinning of what needs
to be expressed and, is the new representation for algorithm
definitions within CIlib.

Function values are low-level primitives and using them
directly results in program code that is fairly verbose. FP prac-
titioners are against code repetition and have created several
abstractions that remove the complexity of maintaining this
verbosity. This allows the intention of the program code to be
more visible and adheres to the “don’t repeat yourself” or DRY
principle of software engineering. It should be explicitly stated
that although FP operates on the idea of simple mathematical
functions from input to output, the functions themselves are
pure. Purity of functions is a property whereby no additional
side-effects are produced in the function evaluation and that
the function operates solely on the data passed in via function
arguments. External side-effects or simply effects, are exactly
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what computers need to do to be useful and include things
like writing strings to the console. FP programs have therefore,
been extended in a variety of ways so that external effects can
be tracked or maintained without breaking the purity of the
function, nor function composition.

One such side-effect which is not possible in well-
principled FP program code is the use of global state (or global
variables). Using such state results in potentially difficult-
to-understand program code, as changes in the global state
may affect the running of the program in undesirable ways.
This undesirable behavior is then further compounded when
parallelism is taken into account, as any number of parallel
processes may adjust this global state or read from it. It is,
however, possible to address this concern with the use of
well-established concurrency techniques, but all the techniques
that enable state sharing between parallel processes are simply
unnecessary when the data in question is immutable. Allowing
parallel processes to read immutable data provides zero risk
as the data cannot be changed by any external actor.

If the pure, lazily evaluated functional programming lan-
guage Haskell [10] is taken as an example, the order of the
program evaluation is not clearly defined, as differing program
states may result in different evaluation paths. Haskell has
a lazy evaluation model (also referred to as call-by-name)
instead of being strict, which is the more common model and
the model used by Java, C/C++, etc. Therefore, because the
order of the program evaluation may be different based on the
current program execution path, the language designers needed
to introduce a structure or something similar that would allow
for the sequencing of execution paths, yet at the same time,
supporting the lazy evaluation model and purity that Haskell
offers. Such a structure that allows for this sequencing is called
the Monad, and is a computational model formulated in the
category theory branch of mathematics.

From category theory, several other structure formulations
have also become widely used to abstract away complexity and
to categorize the functionality that the structures can provide.
Such computational structures include Functor, Applicative
Functor [11], and Monad [12], [13]. There are others that are
also directly applicable to programming and some structures
are formulated in the mathematical field of topology, such as
Semigroup and Monoid [14].

These structures differ in specificity, such that the more
specialized structures have fewer possible instance imple-
mentations - which is an interesting dichotomy. In order of
specificity, Functor is the most general structure and Monad is
the most constrained, with Applicative in between both Functor
and Monad. As a result, monad has several derived operations
that have proved to be very useful in general programming
tasks.

Within the context of CI algorithms, there are several
important aspects that need to be controlled in order to allow
for a CI algorithm to execute. One such aspect is a piece
of global state that is always present: the pseudo-random
number generator. When a random number is sampled from
such a pseudo-random number generator, the internal state
of the generator needs to change so that, on the next call,
a different value can be computed. This is troublesome for
several reasons:

• The changing state is something that lives outside of
the scope of the program.

• It is possibly difficult to ensure that this external state
can be reset to a “known” value in order to reproduce
a value (or set of values).

• It is unknown if this external state is operated on by
other programs.

• The complexities are increased significantly if more
than one pseudo-random number generator is in-
volved.

It is therefore desirable that the pseudo-random number
generator is accessible from within the program itself but be
hidden from other programs. At the same time the usage of
the generator should be tracked to ensure that the usage is
correctly sequenced, ensuring that uncontrolled usage is not
possible.

IV. DESIGN

The original CIlib developed into a framework for running
algorithms, but this restricted users in a number of ways:

• Algorithm definitions required the embedded XML
language, but the XML language was not expressive
enough to express all cases needed by researchers.

• Experimental result output was handled by the simu-
lation within CIlib and that was limited to a specific
format which targeted plain text files as the default.

• The framework design prevented users from using
individual pieces of the framework for other uses
outside of the framework itself. The framework was
so tightly coupled that either the entire framework was
used or none of it at all.

As a result of the above, changes were needed to address
the problems associated with the usage of the software. Based
on the requirements of the users and the realization that
functional programming may result in better algorithmic repre-
sentations and composition, the current Java implementation of
CIlib was frozen and a new code base started to develop, using
the programming language Scala [15]. Scala was selected for
a single reason only: it compiles to the Java Virtual Machine
(JVM) [16] bytecode and the JVM is a platform that all
research group members were relatively comfortable with. The
execution speed of the JVM is also favorable, being slower that
or similar to compiled languages like C or C++, without the
need to hand optimize code to achieve good performance [17].
JVM bytecode is also more portable and distributable for
cluster based computation. Switching the underlying platform
to be Haskell would result in a much greater impact as all
development tools would need to be redefined and relearned,
regardless of stronger type inference and faster execution
speeds.

It was decided that the new sources would be a library
first, preventing the problems identified with the framework’s
design, referenced in Section II. A library would allow users
to decide for themselves, how to setup experiments and how to
manage the produced data, by writing the data to file, persisting
into a database or cloud storage. Experimental setup is now

1462



also done directly in Scala code and the embedded language
introduced to overcome limitations imposed by Java, is no
longer necessary. It is certainly true that a sister project will
develop that will contain common data management and setup
program code as more users start experimenting with the new
design. The design of the library is one that is focused on
strong principles, among which are:

• Correctness: The correctness of an implementation is
of the utmost importance and should be valued above
any form of performance optimization. The intention
of the implementation should always be visible so that
obvious errors can be isolated and the corrected. The
primary goal of CIlib is to provide a collection of
program code that is simple to understand. The imple-
mentation should also be peer reviewed to ensure that
the implementation is correct. Furthermore, having
consensus on an implementation for a given algorithm
will provide greater reuse as the same algorithm is
available for use and can easily be referenced for
inspection and critique later.

• Type safety: The usage of types within a strong
type system, such as the type system provided by
Scala, are advantageous as they can prevent the wrong
forms of data being used. Additionally, it is important
that the defined types result in incorrect program
formulation to be impossible to represent. Preventing
such representations then also removes the need to
perform additional logical tests to ensure the validity
of provided data. For example, if a function declares a
positive integer as a parameter, it must be impossible
to provide a negative value. Such constructions prevent
error states, thereby improving the guarantees that the
program code represents. This is a process of encoding
invariants into the type system and types.

• Reproducability: Fundamentally, having an algorithm
available for use is only a partial solution to a greater
problem, the problem of reproducing the experimental
results observed in publications. If a result set is
reported, it should be acceptable that a user can then
run the given algorithm, provide the expected data
values such as the pseudo-random number generator
seed, and obtain the exact same results as the original
author. This will prevent errors in publications and
furthermore provide surety that implementations are
correct. To aid in the reproducability, the CIlib library
project has a DOI [18] associated with the software
releases, so that the exact same program code may be
used when required.

The following subsections discuss individual core aspects
of the functional redesign of CIlib, ensuring that the above
mentioned principles are enforced.

A. Position

Candidate solutions to a given problem are described by
two distinct cases within CIlib. Both these cases have the type
of Position:

• Point: A single point within a multi-dimensional
search space. The representation is of nothing more

than a vector within the multi-dimensional space and
contains no other information.

• Solution: A multi-dimensional search space vector
together with a fitness value and a list of violated
search space constraints. A Solution is more valuable
than a Point as it defines a potential candidate solution
to the given optimization problem, within the given
search space.

It is important to distinguish between the two cases,
because their meaning is fundamentally different. Furthermore,
the Position cases form a closed algebra and such closed
algebras are known as Algebraic Data Types (ADTs) [19].

B. Entity

Within evolutionary computation, swarm intelligence, and
other paradigms, individual agents participate within the al-
gorithm. Looking carefully at these structures, it is evident
that a single common structure can be extracted. For example,
an Individual is a structure that contains a candidate
solution to the current optimization problem and an optional
fitness value. Similarly, a Particle also contains a candidate
solution, an optional fitness, a personal best solution, a velocity
and a personal best fitness. There is an overlap between
the particle and individual representations and similarly, this
overlap is seen between agents of other algorithms. As a result,
CIlib represents all these structures using a generic structure
called an Entity, where the entity maintains a position
within the search space and some state relevant to the current
entity.

Constraints are placed on the algorithmic components to
ensure that the provided Entity instances are of the correct
form, with respect to the state that the Entity is maintaining. It
wouldn’t make sense to pass an Entity that does not maintain
a velocity vector to an algorithm component that makes use of
the velocity vector in a calculation. As such, these encoded
type level constraints result in compilation failures if the
wrong kind of Entity formulation is provided to library code
that cannot operate on the data, ensuring correctness and
consistency in the implementations. Such programming level
constraints are enforced through the use of type classes [20],
which are a pattern in Scala using the implicit language feature.

An Entity is defined, for a given state S and Position
type A, as:

case class Entity[S,A](
state: S, pos: Position[A])

C. RVar

At the core of the library is the RVar data type, which
represents a random value or variable. RVar represents a
random computation that has not yet been performed but
has been declared, and as such means that the effect of the
randomness can be tracked within the computation. RVar
forms a monad instance and is the base monad for CIlib,
but allows for various operations and has a set of probability
distributions that derive from it, which include all the expected
distributions used in CI research. RVar requires that a seeded
pseudo-random number generator instance is provided upon
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execution and will ensure that the generator’s state is managed
and threaded through the computations correctly.

RVar is itself a nested set of monads that manage the state
of the provided pseudo-random number generator, extending
the usage to be stack-safe (i.e. preventing stack overflow
errors). With the ability to track and maintain randomness
within an algorithm, composition of RVar instances allows
for larger computations, with the pseudo-random number gen-
erator’s state threading being addressed by the RVar monad.
Moreover, RVar is a description of the randomness, without
explicitly defining how randomness or which type of pseudo-
random number generator is applied. Executing a RVar in-
stance with the same seeded pseudo-random number generator
will always result in the same final value and pseudo-random
number generator state being the result of the computation.

D. Step

Step builds on RVar functionality and is intended to be a
single operation within a CI algorithm. Examples of operations
include adding noise to a vector, creating the new position for
a particle by adding the old position and the new velocity
vector together, or simply evaluating the fitness of the current
Entity.

In order to achieve definitions for similar operations, two
additional pieces of information are required for a Step
definition:

• the optimization scheme (Opt) to use, and

• an evaluator instance (Eval) that can calculate the
fitness value of a given position using the currently
defined problem.

This results in a signature that is roughly equivalent to the
following curried function:

Opt => Eval[A] => RVar[B]

where A and B, respectively, are type parameters for the
type of the evaluation (e.g: Double) and the resultant type
of the RVar computation. Step instances are then composed
together to form an algorithm definition. Algorithms are cur-
rently defined to be functions that take two parameters:

• the current collection of Entity instances and,

• the current Entity

Applying these parameters to the algorithm function then
results in a new Entity instance, wrapped within a Step
action. The resultant Entity instance from the Step action
then replaces the original Entity instance, which was passed
to the algorithm function. The algorithm function, yielding the
Step action, has the shape:

List[Entity[S,A]] =>
Entity[S,A] =>

Step[B,Entity[S,A]]

Step is a monad transformer [21] that stacks on top of
RVar and, is itself, an instance of monad as well. Step can
lift RVar instances into the Step context and as such allows
for a greater amount of code reuse.

E. StepS

Many algorithms require additional data values that are
used during the execution of the algorithm. Some examples
of such additional data includes the ρ-value of the Guaranteed
Convergence PSO (GCPSO) [22] which maintains the size
of the bounding box around the current global best (gbest)
particle, or a multi-objective optimization algorithm which
maintains an archive of Pareto optimal solutions.

Such additions are simple to add and are represented using
the StepS data structure, which is a layer around the standard
Step data structure. StepS enriches the normal Step action
with this additional state and is the reason for the chosen name
of the data structure, which can be simplified to be “Step with
state”. Because StepS is not only a monad, but also a monad
transformer like Step, it allows arbitrary Step instances to
be lifted into the StepS context, which further allows for
better code reuse.

F. Iteration Schemes

CIlib is designed around how iterations are performed, as
they provide a clear separation of concerns for the algorithmic
components and provide a flexible manner of execution using
the per iteration approach. An alternative approach would be
the use of fitness evaluations to determine when execution
should be stopped, but this model provides additional compli-
cations such as if the termination occurs during the production
of the next Entity collection, is the current collection then
returned as the result, or is there some heuristic that needs to
be used to “merge” current and new collections?

The manner of iteration for algorithms is something exter-
nal to the algorithm definitions themselves and revolves around
how the next collection of Entity instances is built up, using
the current collection. An iteration itself can be one of two very
different operating mechanisms:

• Synchronous (sync): the new collection of entities
is built up using the current Entity collection and
applying the algorithm function for each Entity
instance within the collection.

• Asynchronous (async): the new collection of entities
is built up using the partial result representing the next
collection of Entity instances and the old collection,
replacing current Entity instances with their new
counterparts for each invocation of the algorithm for
each subsequent Entity in the current collection,
until all current Entity instances are replaced with
new instances.

Based on the manner in which the iteration schemes
operate, it should be clear that the sync strategy is one that
can be (but not required to be) completely parallelized because
none of the new collection entities require partial information
in order to be calculated. The sync strategy is an example of
how the next collection of Entity instances can be calcu-
lated in a map-reduce fashion where new Entity instances
are calculated separately and then reduced into a collection.
However, because the async strategy needs a partial collection
result it simply cannot be made parallel as there would be a
large amount of blocking on other threads which ultimately
would defeat the purpose of parallelism. It is also completely
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possible to mix and match iteration schemes to create a custom
iteration scheme for an algorithm. An an example, suppose an
iteration scheme for an algorithm is being tested that must
consist of n iterations using the sync scheme, followed by
m iterations of the async scheme, repeated z times. Such a
formulation would be completely possible in CIlib and the
construction of this custom iteration scheme simply builds on
the current iteration schemes that are available.

G. Embedded language

The original XML-based scripting language resulted in
several problems, but the most severe of the errors was
that the XML-based scripting language was not expressive
enough, resulting in many additional declarations to achieve
the desired algorithm specification. In addition, because the
scripting language was never compiled, nor was it type-
checked, many runtime errors occurred due to typing errors
from the user. Because Scala, as the underlying language is
expressive already, it was prudent to reuse the language itself
to define algorithms specifications.

As a result, all algorithm specifications are now also
defined in Scala itself, with the added benefit that the algo-
rithm specifications are also type-checked by the compiler
and compiled. The compilation process then will result in
specifications that may not be correctly formulated, from a
logical point of view, but at the very least the specifications
will execute. The compiler will verify that a specification is
not illegal, but the experimental results produced may still be
erroneous. Preventing invalid programs is not a simple task,
and some invalid programs may still be represented, although
the number of invalid programs that can be represented will
be smaller than what would otherwise be the case.

An example usage of the language to represent an algo-
rithm specification is provided in Listing 1, with an example
of running state maintenance in Listing 2.

V. CURRENT STATUS

The development of CIlib continues, using FP as the
medium to implement various aspects of the library. Collab-
oration, both internal and external, is encouraged with the
project source code hosted on github.com. Currently, the
main focus is on the core library implementations, where many
are already complete, based on the current requirements from
CIRG with external feedback welcomed. The project itself
is divided into several sub-projects, each targeting a single
concern. The current collection of sub-projects include:

• core: the main library containing all primary abstrac-
tions. The base code is written as generically as possi-
ble, using typeclasses to express ad-hoc polymorphism
for various types that are defined for the user.

• docs: a documentation project containing information
about the library and related sub-projects. This docu-
mentation forms the primary source of information on
project internals, usage information and details on var-
ious other aspects including contribution, references,
etc.

• benchmarks: functions used for empirical research,
and comparison. Various research publications men-
tion benchmark functions, but these functions are
not accessible in a simple way. This sub-project ag-
gregates such functions, referring to the individual
publications that provided these function definitions.

• example: usage information and examples on how to
use CIlib algorithm definitions, create new algorithms
using existing components, and how to execute the
definitions to obtain results. Examples are written in a
literate programming style [23] in order to guide the
reader through the example.

• tests: test program code used to verify the implemen-
tations of the code the tests target. The test code, as far
as possible, is written to enforce invariant laws that the
implementation code must adhere to. The tests also, as
far as possible, do not verify program code using static
test data and the test data is generated using a property
based testing framework [24], called ScalaCheck.

Online services, such as continuous integration servers,
have also been prepared to verify library code to be in a
usable state, with no obvious errors. Errors, including logic
and language level, are not always avoidable and are tracked
on the Github issue page, together with the planned features
and releases, available on the same site for user participation
and comment.

VI. FUTURE WORK

CIlib already provides support for most PSO algorithms,
with support for variants in place, and the next planned, is
library support for the formal inclusion of generic hyper-
heuristics, multi-objective optimization and cooperative opti-
mization algorithms. Following that, the inclusion of other
core algorithms is planned including support for Genetic Algo-
rithms (GAs), Differential Evolution (DE), other similar nature
inspired evolutionary algorithms, and neural networks. Due to
the initial design decision to ensure that CIlib is primarily a
library first, additional sister projects are planned to cater for
specific aspects that fall out of scope for the core CIlib library
itself, and include the following potential sister projects:

• Algorithmic interpretation: includes different mech-
anisms to execute a common algorithm definition. This
will allow for the same definition of an algorithm to be
executed within static and/or dynamic environments,
or potentially as a single unit within a larger algorith-
mic structure.

• Visualization: resultant data may be visualized dif-
ferently based on the requirement. For example, in-
spection of parameter values for a given algorithm
using a multi-parameter plot for large dimensional
data, or visualizing particle behavior within a PSO
at low dimensions.

• Data manipulation: analysis of resultant data is very
important as it allows for comparison and princi-
pled interrogation via statistical methods. Statistical
analysis methods are being used more and more in
published research, so it would seem prudent to make
common methods available for reuse.
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def pso[S](
w: Double,
c1: Double,
c2: Double,
cognitive: Guide[S,Double],
social: Guide[S,Double])(
implicit M: Memory[S,Double],

V: Velocity[S,Double],
MO: Module[Position[Double],Double]

): List[Particle[S,Double]] => Particle[S,Double] => Step[Double,Particle[S,Double]] =
collection => x => for {

cog <- cognitive(collection, x)
soc <- social(collection, x)
v <- stdVelocity(x, soc, cog, w, c1, c2)
p <- stdPosition(x, v)
p2 <- evalParticle(p)
p3 <- updateVelocity(p2, v)
updated <- updatePBest(p3)

} yield updated

Listing 1: Step based formulation of the canonical PSO algorithm

def gcpso[S,F[_]:Traverse](
w: Double,
c1: Double,
c2: Double,
cognitive: Guide[S,F,Double])(
implicit M:Memory[S,F,Double], V:Velocity[S,F,Double],mod: Module[F[Double],Double]

) = collection => x => {
val S = StateT.stateTMonadState[GCParams, Step[F,Double,?]]
val hoist = StateT.StateMonadTrans[GCParams]
for {

gbest <- hoist.liftMU(Guide.gbest[S,F](collection, x))
cog <- hoist.liftMU(cognitive(collection, x))
isBest <- hoist.liftMU(Step.point[F,Double,Boolean](x.pos eq gbest))
s <- S.get
v <- hoist.liftMU(if (isBest) gcVelocity(x, gbest, w, s)

else stdVelocity(x, gbest, cog, w, c1, c2))
p <- hoist.liftMU(stdPosition(x, v))
p2 <- hoist.liftMU(evalParticle(p))
p3 <- hoist.liftMU(updateVelocity(p2, v))
updated <- hoist.liftMU(updatePBest(p3))
failure <- hoist.liftMU(Step.liftK[F,Double,Boolean](

Fitness.compare(x.pos, updated.pos) map (_ eq x.pos)))
_ <- S.modify(params =>

if (isBest) {
params.copy(

p = if (params.successes > params.e_s) 2.0*params.p
else if (params.failures > params.e_f) 0.5*params.p else params.p,

failures = if (failure) params.failures + 1 else 0,
successes = if (!failure) params.successes + 1 else 0)

} else params)
} yield updated

}

Listing 2: Step with state (StepS) based formulation of the GCPSO algorithm
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• Persistence: as previously mentioned in Section IV,
resultant data persistence is the choice of the user.
CIlib, itself makes no assumptions about how data is
stored. The choice is the user’s and as a result, various
options are available depending on the need.

VII. CONCLUSION

This paper presents a new manner to represent CI al-
gorithms that differs from the normal programming repre-
sentation, which is the most prevalent in modern research
publications, referred to as imperative programming. This
alternate style of algorithm representation is based on the eval-
uation of mathematical functions and is known as Functional
Programming. Using mathematical concepts such as monad
and functor, which are directly applicable to programming, a
higher level of abstraction is possible. This abstraction allows
for the definition of algorithmic components that may then be
composed together to build larger computations.

CIlib is a library focused on computational intelligence,
allowing faster composition of individual algorithmic compo-
nents to create algorithm definitions. The library is built upon
solid abstractions which allow for the declaration of smaller
pieces of functionality that are then composed together to
declare complete algorithms. These abstractions allow for the
tracking of effects throughout the execution of the algorithm,
the sequencing of actions and also provide a standard nomen-
clature for the implementations to use. Defined algorithm
compositions may then be executed using different iteration
and execution strategies, depending on the goals of the user.

The development of the library continues, with several
additions planned for inclusion that will complete the basic
functionality. These developments will always be designed
in a principled manner to ensure that the representation of
the underlying ideas remains not only valid, but completely
reproducible by any researcher. Reproducible results allows
for better cross-validation within the larger CI community, and
together with user critique and feedback, improvements will be
incorporated into the project.
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