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Abstract—Most published results show that area reduction of 
the finite-state machines(FSMs) is achieved by optimizing the 
state assignment. In order to solve this state assignment 
problem(SAP), an evolutionary strategy based state assignment, 
called ESSA, is proposed in this study. Two cost functions(i.e. 
fitness functions) are defined for two-level and multilevel area 
minimization, respectively. A new selection strategy and a new 
mutation are proposed in ESSA, which are specifically designed 
based on the search space of SAP. The selection strategy employs 
the niche mechanism based on the crowding to select diversified 
individuals, and mutation uses ‘replacement’, ‘2-exchange’ and 
‘shifting’ operators, which is controlled by the hamming distance 
constraint, to generate offspring from the parental individuals. 
Experimental results show ESSA achieves a significant area 
reduction to the previous publications in terms of number of 
cubes and literals in most benchmarks. 

I. INTRODUCTION 
  As the rapid increase in density and size shrinking of chips, 
area of circuit implementation has been a critical attraction in 
Very Large Scale Integration(VLSI) design. VLSI systems are 
mainly composed by combining combinational logic modules 
and sequential modules. Sequential circuits play a role in 
linking and controlling combinational logic parts. Finite-state 
machine (FSM) is usually used for modeling sequential 
circuits. Design of a FSM involves encoding and assigning the 
states, synthesizing the combinatorial part, and guaranteeing 
self-starting of the circuit when the redundant states occur. 
State assignment is a mapping from the set of states of an FSM 
to the set of binary codes. In the field of FSMs, the efforts have 
been dedicated to find a state assignment that leads to area or 
power minimization [1-4,8-15]. In this study, we concentrate 
on the area optimization for two-level and multilevel circuits.  
  Using state assignments to optimize area is a complex 
problem. Especially, for a FSM with many states, codes 
assigned to the states frequently occur in transitions that may 
lead to a large area distance. The reason is that, a bit difference 
between two assignments to the same states may largely 
change the next states logic blocks and output logic blocks.  
  Currently, some commercial tools such as QuartusII and 
Design Compile, and open-source tools such as “ABC“[5] and 
“SIS“[6], are very popular in VLSI design. However, these 
tools are unable to obtain good solutions sometimes. Some 
state assignment techniques such as nova[10] and jedi [11] 
have been integrated in “SIS“. However, the state assignments 

generated by nova and jedi are far from the optimal solutions in 
terms of area minimization of FSM. Evolutionary algorithms 
(EAs) have become more and more popular in solving complex 
optimization problems [7] such as Travelling Salesman 
problem(TSP), data mining and regression problem. Many 
researchers have used EA for addressing the state assignment 
problem. For optimizing area and power consumption 
simultaneously, multi-objective evolutionary algorithm 
(MOEA) was employed[18-19]. However, MOEA usually 
spent a longer evolution time on achieving same good results 
as single-objective evolutionary optimization. In terms of area 
reduction, an evolutionary approach for single-objective 
optimization is preferred. The published methods mostly used 
Genetic Algorithm(GA) to look for low area or power state 
assignments. Besides GA, simulated annealing (SA)[16] and 
particle swarm optimization(PSO)[17] were also applied in 
state assignment optimization. However, it is hard for EA to 
approach the optimal state assignments of a large FSM within 
an acceptable time.  
  Despite many works on solving the state assignment problem, 
the current state assignment methods are mainly based on the 
general evolutionary algorithms such as GA and PSO, which is 
not proposed for the specific applications. The general rules of 
genetic operators may fail to solve the state assignment 
problem. The aim of this work is to look for the lowest area 
state assignment for two-level or multilevel circuits, where 
“lowest area” indicates the smallest number of cubes or literals. 
For accomplishing the task, we provide a new evolutionary 
strategy(ES) based state assignment method, called ESSA, of 
which the selection and mutation are specifically designed 
based on the analysis of the state assignment problem and 
individual’s distribution. The proposed method in this paper 
will be tested comprehensively on the benchmarks. 

II. RELATED WORK 
 An arbitrary choice of state assignment is easy, and will 
always work. However, it may require more logic gates or 
power to accomplish a FSM in some cases. In the field of state 
assignment, some researchers concern on the power 
dissipation reduction of FSMs by optimizing state assignment. 
Cho et al. proposed a m-block partition method to improve the 
testabilities and power consumption simultaneously[1]. Xia et 
al. proposed a GA-based method for low power state 
assignment[2]. It aims to use state assignment to minimize the 
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power dissipation. Xia et al. also proposed a low power FSM 
partition method [3]. This method uses GA to optimize 
partition of FSMs and makes the existing monolithic FSM 
state assignment be applicable to partitioned FSMs. By 
partition of FSMs, the power dissipation can be reduced up to 
80%. At 2004, Chattopadhyay proposed a FSM state 
assignment method for low power consumption [4]. 
  Unlike the power-orient approaches, a few researches 
concentrate on state assignment for area minimization. The 
determitic methods such as mustang[8], muse[9], nova[10]and 
jedi[11] are typical area-orient methods proposed for area 
minimization. Almaini et al. used GA to search state 
assignments for optimizing synchronous FSM [12]. Its fitness 
is formed by the literal count of ESPRESSO minimization. 
However, the method of Almaini has not been tested on 
certain large circuits. Amaral used a set of heuristic rules to 
find excellent state assignments that result in small-area circuit 
implementation [13]. It is stated that the small hamming 
distance between the states, which are associated with each 
other more frequently is beneficial; however, sometimes it 
cannot result in area reduction of circuits. Chattopadhyay 
firstly proposed Flip-Flop and output polarity selection into 
representation of solution[14]. The Flip-Flop and output 
polarity selection both expands the search space and solution 
space. However, the numbers of cubes obtained by this 
method for benchmarks are far away from the optimal 
solutions. Ali et al. aims to optimize state assignment for the 
evolutionary design of circuits[15]. However, their state 
assignments may not be efficient in the conventional design of 
circuits because the evolutionary circuit design brings 
redundancy. In addition, Aly used SA as a finder of optimal 
assignments [16], but he just gave a case study for the method. 
Different from the methods to the two-level logic 
optimization, Aiman et al. [17] proposed a state assignment 
approach, called binary-PSO (BPSO), and a GA state 
assignment approach[18], for multilevel circuits. The 
experimental results illustrate that the method is efficient in 
multilevel area minimization.  
  In addition, some researchers have focused on multi-objective 
evolutionary optimization for FSMs. Xia et al. introduced two 
cost functions and used multi-objective genetic algorithm 
(MOGA) for area and power optimization [19]. They tried to 
obtain low power dissipation assignments without the large 
area penalty. Jassani proposed a MOGA based method for state 
assignment [20]. It aims to find a state assignment that makes 
the product of hamming distance between states and state 
transition probability minimized, so that the area and power 
can be both reduced. Jassani obtained a set of assignments with 
a long evolution time penalty. For example, the benchmark 
“planet” costs more than 25 hours. No matter which multi-
objective optimization algorithm is used, it is hard to obtain 
competitive state assignments in terms of any single-objective. 

III. STATE ASSIGNMENT PROBLEM 
  State assignment problem, denoted by SAP, is formulated in 
this section. For a FSM, state assignment encodes the states 

into binary codes. Using state assignment to reduce area is an 
efficient way for FSMs area minimization. However, a FSM 
with n states(k bits/state) has (2k!)/(2k-n)! state assignments. 
When n increases, k will also increase and the search space 
will increase largely. It requires large computational time to 
exhaust all assignments in a large search space to look for the 
one will minimize the area. Therefore, finding a state 
assignment that leads to area minimization is a NP problem. 
SAP is actually a combinatorial optimization problem and the 
formulation of SAP is as (1). 

       Area(x*)=min Area(xi)                         (1) 
                                  xi �,  �={x1,x2,…,xn} 

  Where Area(xi) is the area of logic implementation using 
state assignment xi. � is the solution space of state 
assignments.  
  Let us give an example to specify SAP. A 1-input-5-state 
FSM is given in Table.I. For this FSM, there are (23!)/(23-
5)!=6720 feasible state assignments, two of them, denoted by 
Assign #1 and Assign #2, are present in Table.I. By 
implementing two-level logic minimization, Assign #1 obtains 
5 cubes and 15 literals while Assign #2 obtains 4 cubes and 12 
literals. In terms of the number of cubes and literals, Assign 
#2 is superior to Assign #1. This example illustrates that the 
state assignment has a very significant impact on the area 
minimization of a synthesized FSM. 
TABLE I.   LOGIC IMPLEMENTATION OF A FSM USING DIFFERENT STATE 

ASSIGNMENTS 

Present 
State 

Next State Assign #1 Assign #2 
X=0 X=1 

S0 S1 S2 000 100 
S1 S4 S3 100 110 
S2 S4 S3 110 010 
S3 S4 S4 011 001 
S4 S0 S0 010 000 

Logic implementation(two-
level) using the state 
assignment 

2 2 1 0

1 1 0 22 0

12 0

0 2 0

D Q Q Q

D Q Q Q Q Q

X Q Q Q

D XQ Q

=

= +

+

=

 
2 1 0 2 1 0

1 2 1 0

0 1 0

D X Q Q Q Q Q

D Q Q Q

D XQ Q

= +

=

=

 

The number of cubes and 
literals 5, 15 4, 12 

IV. PROPOSED METHOD 
  In this study, we propose a new ES based state assignment 
method, called ESSA, to solve SAP. The chromosome, 
selection, mutation, and fitness function of ESSA are 
described in details in the following subsections. 

A. Chromosome 
  Chromosome is the representation of solutions to SAP. To 
SAP, the chromosome contains three parts, state assignment 
code, function polarity code, and strategy-parameter. State 
assignment code indicates the code assigned to the states of 
FSM, and function polarity code (1/0) indicates the 
function/the complement of output or next state logic blocks. 
The function polarity code and the state assignment code 
together form the object variables, which is the essential 
component of the chromosome. Strategy-parameter in this 
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study is the mutation step size for individual variation, which 
is coevolving together with the object variables. In the object 
variables, the state assignment codes would be changed by 
multiple mutation operators, of which the mutation step size is 
determined by the strategy-parameter. The function polarity 
codes and the strategy-parameter are mutated randomly in the 
evolution. 
  Given a n-state-m-output FSM. The state assignment code 
for the FSM can be defined as an integer string x=(x1, x2…, 
xn), where xi is selected from the set {0,1… ,2k}, xi N and 
k=log2n. In a chromosome, the codes cannot be duplicated. 
Function polarity code is composed by output polarity code 
and next-state polarity code, which is defined by a binary 
string p=(p1, …, pm | pm+1, …, pm+k), where p1,…, pm denotes 
the output polarity code and pm+1,…, pm+k denotes the next-
state polarity code. pi =1 indicates the function and pi=0 
indicates the complement. Strategy-parameter is defined as �, 
which controls the mutation step size of state codes. The full 
size chromosome of state assignment is defined as (x, p, �).  

.i 1
.o 1
.s 4
.p 4

0 s0 s1 0
1 s1 s2 1
0 s2 s3 1
1 s3 s0 0

.e

.i 3
.o 3
.p 4

100 100
001 001
010 110
111 011

.e

.i 3
.o 3
.p 3

101 101
0-0 010
010 101

.e
       (b)                                             (c)   (a)

1 0 2 3 0 5
chromsome A

0 1 2 3 1 6
chromsome B

FSM

State 
codes Polarity 

code
Mutation 
step size

 
Fig.1 (a) state transition of FSM (b) Chromosome A and its logic 
implementation (c) Chromosome B and its logic implementation 

  Fig.1 gives two chromosomes encoding state assignments of 
a 1-input-4-state-1-output FSM. Fig.1(a) presents the state 
transition of the FSM. The state codes of A and B are “1,0,2,3” 
and “0,1,2,3”,which are selected from the set {0,1,2,3}. The 
polarity codes in A and B are 0 and 1. The mutation step size 
(strategy parameter) for A and B are 5 and 6(this is only made 
use in mutation). Fig.1(b) shows the logic implementation of 
A using ESPRESSO obtains 4 cubes and 12 literals, while the 
implementation of B shown in Fig.1(c) has 3 cubes and 8 
literals. 

B. Selection 
  Selection exploits the fitness information in order to guide 
the search into promising search space regions. In ES, “plus 
selection”, denoted by (�+�), and “comma selection”, denoted 
by (�,�), are two typical versions of selection strategies. Both 
selection variants have their specific applications. Let us 
analyze the search space of SAP. For the semantic of state 
assignment, the codes assigned to states must be no duplicated 
in a chromosome (e.g. Fig.1). This leads to a combinatorial 
search space, which is discrete and extremely versatile. 
According to the literature [21], the (�,�) selection is 
recommended for unbounded search spaces, while the (�+�) 

selection should be used in discrete finite size search spaces, 
e.g., in combinatorial optimization problems. Therefore, (�+�) 
selection is more adaptable than (�,�) selection to SAP.  
  (�+�) selection is able to accelerate the convergence to 
solution and suitable for SAP. However, it preserves better 
intermediate solutions and further steps into the premature 
stagnation. In contrast to (�+�) strategy, (�,�) selection doesn’t 
take the parents into account, and makes immediate use of 
new information gathered by the next offspring. It finally 
climbs to the top of mount even the current good solutions 
maybe replaced with the worse ones. However, as the 
literature[21] stated, (�,�) selection is not adaptive to 
combinatorial optimization problem. Therefore, both 
selections have disadvantages in solving SAP. 
  In this study, a new selection strategy is proposed for SAP. 
The strategy inherits (�+�) strategy and derives the advantage 
from (�,�) strategy. In the strategy, niche mechanism is 
employed based on the crowding, which is defined as an 
evaluation to select diversified good fitness individuals from 
the selection pool. Hence, the information derived from the 
new generated individuals can be utilized. Let A and B are two 
individuals; let d(A,B) be the hamming distance between A 
and B. Let D(A) be the crowding of A. D(A) is calculated as 
(2). 

D(A) =�sh[d(A,B)]                             (2) 

Where d(A,B) indicates the hamming distance between A 
and B, which is calculated by d(A,B)=�A[i] B[i], where A[i] 
and B[i] indicates the i-th state code bit of A and B. sh[d] 
denotes a share function, which is defined as (3).  

max

max max

0,
[ ]

1 / ,
d

sh d
d d

φ
φ φ

>�
= � − <�

                        (3) 

  Where max denotes the radius of niche. A small D(A) 

implies that A is rather distant from the other individuals max 
in terms of the hamming distance, and a large value of D(A) 
implies that A is close to the other individuals within max. The 
fitness together with the crowding determines the survival of 
individuals.  

The pseudo code of the proposed selection strategy is as 
follow. 

  Selection() 
  {  
   /*� parents and � offspring has been combined as a selection pool. 
The fitness, denoted by chr.F, and the crowding, denoted by chr.D 
of each individual chr in the selection pool are calculated.*/ 

Select the best-fitness individual into the parental set p; 
      Rank the (�+�-1) individuals based on (chr.F chr.D) in 
ascending order; 

      Select the (�-1) top individuals into p; 
  } 

  According to the pseudo code, � parents and � offspring are 
together sorted based on the fitness and the crowding. The 
best individual is always selected as a parent. The remaining 
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(�-1) parents are derived from the individuals with good 
fitness and small crowding. The new strategy is able to 
accelerate the convergence of ES. Since the selected 
individuals(no-duplicate) have relatively small crowding. The 
diversity of parental population is secured and the premature, 
from which (�+�) strategy suffers, can be overcome. 

C. Mutation 
  Mutation is an important variation operator in ES, which 
explores the search space from parental population. The 
design of mutation operators is problem-dependent. According 
to the literature [21], a successful mutation usually meets three 
requirements, reachability, unbiasedness, and scalability. In 
this study, three operators, “replacement”, “2-exchange” and 
“shifting”, are used for mutation. In real-valued search spaces 
the variation strength on a parental individual is usually 
regarded as the mutation step size. However, the 
neighborhood size will be limited in the combinatorial search 
space if variation strength is used; the scalability requirement 
of the mutation steps cannot be guaranteed. In this study, we 
use the hamming distance between an individual and a 
parental individual, not the variation strength, as the mutation 
step size in the search space of SAP. The hamming distance is 
controlled by the strategy parameter �. 
  The pseudo code of mutation is denoted as follow. 

  Mutation() 
  {  
      For each individual chr to be mutated; 
         step � 0; 
         While  step < chr.� 
            s {statecode}; 
            chr.x’� replacement(chr.x, s);              /* replacement */  
            or chr.x’ � 2-exchange(chr.x, chr.y);    /* 2-exchange */  
            or chr.x’ � shifting(chr.x[i, j], p);         /* shifting*/    
            step�step+d(chr.x, chr.x’);               /* hamming distance*/ 
         End while  
         chr.f :=chr.f |{ 0|1, 0|1, …,0|1}; 
         chr.� �chr.� + rand(-r, r); 
      End For; 
  } 
  In the pseudo code, {statecode} denotes the feasible state 
codes have been used. Three operators, “replacement”, “2-
exchange”, and “shifting”, are randomly chosen to change the 
state assignment codes in an individual. p in ‘shifting(chr.x[i, 
j], p)’ indicates the number of steps, which the parental state 
codes x[i, j] shifts. With respect to the other components of 
chromosome, the polarity code f is randomly changed, and the 
parameter � varies in the range of r. 

  Fig.2 presents the mutation operator applied on an individual. 
Each numbered cell indicates a state code. The operators 
change the state codes by randomly cutting the connections 
between the cells, exchanging, and replacing the cells in a 
specific way. As shown in Fig.2, the mutation applied on state 
assignment codes will continue until the mutation step size � 
is reached. In the mutation process, the parameter � is 
randomly changed from 5 to 8. 
  It is noted that the mutation operators do not introduce any 
bias on the selected parental individuals. In the mutation, a 

small hamming distance(variation step) on individuals may 
leads to better solutions in the same local domain, while a 
large hamming distance may find solutions on the other 
domains(e.g. the global optima). In theory, this mutation 
strategy guarantees that any other individual can be reached 
within a finite number of mutation steps. Therefore, the 
reachability requirement can be meet. It can be seen that the 
mutation step size based on hamming distance is tunable, 
which adapts to the properties of the fitness landscape of SAP. 
Hence, the proposed mutation is also able to meet the 
scalability requirement.  

 
Fig.2 The effect of the mutation operator for SAP 

D. Cost function 
  Cost function (i.e. fitness function) is used to evaluate the 
individuals in the evolution. In the two-level area 
minimization, the objective is to reduce the number of Sum of 
Product (SOP) terms (i.e. cubes), while in multilevel area 
minimization the objective is to reduce the number of literals 
in the expressions of the synthesized circuit. Therefore, we 
define two cost functions based on the number of cubes and 
literals for area optimization. ESPRESSO and SIS are two 
conventional tools for circuit synthesis. For two-level circuits, 
the number of cubes is obtained by run ESPRESSO 
implementing the minimization with term sharing. For multi-
level circuits, Espresso-Single Output with fast extraction 
(Espresso-SO+fx) available in SIS is used to obtain the 
number of literals of logic expression.  
  The cost functions are defined as follow. 

a) Let #cube be the number of cubes the resulting logic 
expression. The cost function for two-level logic 
implementation can be denoted by (4). 

F=#cube                                      (4) 
b) Let #lit be the number of literals of the resulting logic 

expression. The cost function for multi-level logic 
implementation can be denoted by (5). 

F=#lit                                        (5) 
  The optimization orients to two-level and multi-level area 
minimization runs twice – one time to find minimum number 
of cubes for two-level logic implementation and another time 
to find minimum number of literals for multi-level logic 
implementation. Therefore, (4) and (5) are not combined into 
a fitness function, but are used as fitness function separately.  

E. Process of ESSA 
� Read STG description file (i.e. kiss2 file) of a FSM; 
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� Create (�+�) initial individuals, g=0; 
� Create Berkeley standard PLA files for the initial 

individuals; 
� Run ESPRESSO or SIS to process the PLA files for two-

level or multilevel area minimization; 
� Calculate the fitness value F of the individuals based on (4) 

or (5); 
� Calculate the crowding D of the individuals based on (2); 
� Repeat 
� Select � out of (�+�) individuals by the selection 

strategy as a parental population S(g); 
� Mutate the � parents to generate � offspring; 
� Create PLA files for the � offspring; 
� Run ESPRESSO or SIS to process the PLA files; 
� Calculate the fitness value F of the � offspring based on 

(4) or (5); 
� Combine the � parental individuals and � offspring as a 

selection pool; 
� Calculate the crowding D of the (�+�) individuals based 

on (2); 
� g= g +1; 

� If an individual with the desired fitness is evolved, or other 
required demand, such as the maximum generation, is 
achieved; the evolutionary process terminates; else return to 
chromosome selection. 

� Output the best-evolved individual and its parameters(the 
number of cubes and literals , evolutionary time); 

V. EXPERIMENTS 
  We use twenty-two FSMs from MCNC to test the 
performance of ESSA in two-level and multilevel logic 
minimization of FSM. The FSMs have been commonly used 
for state assignment optimization. In this section, we compare 
the ESSA with the other state assignment methods in terms of 
the number of cubes and literals to demonstrate the superiority 
of ESSA. Table.II gives the information of experimental FSMs, 
including PI(the number of primary inputs), St (the number of 
states) and PO(the number of primary outputs). 

TABLE II.  EXPERIMENTAL FSMS 

Circuit PI St PO Circuit PI St PO 
bbara 4 10 2 dk512 1 14 3 
dk16 2 27 2 bbsse 7 16 7 
dk14 3 7 5 cse 7 16 7 
opus 5 10 6 ex4 6 14 9 
donfile 2 24 1 ex2 2 19 2 
bbtas 2 6 2 ex3 2 10 2 
tav 4 4 4 ex1 9 20 19 
tbk 6 32 3 keyb 7 19 2 
s1 8 20 6 styr 9 30 10 
s832 18 25 19 planet 7 48 19 
s1494 8 48 19 sand 11 32 9 

  The codes of ESSA implemented in Java run on the PC with 
CPU 2.13GHz 2GB RAM. The ESSA parameters are shown in 
Table.III. #MaxGen indicates the maximum generation for 
evolution termination. #MaxGen is set to a large value 5000 for 
the experimental FSMs. The parental population size(�) is set 

to 20, and the offspring population size (�) is 100. #Run 
indicates number of evolutionary runs. In this paper, it is set to 
20. 

TABLE III.  ESSA PARAMETERS FOR STATE ASSIGNMENT EVOLUTION 

ESSA –parameters Setting 
#MaxGen 5000 
�, � 20, 100 
#Run 20 

A. Comparison of ESSA and the other state assignment 
methods 

  In this section, we compare ESSA with nova(1990), the 
method of Almaini(1993), the methods of Xia(2002, 2003), 
the method of Chattopadhyay(2005),and the method of 
Jassani(2011) in terms of two level logic minimization. In 
terms of multilevel logic minimization, we compare ESSA 
with nova, GA(2006) and BPSO(2013). In the following 
tables, ‘impr’ denotes the total improvement on all the cases 
achieved by ESSA over the comparable methods, which is 
calculated by (6). 

impr =
ESSA

I� − alt
I�

alt
I�

                         (6) 

  Where alt indicates the value obtained by the comparable 
methods. I denotes the set of experimental FSMs. In Table.IV, 
impr is calculated based on #CB 
  Table.IV gives the comparison between ESSA and the 
reference state assignment methods in terms of two-level area 
minimization. #CA and #lit denotes the number of cubes and 
literals obtained by ESSA without using polarity selection in 
chromosome, #CB indicates the number of cubes obtained by 
using polarity selection. #C stands for the number of cubes. 
The best values in tables achieved by the alternative methods 
are marked bold. 
  In terms of #CA, ESSA outperforms the other methods in 
most cases. Although the improvement obtained by ESSA is 
not very large in some FSMs, the small improvement is 
achieved with the premise that the comparable state 
assignments have been already approximated to the optimal 
solution. Even a slight improvement on state assignment 
indicates a large progress on the two-level logic minimization 
of FSM.  
  ESSA presents an equal good result to the other methods on 
“ex4”. On only two FSMs (14.2%), ESSA cannot obtain better 
solutions than the other methods. On “donfile”, #CA obtained 
by ESSA is better than the other methods except the one of 
Jassani. On “ex1”, ESSA performs a little worse than nova, 
but much better than the method of Jassani and the one of Xia. 
When using function polarity, ESSA obtains an improvement 
on the area reduction(i.e. #CB< #CA) on five FSMs(35.7%). 
According to the result of two-level logic implementation, 
ESSA obtains better solutions, at least parallel ones, compared 
to the other methods on twelve FSMs(85.8%).  

In addition to two-level logic implementation, ESSA is also 
compared with two state assignment methods, GA and BPSO, 
for multi-level logic implementation. Table.VI gives result of 
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multi-level logic minimization implemented by ESSA, GA 
and BPSO. In Table.V, “ave” indicates the average number of 
literals obtained by the method for several runs. “best” 

indicates the smallest number of literals, which is achieved by 
the method in several runs.  

TABLE IV.  COMPARISON BETWEEN ESSA-STATE ASSIGNMENT AND OTHER ASSIGNMENTS IN TERMS OF THE NUMBER OF CUBES AND LIT 

FSMs 
nova[10] 

(1990) 
Almaini[12] 

(1993) 
Xia[19] 
(2002) 

Xia[2] 
(2003) 

Chat.[14] 
(2005) 

Jassani[20] 
(2011) ESSA 

#C/#lit #C/#lit #C #C #C #C tevo #CA/#lit #CB/#lit tevo 
dk512 23/95 23/90 --- --- --- --- --- 17/62 17/55 0:13 
bbara 24/134 -- 22 22 23 22 0:8 21/105 21/105 0:12 
bbsse 29/-- -- 27 --- 26 --- --- 26/139 23/138 2:13 

cse 45/-- -- 43 43 45 43 3:09 42/279 42/281 2:36 
donfile 28/-- 36/158 36 36 31 22 6:04 28/111 25/107 10:51 
opus 16/-- -- 19 15 12 15 0:40 15/86 15/89 0:56 
dk16 72/-- 69/380 -- -- 68 57 6:03 56/292 55/268 4:49 
keyb 48/-- -- 48 46 46 46 3:32 45/403 45/392 3:37 

s1 63/-- -- 66 66 68 43 6:03 56/334 41/211 8:11 
ex1 37/-- -- 52 52 47 48 6:07 45/287 45/293 4:11 
ex4 19/-- -- 16 14 15 13 6:01 13/62 13/65 2:09 
styr 94/-- -- 88 88 78 78 6:05 78/546 76/522 5:51 

planet 86/-- -- 86 86 84 81 25:23 78/500 78/495 8:11 
sand 89/-- -- 89 --- 96 --- --- 86/587 85/589 5:40 
Total 673/229 128/628 592 468 629 468 -- 606/3793 581/3610 -- 

%impr 13.7/30.1 24.2/31.5 14.02 14.32 10.33 2.56 -- -- -- -- 

TABLE V.  COMPARISON BETWEEN ESSA AND OTHER APPROACHES IN TERMS OF MULTI-LOGIC SYNTHESIS 

FSMs nova GA[18](2006) BPSO[17](2013) ESSA 
best ave tevo(s) best ave tevo(s) best ave tevo(s) 

dk14 111 102 103.1 1543.2 98 99.8 784 72 76.7 660 
tav 365 24 24 893.8 24 24 -- 23 24.1 718 
bbara 57 49 49.4 1204.3 49 52.9 793 52 54.3 2063 
bbsse 140 101 100.5 1350.7 102 107.1 823 93 103.1 2769 
cse 214 179 184.2 1743.7 184 191.0 987 174 182.5 2399 
keyb 201 142 152.4 2096.1 143 163.8 1480 145 156.3 8220 
s1 340 132 216.2 2270.9 173 231.7 1592 158 233.6 3298 
s1494 715 570 591.1 3885.1 588 602.0 3073 541 581.2 13140 
s832 274 230 256.7 2254.9 216 245.4 1751 214 233.1 6211 
ex2 127 64 90.1 1373.7 66 99.5 861 70 71.6 1808 
ex3 71 54 54.7 1149.1 51 54.0 796 56 98.8 1562 
tbk 365 410 462.1 8060.8 261 368.2 6671 252 366.2 3342 
styr 502 405 422.5 3506.2 412 437.5 2326 387 417.4 9371 
planet 591 466 505.4 3775.0 494 526.1 2288 454 495.0 2658 
sand 558 498 519.8 3002.6 488 510.1 2374 486 505.8 7480 
Total 4631 3426 3732.2 38110.1 3349 3713.1 26599 3177 3599.7 65699 
%impr 31.5 7.26 3.55 -- 5.13 3.05 -- -- -- -- 

TABLE VI.  COMPARISON BETWEEN STANDARD (�+�) ES , (�,�) ES AND ESSA IN MULTI-LOGIC IMPLEMENTATION 

FSMs (�+�) ES (�,�) ES ESSA 
best ave tevo(s) best ave tevo(s) best ave tevo(s) 

dk14 72 78.2 578 105 111.8 912 72 76.7 660 
tav 25 27.4 478 25 29.5 602 23 24.1 718 
bbara 54 56.5 2133 67 69.5 3988 52 54.3 2063 
bbsse 104 106.6 2289 124 135.7 3567 93 103.1 2769 
cse 182 185.2 1982 199 212.2 4343 174 182.4 2399 
keyb 156 159.8 6684 189 192.2 12012 145 151.3 8220 
s1 167 199.1 4141 187 273.3 6289 158 214.9 3298 
s1494 548 578.1 13223 591 602.1 14521 541 561.3 13140 
s832 225 246.3 2877 256 271.2 7021 214 233.2 6211 
ex2 84 91.4 1292 102 111.3 2531 70 72.6 1808 
ex3 55 78.2 1455 64 102.6 1933 56 68.8 1562 
tbk 273 351.2 3660 281 371.3 4196 252 327.8 3342 
styr 412 422.2 5412 456 488.7 11309 387 417.4 9371 
planet 457 492.9 3789 505 522.0 7789 454 495.0 2658 
sand 491 521.1 8720 507 525.2 12129 486 505.8 7480 
Total 3305 3594.2 58713 3658 4018.6 93142 3177 3488.7 65699 
%impr 3.87 2.94 -11.89 13.14 13.20 29.46 -- -- -- 
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It is noted that ESSA outperforms the other methods in 
terms of “ave”. This illustrates that ESSA is more stable in 
finding a good solution in these cases. In terms of “best”, 
ESSA also achieves the best or equally good results in most 
cases. Compared to GA, ESSA obtains better solutions in ten 
out of fifteen FSMs(66.67%), and performs better than BPSO 
in eleven FSMs(78.5%). In only five FSMs (33.3%), ESSA 
cannot perform better or as well as GA or BPSO do in terms 
of “best”. This is because finding a near optimal or the 
optimal state assignment for some simple FSMs is relatively 
easy, so that the room of improvement for these FSMs is quite 
small. Compared to the classical state assignment method 
‘nova’, ESSA achieves better solutions in all the cases.  

In Table.IV and .V, tevo indicates the evolutionary time of 
finding the best solution. Time format in Table.IV is unified to 
hh:mm, e.g. 1:55. This means 1 hour and 55 minutes. 
According to tevo in Table.IV, ESSA spends large evolutionary 
time on finding solutions in most cases. ESSA needs more 
computation time on “donfile”, ”bbara” and “s1” than the 
method of Jassani. However, on “planet”, ”styr” and “ex1”, 
ESSA costs relatively small evolutionary time to find good 
solutions. For example, ESSA obtains a better solution on 
“planet” than the method of Jassani by using only 8 hours and 
11 min. Generally, the computational effort of minimizing 
FSMs is still in the range of hours despite fast computer. The 
value of tevo in Table.V represents the evolutionary time in 
seconds. According to tevo in Table.V, ESSA spends a larger 
evolutionary time on finding a good solution than BPSO and 
GA in most cases. However, the situation is precisely the 
opposite in some cases. On “planet”, ESSA obtains a better 
solution than GA within only 2658s, which is much smaller 
than GA needs. On “tbk”, it costs ESSA only 3342s to find a 
solution, while it costs BPSO and GA 6671s and 8060.8s to 
accomplish the task. 

  For illustrating the ability of ESSA in solving SAP, ESSA is 
compared to two standard ES methods, (�+�) ES and (�,�) ES. 
Table.VI gives the results obtained by three ES methods. 
According to tevo, the standard (�+�) ES is the fastest finder of 
a solution (maybe a local optima), and the (�,�) ES is the 
worst one among the three methods. This illustrates that ESSA 
is poorer than (�+�) ES in terms of the convergence, but much 
better than (�,�) ES. In terms of multilevel area minimization, 
ESSA is comprehensively superior to (�, �) ES in all the cases, 
and obtains better results than (�+�) ES in most cases. 
According to impr, ESSA has a total improvement over (�+�) 
ES and (�,�) ES. This is because ESSA is able to jump out of 
local optima, which is usually a trap of (�+�) ES. Meanwhile, 
ESSA is able to converge to multi local domains (one of these 
domains maybe the global optima), which (�, �) ES cannot 
reach. 
  Although many researchers claimed that (�,�) ES is more 
efficient in solving optimization problem than (�+�) ES, this 
is not always true for some specific applications. Within an 
acceptable time, (�,�) ES usually cannot achieve a good 
convergence in solving SAP. This is because the search space 
of SAP is so versatile in some cases that (�,�) ES likely 
vacillates between local domains and cannot continually 

search for a better solution in a domain. This is also assistance 
with the point of view that (�+�) selection is more adaptive to 
discrete finite size search spaces, e.g., in combinatorial 
optimization problems than (�,�) ES[22]. 

B. results and analysis 
In Table.IV, .V and .VI, the total improvement on area 

minimization for all the cases achieved by ESSA has been 
present. According to the value of impr, ESSA is totally 
superior to the other methods except BPSO. In addition to the 
total improvement, the improvement on area reduction for 
single case is also an important evaluation of the methods. In 
this section, the improvement for each case achieved by ESSA 
over the other methods is discussed and analyzed. 

It is noted that ESSA can achieve a large area reduction in 
terms of two-level logic implementation compared to nova 
and two methods of Xia. Compared to the methods of 
Chattopadhyay and Jassani, ESSA also achieves a preferable 
area reduction. On “s1”, ESSA achieves 22.7% reduction to 
the methods of Xia, 39.7% area reduction to the method of 
Chattopadhyay and 4.7% to the method of Jassani. Sometimes, 
different state assignment methods can obtain equal number of 
cubes. In this case, the number of literals is another important 
evaluation of state assignment method.  

In multi-level logic minimization, ESSA is efficient in area 
reduction in terms of “best” compared to nova, jedi, BPSO 
and GA, where BPSO and GA are the relatively new state 
assignment methods. ESSA achieves a 38.53% reduction over 
GA on “tbk” and 29.4% over GA on “dk14”. Compared to 
BPSO, ESSA achieves 8.09% on “planet” and 26.5% on 
“dk14”. Although ESSA cannot perform well in all the cases, 
ESSA still achieved better results than GA and BPSO in more 
than half experimental FSMs. Compared to two conventional 
methods nova and jedi, ESSA has a very large improvement 
on multi-level logic minimization in all the cases. On “s1”, the 
number of literals reduced by ESSA is up to 53.52%, and on 
“tav”, the reduction is up to 93.69%.  

Generally, ESSA outperforms the other state assignment 
methods in terms of area reduction for most experimental 
FSMs. Especially compared with the method of 
Chattopadhyay in two-level logic minimization, which also 
employs the function polarity code into chromosome, ESSA is 
comprehensively over this method. It is also noted that ESSA 
gave some poor solutions compared to GA and BPSO in some 
cases. In future work, it is necessary to make further 
improvements on ESSA. 

 

VI. CONCLUSION 
In the field of state assignment research, many researchers 

that their state assignments performed well in reducing area of 
two-level and multilevel logic implementation of FSMs. 
However, the optimal state assignment is usually hard to be 
achieved, and the room for improving the state assignment 
method is still large. This work aims to find a state assignment 
to reduce area of two-level and multi-level FSMs. Therefore, 
we propose an evolutionary assignment method called ESSA. 
The ESSA is extensively tested on many benchmarks, and is 
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compared to the other state assignment methods in these cases. 
The area reduction(i.e. cubes and literals reduction) obtained 
by ESSA are satisfied, and the state assignments for a part of 
benchmarks have been the best ones by far. 
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