

An Evolutionary Strategy Based State Assignment for
Area-minimization Finite State Machines

Yanyun Tao
School of urban rail transportation,

Soochow University
Suzhou, 215137, China
taoyanyun@suda.edu.cn

Lijun Zhang
School of urban rail transportation,

Soochow University
Suzhou, 215137, China

*Yuzhen Zhang
The first affiliated hospital of

Soochow University
Suzhou, 215006, China

Abstract—Most published results show that area reduction of
the finite-state machines(FSMs) is achieved by optimizing the
state assignment. In order to solve this state assignment
problem(SAP), an evolutionary strategy based state assignment,
called ESSA, is proposed in this study. Two cost functions(i.e.
fitness functions) are defined for two-level and multilevel area
minimization, respectively. A new selection strategy and a new
mutation are proposed in ESSA, which are specifically designed
based on the search space of SAP. The selection strategy employs
the niche mechanism based on the crowding to select diversified
individuals, and mutation uses ‘replacement’, ‘2-exchange’ and
‘shifting’ operators, which is controlled by the hamming distance
constraint, to generate offspring from the parental individuals.
Experimental results show ESSA achieves a significant area
reduction to the previous publications in terms of number of
cubes and literals in most benchmarks.

I. INTRODUCTION
 As the rapid increase in density and size shrinking of chips,
area of circuit implementation has been a critical attraction in
Very Large Scale Integration(VLSI) design. VLSI systems are
mainly composed by combining combinational logic modules
and sequential modules. Sequential circuits play a role in
linking and controlling combinational logic parts. Finite-state
machine (FSM) is usually used for modeling sequential
circuits. Design of a FSM involves encoding and assigning the
states, synthesizing the combinatorial part, and guaranteeing
self-starting of the circuit when the redundant states occur.
State assignment is a mapping from the set of states of an FSM
to the set of binary codes. In the field of FSMs, the efforts have
been dedicated to find a state assignment that leads to area or
power minimization [1-4,8-15]. In this study, we concentrate
on the area optimization for two-level and multilevel circuits.
 Using state assignments to optimize area is a complex
problem. Especially, for a FSM with many states, codes
assigned to the states frequently occur in transitions that may
lead to a large area distance. The reason is that, a bit difference
between two assignments to the same states may largely
change the next states logic blocks and output logic blocks.
 Currently, some commercial tools such as QuartusII and
Design Compile, and open-source tools such as “ABC“[5] and
“SIS“[6], are very popular in VLSI design. However, these
tools are unable to obtain good solutions sometimes. Some
state assignment techniques such as nova[10] and jedi [11]
have been integrated in “SIS“. However, the state assignments

generated by nova and jedi are far from the optimal solutions in
terms of area minimization of FSM. Evolutionary algorithms
(EAs) have become more and more popular in solving complex
optimization problems [7] such as Travelling Salesman
problem(TSP), data mining and regression problem. Many
researchers have used EA for addressing the state assignment
problem. For optimizing area and power consumption
simultaneously, multi-objective evolutionary algorithm
(MOEA) was employed[18-19]. However, MOEA usually
spent a longer evolution time on achieving same good results
as single-objective evolutionary optimization. In terms of area
reduction, an evolutionary approach for single-objective
optimization is preferred. The published methods mostly used
Genetic Algorithm(GA) to look for low area or power state
assignments. Besides GA, simulated annealing (SA)[16] and
particle swarm optimization(PSO)[17] were also applied in
state assignment optimization. However, it is hard for EA to
approach the optimal state assignments of a large FSM within
an acceptable time.
 Despite many works on solving the state assignment problem,
the current state assignment methods are mainly based on the
general evolutionary algorithms such as GA and PSO, which is
not proposed for the specific applications. The general rules of
genetic operators may fail to solve the state assignment
problem. The aim of this work is to look for the lowest area
state assignment for two-level or multilevel circuits, where
“lowest area” indicates the smallest number of cubes or literals.
For accomplishing the task, we provide a new evolutionary
strategy(ES) based state assignment method, called ESSA, of
which the selection and mutation are specifically designed
based on the analysis of the state assignment problem and
individual’s distribution. The proposed method in this paper
will be tested comprehensively on the benchmarks.

II. RELATED WORK
 An arbitrary choice of state assignment is easy, and will
always work. However, it may require more logic gates or
power to accomplish a FSM in some cases. In the field of state
assignment, some researchers concern on the power
dissipation reduction of FSMs by optimizing state assignment.
Cho et al. proposed a m-block partition method to improve the
testabilities and power consumption simultaneously[1]. Xia et
al. proposed a GA-based method for low power state
assignment[2]. It aims to use state assignment to minimize the

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.211

1491

power dissipation. Xia et al. also proposed a low power FSM
partition method [3]. This method uses GA to optimize
partition of FSMs and makes the existing monolithic FSM
state assignment be applicable to partitioned FSMs. By
partition of FSMs, the power dissipation can be reduced up to
80%. At 2004, Chattopadhyay proposed a FSM state
assignment method for low power consumption [4].
 Unlike the power-orient approaches, a few researches
concentrate on state assignment for area minimization. The
determitic methods such as mustang[8], muse[9], nova[10]and
jedi[11] are typical area-orient methods proposed for area
minimization. Almaini et al. used GA to search state
assignments for optimizing synchronous FSM [12]. Its fitness
is formed by the literal count of ESPRESSO minimization.
However, the method of Almaini has not been tested on
certain large circuits. Amaral used a set of heuristic rules to
find excellent state assignments that result in small-area circuit
implementation [13]. It is stated that the small hamming
distance between the states, which are associated with each
other more frequently is beneficial; however, sometimes it
cannot result in area reduction of circuits. Chattopadhyay
firstly proposed Flip-Flop and output polarity selection into
representation of solution[14]. The Flip-Flop and output
polarity selection both expands the search space and solution
space. However, the numbers of cubes obtained by this
method for benchmarks are far away from the optimal
solutions. Ali et al. aims to optimize state assignment for the
evolutionary design of circuits[15]. However, their state
assignments may not be efficient in the conventional design of
circuits because the evolutionary circuit design brings
redundancy. In addition, Aly used SA as a finder of optimal
assignments [16], but he just gave a case study for the method.
Different from the methods to the two-level logic
optimization, Aiman et al. [17] proposed a state assignment
approach, called binary-PSO (BPSO), and a GA state
assignment approach[18], for multilevel circuits. The
experimental results illustrate that the method is efficient in
multilevel area minimization.
 In addition, some researchers have focused on multi-objective
evolutionary optimization for FSMs. Xia et al. introduced two
cost functions and used multi-objective genetic algorithm
(MOGA) for area and power optimization [19]. They tried to
obtain low power dissipation assignments without the large
area penalty. Jassani proposed a MOGA based method for state
assignment [20]. It aims to find a state assignment that makes
the product of hamming distance between states and state
transition probability minimized, so that the area and power
can be both reduced. Jassani obtained a set of assignments with
a long evolution time penalty. For example, the benchmark
“planet” costs more than 25 hours. No matter which multi-
objective optimization algorithm is used, it is hard to obtain
competitive state assignments in terms of any single-objective.

III. STATE ASSIGNMENT PROBLEM
 State assignment problem, denoted by SAP, is formulated in
this section. For a FSM, state assignment encodes the states

into binary codes. Using state assignment to reduce area is an
efficient way for FSMs area minimization. However, a FSM
with n states(k bits/state) has (2k!)/(2k-n)! state assignments.
When n increases, k will also increase and the search space
will increase largely. It requires large computational time to
exhaust all assignments in a large search space to look for the
one will minimize the area. Therefore, finding a state
assignment that leads to area minimization is a NP problem.
SAP is actually a combinatorial optimization problem and the
formulation of SAP is as (1).

 Area(x*)=min Area(xi) (1)
 xi �, �={x1,x2,…,xn}

 Where Area(xi) is the area of logic implementation using
state assignment xi. � is the solution space of state
assignments.
 Let us give an example to specify SAP. A 1-input-5-state
FSM is given in Table.I. For this FSM, there are (23!)/(23-
5)!=6720 feasible state assignments, two of them, denoted by
Assign #1 and Assign #2, are present in Table.I. By
implementing two-level logic minimization, Assign #1 obtains
5 cubes and 15 literals while Assign #2 obtains 4 cubes and 12
literals. In terms of the number of cubes and literals, Assign
#2 is superior to Assign #1. This example illustrates that the
state assignment has a very significant impact on the area
minimization of a synthesized FSM.
TABLE I. LOGIC IMPLEMENTATION OF A FSM USING DIFFERENT STATE

ASSIGNMENTS

Present
State

Next State Assign #1 Assign #2
X=0 X=1

S0 S1 S2 000 100
S1 S4 S3 100 110
S2 S4 S3 110 010
S3 S4 S4 011 001
S4 S0 S0 010 000

Logic implementation(two-
level) using the state
assignment

2 2 1 0

1 1 0 22 0

12 0

0 2 0

D Q Q Q

D Q Q Q Q Q

X Q Q Q

D XQ Q

=

= +

+

=

2 1 0 2 1 0

1 2 1 0

0 1 0

D X Q Q Q Q Q

D Q Q Q

D XQ Q

= +

=

=

The number of cubes and
literals 5, 15 4, 12

IV. PROPOSED METHOD
 In this study, we propose a new ES based state assignment
method, called ESSA, to solve SAP. The chromosome,
selection, mutation, and fitness function of ESSA are
described in details in the following subsections.

A. Chromosome
 Chromosome is the representation of solutions to SAP. To
SAP, the chromosome contains three parts, state assignment
code, function polarity code, and strategy-parameter. State
assignment code indicates the code assigned to the states of
FSM, and function polarity code (1/0) indicates the
function/the complement of output or next state logic blocks.
The function polarity code and the state assignment code
together form the object variables, which is the essential
component of the chromosome. Strategy-parameter in this

1492

study is the mutation step size for individual variation, which
is coevolving together with the object variables. In the object
variables, the state assignment codes would be changed by
multiple mutation operators, of which the mutation step size is
determined by the strategy-parameter. The function polarity
codes and the strategy-parameter are mutated randomly in the
evolution.
 Given a n-state-m-output FSM. The state assignment code
for the FSM can be defined as an integer string x=(x1, x2…,
xn), where xi is selected from the set {0,1… ,2k}, xi N and
k=log2n. In a chromosome, the codes cannot be duplicated.
Function polarity code is composed by output polarity code
and next-state polarity code, which is defined by a binary
string p=(p1, …, pm | pm+1, …, pm+k), where p1,…, pm denotes
the output polarity code and pm+1,…, pm+k denotes the next-
state polarity code. pi =1 indicates the function and pi=0
indicates the complement. Strategy-parameter is defined as �,
which controls the mutation step size of state codes. The full
size chromosome of state assignment is defined as (x, p, �).

.i 1
.o 1
.s 4
.p 4

0 s0 s1 0
1 s1 s2 1
0 s2 s3 1
1 s3 s0 0

.e

.i 3
.o 3
.p 4

100 100
001 001
010 110
111 011

.e

.i 3
.o 3
.p 3

101 101
0-0 010
010 101

.e
 (b) (c) (a)

1 0 2 3 0 5
chromsome A

0 1 2 3 1 6
chromsome B

FSM

State
codes Polarity

code
Mutation
step size

Fig.1 (a) state transition of FSM (b) Chromosome A and its logic
implementation (c) Chromosome B and its logic implementation

 Fig.1 gives two chromosomes encoding state assignments of
a 1-input-4-state-1-output FSM. Fig.1(a) presents the state
transition of the FSM. The state codes of A and B are “1,0,2,3”
and “0,1,2,3”,which are selected from the set {0,1,2,3}. The
polarity codes in A and B are 0 and 1. The mutation step size
(strategy parameter) for A and B are 5 and 6(this is only made
use in mutation). Fig.1(b) shows the logic implementation of
A using ESPRESSO obtains 4 cubes and 12 literals, while the
implementation of B shown in Fig.1(c) has 3 cubes and 8
literals.

B. Selection
 Selection exploits the fitness information in order to guide
the search into promising search space regions. In ES, “plus
selection”, denoted by (�+�), and “comma selection”, denoted
by (�,�), are two typical versions of selection strategies. Both
selection variants have their specific applications. Let us
analyze the search space of SAP. For the semantic of state
assignment, the codes assigned to states must be no duplicated
in a chromosome (e.g. Fig.1). This leads to a combinatorial
search space, which is discrete and extremely versatile.
According to the literature [21], the (�,�) selection is
recommended for unbounded search spaces, while the (�+�)

selection should be used in discrete finite size search spaces,
e.g., in combinatorial optimization problems. Therefore, (�+�)
selection is more adaptable than (�,�) selection to SAP.
 (�+�) selection is able to accelerate the convergence to
solution and suitable for SAP. However, it preserves better
intermediate solutions and further steps into the premature
stagnation. In contrast to (�+�) strategy, (�,�) selection doesn’t
take the parents into account, and makes immediate use of
new information gathered by the next offspring. It finally
climbs to the top of mount even the current good solutions
maybe replaced with the worse ones. However, as the
literature[21] stated, (�,�) selection is not adaptive to
combinatorial optimization problem. Therefore, both
selections have disadvantages in solving SAP.
 In this study, a new selection strategy is proposed for SAP.
The strategy inherits (�+�) strategy and derives the advantage
from (�,�) strategy. In the strategy, niche mechanism is
employed based on the crowding, which is defined as an
evaluation to select diversified good fitness individuals from
the selection pool. Hence, the information derived from the
new generated individuals can be utilized. Let A and B are two
individuals; let d(A,B) be the hamming distance between A
and B. Let D(A) be the crowding of A. D(A) is calculated as
(2).

D(A) =�sh[d(A,B)] (2)

Where d(A,B) indicates the hamming distance between A
and B, which is calculated by d(A,B)=�A[i] B[i], where A[i]
and B[i] indicates the i-th state code bit of A and B. sh[d]
denotes a share function, which is defined as (3).

max

max max

0,
[]

1 / ,
d

sh d
d d

φ
φ φ

>�
= � − <�

 (3)

 Where max denotes the radius of niche. A small D(A)

implies that A is rather distant from the other individuals max
in terms of the hamming distance, and a large value of D(A)
implies that A is close to the other individuals within max. The
fitness together with the crowding determines the survival of
individuals.

The pseudo code of the proposed selection strategy is as
follow.

 Selection()
 {
 /*� parents and � offspring has been combined as a selection pool.
The fitness, denoted by chr.F, and the crowding, denoted by chr.D
of each individual chr in the selection pool are calculated.*/

Select the best-fitness individual into the parental set p;
 Rank the (�+�-1) individuals based on (chr.F chr.D) in
ascending order;

 Select the (�-1) top individuals into p;
 }

 According to the pseudo code, � parents and � offspring are
together sorted based on the fitness and the crowding. The
best individual is always selected as a parent. The remaining

1493

(�-1) parents are derived from the individuals with good
fitness and small crowding. The new strategy is able to
accelerate the convergence of ES. Since the selected
individuals(no-duplicate) have relatively small crowding. The
diversity of parental population is secured and the premature,
from which (�+�) strategy suffers, can be overcome.

C. Mutation
 Mutation is an important variation operator in ES, which
explores the search space from parental population. The
design of mutation operators is problem-dependent. According
to the literature [21], a successful mutation usually meets three
requirements, reachability, unbiasedness, and scalability. In
this study, three operators, “replacement”, “2-exchange” and
“shifting”, are used for mutation. In real-valued search spaces
the variation strength on a parental individual is usually
regarded as the mutation step size. However, the
neighborhood size will be limited in the combinatorial search
space if variation strength is used; the scalability requirement
of the mutation steps cannot be guaranteed. In this study, we
use the hamming distance between an individual and a
parental individual, not the variation strength, as the mutation
step size in the search space of SAP. The hamming distance is
controlled by the strategy parameter �.
 The pseudo code of mutation is denoted as follow.

 Mutation()
 {
 For each individual chr to be mutated;
 step � 0;
 While step < chr.�
 s {statecode};
 chr.x’� replacement(chr.x, s); /* replacement */
 or chr.x’ � 2-exchange(chr.x, chr.y); /* 2-exchange */
 or chr.x’ � shifting(chr.x[i, j], p); /* shifting*/
 step�step+d(chr.x, chr.x’); /* hamming distance*/
 End while
 chr.f :=chr.f |{ 0|1, 0|1, …,0|1};
 chr.� �chr.� + rand(-r, r);
 End For;
 }
 In the pseudo code, {statecode} denotes the feasible state
codes have been used. Three operators, “replacement”, “2-
exchange”, and “shifting”, are randomly chosen to change the
state assignment codes in an individual. p in ‘shifting(chr.x[i,
j], p)’ indicates the number of steps, which the parental state
codes x[i, j] shifts. With respect to the other components of
chromosome, the polarity code f is randomly changed, and the
parameter � varies in the range of r.

 Fig.2 presents the mutation operator applied on an individual.
Each numbered cell indicates a state code. The operators
change the state codes by randomly cutting the connections
between the cells, exchanging, and replacing the cells in a
specific way. As shown in Fig.2, the mutation applied on state
assignment codes will continue until the mutation step size �
is reached. In the mutation process, the parameter � is
randomly changed from 5 to 8.
 It is noted that the mutation operators do not introduce any
bias on the selected parental individuals. In the mutation, a

small hamming distance(variation step) on individuals may
leads to better solutions in the same local domain, while a
large hamming distance may find solutions on the other
domains(e.g. the global optima). In theory, this mutation
strategy guarantees that any other individual can be reached
within a finite number of mutation steps. Therefore, the
reachability requirement can be meet. It can be seen that the
mutation step size based on hamming distance is tunable,
which adapts to the properties of the fitness landscape of SAP.
Hence, the proposed mutation is also able to meet the
scalability requirement.

Fig.2 The effect of the mutation operator for SAP

D. Cost function
 Cost function (i.e. fitness function) is used to evaluate the
individuals in the evolution. In the two-level area
minimization, the objective is to reduce the number of Sum of
Product (SOP) terms (i.e. cubes), while in multilevel area
minimization the objective is to reduce the number of literals
in the expressions of the synthesized circuit. Therefore, we
define two cost functions based on the number of cubes and
literals for area optimization. ESPRESSO and SIS are two
conventional tools for circuit synthesis. For two-level circuits,
the number of cubes is obtained by run ESPRESSO
implementing the minimization with term sharing. For multi-
level circuits, Espresso-Single Output with fast extraction
(Espresso-SO+fx) available in SIS is used to obtain the
number of literals of logic expression.
 The cost functions are defined as follow.

a) Let #cube be the number of cubes the resulting logic
expression. The cost function for two-level logic
implementation can be denoted by (4).

F=#cube (4)
b) Let #lit be the number of literals of the resulting logic

expression. The cost function for multi-level logic
implementation can be denoted by (5).

F=#lit (5)
 The optimization orients to two-level and multi-level area
minimization runs twice – one time to find minimum number
of cubes for two-level logic implementation and another time
to find minimum number of literals for multi-level logic
implementation. Therefore, (4) and (5) are not combined into
a fitness function, but are used as fitness function separately.

E. Process of ESSA
� Read STG description file (i.e. kiss2 file) of a FSM;

1494

� Create (�+�) initial individuals, g=0;
� Create Berkeley standard PLA files for the initial

individuals;
� Run ESPRESSO or SIS to process the PLA files for two-

level or multilevel area minimization;
� Calculate the fitness value F of the individuals based on (4)

or (5);
� Calculate the crowding D of the individuals based on (2);
� Repeat
� Select � out of (�+�) individuals by the selection

strategy as a parental population S(g);
� Mutate the � parents to generate � offspring;
� Create PLA files for the � offspring;
� Run ESPRESSO or SIS to process the PLA files;
� Calculate the fitness value F of the � offspring based on

(4) or (5);
� Combine the � parental individuals and � offspring as a

selection pool;
� Calculate the crowding D of the (�+�) individuals based

on (2);
� g= g +1;

� If an individual with the desired fitness is evolved, or other
required demand, such as the maximum generation, is
achieved; the evolutionary process terminates; else return to
chromosome selection.

� Output the best-evolved individual and its parameters(the
number of cubes and literals , evolutionary time);

V. EXPERIMENTS
 We use twenty-two FSMs from MCNC to test the
performance of ESSA in two-level and multilevel logic
minimization of FSM. The FSMs have been commonly used
for state assignment optimization. In this section, we compare
the ESSA with the other state assignment methods in terms of
the number of cubes and literals to demonstrate the superiority
of ESSA. Table.II gives the information of experimental FSMs,
including PI(the number of primary inputs), St (the number of
states) and PO(the number of primary outputs).

TABLE II. EXPERIMENTAL FSMS

Circuit PI St PO Circuit PI St PO
bbara 4 10 2 dk512 1 14 3
dk16 2 27 2 bbsse 7 16 7
dk14 3 7 5 cse 7 16 7
opus 5 10 6 ex4 6 14 9
donfile 2 24 1 ex2 2 19 2
bbtas 2 6 2 ex3 2 10 2
tav 4 4 4 ex1 9 20 19
tbk 6 32 3 keyb 7 19 2
s1 8 20 6 styr 9 30 10
s832 18 25 19 planet 7 48 19
s1494 8 48 19 sand 11 32 9

 The codes of ESSA implemented in Java run on the PC with
CPU 2.13GHz 2GB RAM. The ESSA parameters are shown in
Table.III. #MaxGen indicates the maximum generation for
evolution termination. #MaxGen is set to a large value 5000 for
the experimental FSMs. The parental population size(�) is set

to 20, and the offspring population size (�) is 100. #Run
indicates number of evolutionary runs. In this paper, it is set to
20.

TABLE III. ESSA PARAMETERS FOR STATE ASSIGNMENT EVOLUTION

ESSA –parameters Setting
#MaxGen 5000
�, � 20, 100
#Run 20

A. Comparison of ESSA and the other state assignment
methods

 In this section, we compare ESSA with nova(1990), the
method of Almaini(1993), the methods of Xia(2002, 2003),
the method of Chattopadhyay(2005),and the method of
Jassani(2011) in terms of two level logic minimization. In
terms of multilevel logic minimization, we compare ESSA
with nova, GA(2006) and BPSO(2013). In the following
tables, ‘impr’ denotes the total improvement on all the cases
achieved by ESSA over the comparable methods, which is
calculated by (6).

impr =
ESSA

I� − alt
I�

alt
I�

 (6)

 Where alt indicates the value obtained by the comparable
methods. I denotes the set of experimental FSMs. In Table.IV,
impr is calculated based on #CB
 Table.IV gives the comparison between ESSA and the
reference state assignment methods in terms of two-level area
minimization. #CA and #lit denotes the number of cubes and
literals obtained by ESSA without using polarity selection in
chromosome, #CB indicates the number of cubes obtained by
using polarity selection. #C stands for the number of cubes.
The best values in tables achieved by the alternative methods
are marked bold.
 In terms of #CA, ESSA outperforms the other methods in
most cases. Although the improvement obtained by ESSA is
not very large in some FSMs, the small improvement is
achieved with the premise that the comparable state
assignments have been already approximated to the optimal
solution. Even a slight improvement on state assignment
indicates a large progress on the two-level logic minimization
of FSM.
 ESSA presents an equal good result to the other methods on
“ex4”. On only two FSMs (14.2%), ESSA cannot obtain better
solutions than the other methods. On “donfile”, #CA obtained
by ESSA is better than the other methods except the one of
Jassani. On “ex1”, ESSA performs a little worse than nova,
but much better than the method of Jassani and the one of Xia.
When using function polarity, ESSA obtains an improvement
on the area reduction(i.e. #CB< #CA) on five FSMs(35.7%).
According to the result of two-level logic implementation,
ESSA obtains better solutions, at least parallel ones, compared
to the other methods on twelve FSMs(85.8%).

In addition to two-level logic implementation, ESSA is also
compared with two state assignment methods, GA and BPSO,
for multi-level logic implementation. Table.VI gives result of

1495

multi-level logic minimization implemented by ESSA, GA
and BPSO. In Table.V, “ave” indicates the average number of
literals obtained by the method for several runs. “best”

indicates the smallest number of literals, which is achieved by
the method in several runs.

TABLE IV. COMPARISON BETWEEN ESSA-STATE ASSIGNMENT AND OTHER ASSIGNMENTS IN TERMS OF THE NUMBER OF CUBES AND LIT

FSMs
nova[10]

(1990)
Almaini[12]

(1993)
Xia[19]
(2002)

Xia[2]
(2003)

Chat.[14]
(2005)

Jassani[20]
(2011) ESSA

#C/#lit #C/#lit #C #C #C #C tevo #CA/#lit #CB/#lit tevo
dk512 23/95 23/90 --- --- --- --- --- 17/62 17/55 0:13
bbara 24/134 -- 22 22 23 22 0:8 21/105 21/105 0:12
bbsse 29/-- -- 27 --- 26 --- --- 26/139 23/138 2:13

cse 45/-- -- 43 43 45 43 3:09 42/279 42/281 2:36
donfile 28/-- 36/158 36 36 31 22 6:04 28/111 25/107 10:51
opus 16/-- -- 19 15 12 15 0:40 15/86 15/89 0:56
dk16 72/-- 69/380 -- -- 68 57 6:03 56/292 55/268 4:49
keyb 48/-- -- 48 46 46 46 3:32 45/403 45/392 3:37

s1 63/-- -- 66 66 68 43 6:03 56/334 41/211 8:11
ex1 37/-- -- 52 52 47 48 6:07 45/287 45/293 4:11
ex4 19/-- -- 16 14 15 13 6:01 13/62 13/65 2:09
styr 94/-- -- 88 88 78 78 6:05 78/546 76/522 5:51

planet 86/-- -- 86 86 84 81 25:23 78/500 78/495 8:11
sand 89/-- -- 89 --- 96 --- --- 86/587 85/589 5:40
Total 673/229 128/628 592 468 629 468 -- 606/3793 581/3610 --

%impr 13.7/30.1 24.2/31.5 14.02 14.32 10.33 2.56 -- -- -- --

TABLE V. COMPARISON BETWEEN ESSA AND OTHER APPROACHES IN TERMS OF MULTI-LOGIC SYNTHESIS

FSMs nova GA[18](2006) BPSO[17](2013) ESSA
best ave tevo(s) best ave tevo(s) best ave tevo(s)

dk14 111 102 103.1 1543.2 98 99.8 784 72 76.7 660
tav 365 24 24 893.8 24 24 -- 23 24.1 718
bbara 57 49 49.4 1204.3 49 52.9 793 52 54.3 2063
bbsse 140 101 100.5 1350.7 102 107.1 823 93 103.1 2769
cse 214 179 184.2 1743.7 184 191.0 987 174 182.5 2399
keyb 201 142 152.4 2096.1 143 163.8 1480 145 156.3 8220
s1 340 132 216.2 2270.9 173 231.7 1592 158 233.6 3298
s1494 715 570 591.1 3885.1 588 602.0 3073 541 581.2 13140
s832 274 230 256.7 2254.9 216 245.4 1751 214 233.1 6211
ex2 127 64 90.1 1373.7 66 99.5 861 70 71.6 1808
ex3 71 54 54.7 1149.1 51 54.0 796 56 98.8 1562
tbk 365 410 462.1 8060.8 261 368.2 6671 252 366.2 3342
styr 502 405 422.5 3506.2 412 437.5 2326 387 417.4 9371
planet 591 466 505.4 3775.0 494 526.1 2288 454 495.0 2658
sand 558 498 519.8 3002.6 488 510.1 2374 486 505.8 7480
Total 4631 3426 3732.2 38110.1 3349 3713.1 26599 3177 3599.7 65699
%impr 31.5 7.26 3.55 -- 5.13 3.05 -- -- -- --

TABLE VI. COMPARISON BETWEEN STANDARD (�+�) ES , (�,�) ES AND ESSA IN MULTI-LOGIC IMPLEMENTATION

FSMs (�+�) ES (�,�) ES ESSA
best ave tevo(s) best ave tevo(s) best ave tevo(s)

dk14 72 78.2 578 105 111.8 912 72 76.7 660
tav 25 27.4 478 25 29.5 602 23 24.1 718
bbara 54 56.5 2133 67 69.5 3988 52 54.3 2063
bbsse 104 106.6 2289 124 135.7 3567 93 103.1 2769
cse 182 185.2 1982 199 212.2 4343 174 182.4 2399
keyb 156 159.8 6684 189 192.2 12012 145 151.3 8220
s1 167 199.1 4141 187 273.3 6289 158 214.9 3298
s1494 548 578.1 13223 591 602.1 14521 541 561.3 13140
s832 225 246.3 2877 256 271.2 7021 214 233.2 6211
ex2 84 91.4 1292 102 111.3 2531 70 72.6 1808
ex3 55 78.2 1455 64 102.6 1933 56 68.8 1562
tbk 273 351.2 3660 281 371.3 4196 252 327.8 3342
styr 412 422.2 5412 456 488.7 11309 387 417.4 9371
planet 457 492.9 3789 505 522.0 7789 454 495.0 2658
sand 491 521.1 8720 507 525.2 12129 486 505.8 7480
Total 3305 3594.2 58713 3658 4018.6 93142 3177 3488.7 65699
%impr 3.87 2.94 -11.89 13.14 13.20 29.46 -- -- --

1496

It is noted that ESSA outperforms the other methods in
terms of “ave”. This illustrates that ESSA is more stable in
finding a good solution in these cases. In terms of “best”,
ESSA also achieves the best or equally good results in most
cases. Compared to GA, ESSA obtains better solutions in ten
out of fifteen FSMs(66.67%), and performs better than BPSO
in eleven FSMs(78.5%). In only five FSMs (33.3%), ESSA
cannot perform better or as well as GA or BPSO do in terms
of “best”. This is because finding a near optimal or the
optimal state assignment for some simple FSMs is relatively
easy, so that the room of improvement for these FSMs is quite
small. Compared to the classical state assignment method
‘nova’, ESSA achieves better solutions in all the cases.

In Table.IV and .V, tevo indicates the evolutionary time of
finding the best solution. Time format in Table.IV is unified to
hh:mm, e.g. 1:55. This means 1 hour and 55 minutes.
According to tevo in Table.IV, ESSA spends large evolutionary
time on finding solutions in most cases. ESSA needs more
computation time on “donfile”, ”bbara” and “s1” than the
method of Jassani. However, on “planet”, ”styr” and “ex1”,
ESSA costs relatively small evolutionary time to find good
solutions. For example, ESSA obtains a better solution on
“planet” than the method of Jassani by using only 8 hours and
11 min. Generally, the computational effort of minimizing
FSMs is still in the range of hours despite fast computer. The
value of tevo in Table.V represents the evolutionary time in
seconds. According to tevo in Table.V, ESSA spends a larger
evolutionary time on finding a good solution than BPSO and
GA in most cases. However, the situation is precisely the
opposite in some cases. On “planet”, ESSA obtains a better
solution than GA within only 2658s, which is much smaller
than GA needs. On “tbk”, it costs ESSA only 3342s to find a
solution, while it costs BPSO and GA 6671s and 8060.8s to
accomplish the task.

 For illustrating the ability of ESSA in solving SAP, ESSA is
compared to two standard ES methods, (�+�) ES and (�,�) ES.
Table.VI gives the results obtained by three ES methods.
According to tevo, the standard (�+�) ES is the fastest finder of
a solution (maybe a local optima), and the (�,�) ES is the
worst one among the three methods. This illustrates that ESSA
is poorer than (�+�) ES in terms of the convergence, but much
better than (�,�) ES. In terms of multilevel area minimization,
ESSA is comprehensively superior to (�, �) ES in all the cases,
and obtains better results than (�+�) ES in most cases.
According to impr, ESSA has a total improvement over (�+�)
ES and (�,�) ES. This is because ESSA is able to jump out of
local optima, which is usually a trap of (�+�) ES. Meanwhile,
ESSA is able to converge to multi local domains (one of these
domains maybe the global optima), which (�, �) ES cannot
reach.
 Although many researchers claimed that (�,�) ES is more
efficient in solving optimization problem than (�+�) ES, this
is not always true for some specific applications. Within an
acceptable time, (�,�) ES usually cannot achieve a good
convergence in solving SAP. This is because the search space
of SAP is so versatile in some cases that (�,�) ES likely
vacillates between local domains and cannot continually

search for a better solution in a domain. This is also assistance
with the point of view that (�+�) selection is more adaptive to
discrete finite size search spaces, e.g., in combinatorial
optimization problems than (�,�) ES[22].

B. results and analysis
In Table.IV, .V and .VI, the total improvement on area

minimization for all the cases achieved by ESSA has been
present. According to the value of impr, ESSA is totally
superior to the other methods except BPSO. In addition to the
total improvement, the improvement on area reduction for
single case is also an important evaluation of the methods. In
this section, the improvement for each case achieved by ESSA
over the other methods is discussed and analyzed.

It is noted that ESSA can achieve a large area reduction in
terms of two-level logic implementation compared to nova
and two methods of Xia. Compared to the methods of
Chattopadhyay and Jassani, ESSA also achieves a preferable
area reduction. On “s1”, ESSA achieves 22.7% reduction to
the methods of Xia, 39.7% area reduction to the method of
Chattopadhyay and 4.7% to the method of Jassani. Sometimes,
different state assignment methods can obtain equal number of
cubes. In this case, the number of literals is another important
evaluation of state assignment method.

In multi-level logic minimization, ESSA is efficient in area
reduction in terms of “best” compared to nova, jedi, BPSO
and GA, where BPSO and GA are the relatively new state
assignment methods. ESSA achieves a 38.53% reduction over
GA on “tbk” and 29.4% over GA on “dk14”. Compared to
BPSO, ESSA achieves 8.09% on “planet” and 26.5% on
“dk14”. Although ESSA cannot perform well in all the cases,
ESSA still achieved better results than GA and BPSO in more
than half experimental FSMs. Compared to two conventional
methods nova and jedi, ESSA has a very large improvement
on multi-level logic minimization in all the cases. On “s1”, the
number of literals reduced by ESSA is up to 53.52%, and on
“tav”, the reduction is up to 93.69%.

Generally, ESSA outperforms the other state assignment
methods in terms of area reduction for most experimental
FSMs. Especially compared with the method of
Chattopadhyay in two-level logic minimization, which also
employs the function polarity code into chromosome, ESSA is
comprehensively over this method. It is also noted that ESSA
gave some poor solutions compared to GA and BPSO in some
cases. In future work, it is necessary to make further
improvements on ESSA.

VI. CONCLUSION
In the field of state assignment research, many researchers

that their state assignments performed well in reducing area of
two-level and multilevel logic implementation of FSMs.
However, the optimal state assignment is usually hard to be
achieved, and the room for improving the state assignment
method is still large. This work aims to find a state assignment
to reduce area of two-level and multi-level FSMs. Therefore,
we propose an evolutionary assignment method called ESSA.
The ESSA is extensively tested on many benchmarks, and is

1497

compared to the other state assignment methods in these cases.
The area reduction(i.e. cubes and literals reduction) obtained
by ESSA are satisfied, and the state assignments for a part of
benchmarks have been the best ones by far.

ACKNOWLEDGMENT
This work is supported by the Natural Science Foundation of
the Jiangsu Higher Education Institutions of China (Grant No.
13KJB520023), National Natural Science Found of
China(Grant No.61502327) and Science Project of Suzhou
(SYG201407).

REFERENCES
[1] Cho, S. Park, “A new synthesis technique of sequential circuits for low

power and testing”, Current Applied Physics. Vol.04.pp:83-86. 2004
[2] Y. Xia, A.E.A. Almaini, and Xunwei Wu. “Power Optimization Of

Finite State Machines based on Genetic Algorithm”, Journal of
Electronics, 2003, 20, (3), pp.194- 201.

[3] Y. Xia, X. Ye, and L. Wang. “A Uniform Framework of Low Power
FSM Partition Approach”, IEEE International Conference on
communication , circuits and systems, China , 2006, pp. 2642-2646.

[4] S. Chattopadhyay. and P. Reddy, “Finite State Machine State
Assignment targeting low power comsumption”. IEE Proc.-Comput.
Digit. Tech. 2004, 151, 61-70

[5] ABC:A System for Sequential Synthesis and Verification. Berkeley
Logic Synthesis and Verification Group,
http://www.eecs.berkeley.edu/~alanmi/abc/.

[6] Berkeley, Electronics Research Laboratory, SIS: A System for
Sequential Circuit Synthesis, Release 1992.05,
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/ERL-92-41.pdf,
1992

[7] Ashlock, D.,Evolutionary Computation for Modeling and Optimization,
Springer,(2006) ISBN 0-387-22196-4

[8] Devadas;Ma H T;Newton A R;Vincentelli Sangiovanni
MUSTANG:State assignment of finite state machines for optimal multi-
level logic implementations 1987

[9] Du X;Hactel G;Lin B;Newton A R MUSE:A multilevel symbolic
encoding algorithm for state assignment, 1991(01)

[10] T. Villa, Alberto Sangiovanni-Vincentelli, “NOVA: state assignment of
finite state machines for optimal two-level logic implementation”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems. Vol.9(9).pp: 905-924. 1990.

[11] Lin B;Newton A R Synthesis of multi-level logic from symbolic high-
level description languages 1989

[12] A.E.A Almaini, J.F. Miller, and P. Thomson. “State assignment of finite
state machines using a genetic algorithm”. IEE Proceedings Computers
and Digital Techniques, - Vol.142(4).pp: 279-286. 1995.

[13] J.N Amaral, K. Tumer, and J. Ghosh, “Designing Genetic Algorithms
for the State Assignment Problem”. IEEE Transaction on system, man
and cybernetics, Vol.25(4).pp: 100-108. 1995

[14] S. Chattopadhyay, “Area Conscious State Assignment with Flip Flop
and Output Polarity Selection for Finite State Machine Synthesis
Genetic Algorithm Approach”, The Computer Journal, 2005, 48,
(4),pp.443-450.

[15] B. Ali, A. E. A. Almaini, and T. Kalganova, “Evolutionary algorithms
and their use in the design of sequential logic circuits”, Genetic
Programming and Evolvable Machines, Vol.05 pp:11-29. 2004.

[16] W. M. Aly, “Solving the State Assignment Problem Using Stochastic
Search Aided with Simulated Annealing”, American J. of Engineering
and Applied Sciences ,2009, 2, (4): pp. 710-714.

[17] H. El-Maleha Aiman, T. Sheikhb Ahmad, and M. Sait Sadiq, “Binary
particle swarm optimization (BPSO) based state assignment for area
minimization of sequential circuits”. Applied Soft Computing .13 (2013)
4832–4840.

[18] A. El-Maleh, S.M. Sait, F. Nawaz Khan, Finite state machine state
assignment for area and power minimization, in: IEEE International
Symposium on Circuits and Systems, ISCAS 2006, 21–24 May, 2006.

[19] Y. Xia, A.E.A. Almaini. “Genetic algorithm based state assignment for
power and area optimization”. IEE Proc.-Comput. Digit. Tech., Vol.
149(4). pp:128-133. 2002

[20] B.A. AL Jassani, N. Urquhart, and A.E.A. Almaini, “State assignment
for Sequential Circuits using Multi-Objective Genetic Algorithm”. IET
Computers & Digital Techniques. Vol.5(4).pp: 296-305. 2011.

[21] H.G. Beyer, H.P. Schwefel. Evolution Strategies: A Comprehensive
Introduction. Journal Natural Computing, 1(1):3–52, 2002

[22] H.G. Beye , Some aspects of the ‘evolution strategy’ for solving tsp-like
optimization problems. In: Männer R and Manderick B (eds) Parallel
Problem Solving from Nature, 2, pp. 361–370. Elsevier,
Amsterdam .1992

1498

