

Designing Polymorphic Circuits with Periodical
Weight Adjustment

Houjun Liang1, Rui Xie2
1Department of Computer Science, 2Department of

Accounting
Anhui University of Finance and Economics

Bengbu, Anhui, China
lhjabc45@sina.com

Liang Chen
Department of Transportation Service

Automobile NCO Academy
Bengbu, Anhui, China

aufecl1@163.com

Abstract—A polymorphic circuit can perform two or more
functions under different conditions without the need of extra
components. Those functions can be activated by environmental
signals, such as temperature, power supply voltage, illumination,
and so on. So far, existent evolutionary algorithms can only
evolve polymorphic circuits at lower success rate. In this paper,
the periodical weight adjustment method is proposed for the
Evolutionary Strategy to evolve polymorphic circuits. The
experimental results demonstrate that the periodical weight
adjustment method can perform better than existent
evolutionary techniques for polymorphic circuits, and it has the
potential to evolve more complex polymorphic circuits, e.g., by
this method a three-state polymorphic circuit is evolved for the
first time.

I. INTRODUCTION
The concept of polymorphic electronics was proposed by

Stoica et al [1]. Unlike traditional multifunctional electronics,
which are based on switches or multiplexers, the polymorphic
circuit does not need any extra components to switch its
different functions, but by some external factors, such as
power supply voltage, temperature and light [2-4].

The Evolutionary Algorithms (EAs) for designing the
polymorphic circuits are firstly proposed by Sekanina and his
colleagues [5-7]. The advantages of evolutionary design
approaches are: i) the circuits designed by the evolutionary
design approach often need fewer gates. ii) The evolutionary
design approach can find novel and creative topologies for the
circuits.

Gajda and Sekanina have done a lot of important work on
designing polymorphic circuits with evolutionary algorithms
[5, 8, 9]. Especially in [8], two-state polymorphic circuits with
8-inputs/8-outputs and 13-inputs/1-output have being evolved
with the aid of the binary decision diagrams (BDD) and
multiplexer. However, designing polymorphic circuits purely
by evolutionary algorithms is still a hard problem. In [10], an
improved Evolutionary Strategy (ES) based on weighted sum
method was proposed to design polymorphic circuits.

Nevertheless, this improved algorithm need to set weight
factors manually, and the success rates are still relatively low.
So, more effective design method should be developed.

Because a polymorphic circuit has two or more different
functions, it is necessary to balance the search preferences
among different functions. The objective of the periodical
weight adjustment method in this paper is to balance the
search preference among different functions automatically.
The experimental results demonstrate that the success rates are
improved. The ES based on periodical weight adjustment can
evolve polymorphic circuits more effectively and has the
potential to evolve more complex polymorphic circuits, e.g.
three-state polymorphic circuits.

This paper proposes a method for designing polymorphic
circuits by periodically adjusting weights, the rest is is
organized as follows. Section II introduces some related work.
Section III considers the existent problems. Section IV
describes the Periodical Weight Adjustment Method (PWAM)
in detail. Section V gives the experimental results. Finally, a
brief conclusion is given in section VI.

II. RELATED WORK

A. Cartesian Genetic Programming
The evolutionary algorithm adopted in this paper is based

on Cartesian Genetic Programming (CGP) [11-14], which was
originally introduced into Evolvable Hardware (EHW) field by
Miller et al. [15]. CGP has already demonstrated its efficiency
and is widely used for the evolutionary design of digital
circuits [8, 9, 14]. The CGP model is described as follows.

� Representation: CGP uses an array of c (columns) × r
(rows) of Programmable Elements (PEs) to represent
the desired circuit. The programmable elements can be
traditional primary logic gates (e.g. AND, OR, NOT),
or polymorphic gates (e.g. AND/OR, AND/AND), or
high-level functional units. If r=1, it means the number
of candidate PEs is same with c.

� Connection: Each Programmable Element has its own
inputs and outputs. The inputs of each PE can only be

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.212

1499

connected to the previous columns or the circuit inputs,
but cannot be connected to the latter columns. The
interconnectivity of each PE is defined by the levels
back parameter L, which determines how many
previous columns can be connected to the current one.
In this paper, L = c, and this means that all previous
columns can be connected. It is noted that the PEs in
the first column can only connect to the primary inputs
of the circuit.

In order that the expected circuit can be evolved under the
control of EAs, the candidate circuits must be mapped into
chromosomes. A chromosome is a string of parameters (genes)
that are joined together. It represents a potential solution to a
given problem and defines the topology of a candidate circuit.
Although the CGP model is often adopted in evolvable
hardware community, the exact encoding methods are often
with minor differences. The encoding method used in this
paper is exactly the same as that in [10]. The initial population
is generated randomly.

B. Evolutionary Algorithms and Existent Results
The evolutionary algorithm chosen for designing

polymorphic circuits is (�, �)-ES [5, 10]. In this algorithm,
each individual of the population represents a potential
solution to the desired polymorphic circuit.

Generally, the procedure of the fitness evaluation of an
individual can be described as that in Fig. 1. For a circuit in the
ith mode with ni inputs and no outputs, the maximum fitness
value of Fiti is . When both weight factors and are set

to 1, it means the circuit in each mode is treated with equal
emphasis. For convenience, this kind of ES is called as
Conventional ES (CES). Using this method, several kinds of
polymorphic circuits using polymorphic gates as primary
building blocks were evolved [5]. However, the success rate of
evolutionary design of polymorphic circuits with CES is very
low. In [10], a Weighted Sum Method (WSM) is proposed to
improve the evolutionary process, where and are set
according to the evolutionary difficulties under different
modes.

o
n ni �2

1w 2w

/* Suppose the expected polymorphic circuit behaves as a function in
mode 1 and as a function in mode 2, and the weight factors for two

functions are denoted by and , respectively.*/

1f

2f

1w 2w
1. Initialize the fitness value and temporary variables 0�Fit 01 �Fit ,

02 �Fit .
2. For each input-output combination do

2.1 Set the circuit into mode 1 and calculate corresponding fitness ; 1Fit
2.2 Set the circuit into mode 2 and calculate corresponding fitness ; 2Fit

3. Calculate the fitness of the complete polymorphic circuit as
Fit = 1w � +1Fit 2w � 2Fit .

Fig. 1. The procedure of the fitness evaluation of an individual.

The typical results of both CES and WSM are listed in
TABLE I. It can be seen that the scale of the evolved
polymorphic circuits is small, and the success rate is still
relatively low.

All the six kinds of polymorphic circuits are also adopted
as the benchmark circuits in this paper.

TABLE I. THE RESULTS OF EXISTENT EVOLUTIONARY TECHNIQUES

Results [5] Results [10]
Num.Gates*

1w 1w= =12w = =1 2w Best Results Circuits Gates Used
Ave. Ave.

21 / wwSuc.Rate** Suc.Rate Suc.Rate[5] [10] (Std.) (Std.)

5b-parity-median-1 NAND/NOR 181654 152915 24 50 0.080 0.65 0.74 1/2000 XOR/XOR (106159) (102429)

 NAND/XOR 5b-parity-median-2 XOR/NOR 20 40 0.053 0.3 248480 145926 0.73 1/8192 (91685) (114312)
NAND/NOR 204399 169612 40 40 0.008 0.57 0.75 6/1 Mult2b-sn4b-1 AND/AND (104416) (85035)

ba�()/XOR 251233 215805 40 60 0.020 0.34 0.47 1/256 Mult2b-sn4b-2 (117700) (105613)ba�) XOR/(
NAND/NOR 207557 123375 40 40 0.055 0.59 0.84 48/1 2b-mult-add-1 OR/XOR (106129) (84513)
NAND/NOR 203779 137054 40 40 0.025 0.57 0.83 1/16 2b-mult-add-2 AND/AND (105874) (81271)

 *Num.Gates denotes the number of total gates in each chromosome.

 **Suc.Rate denotes the success rate.

1500

III. PROBLEM AND STRATEGY
As descriptions in the former section, the success rate of

existent Evolutionary Algorithms (EAs) is relatively low, even
for small-scale two-state polymorphic circuits.

The typical approaches for improving the evolutionary
ability is to design improved versions of to EAs [16], or to
introduce high-level functional components as the building
blocks instead of primary gates (i.e. function-level evolution)
[7], or to develop the Divide-and-Conquer techniques [17]. For
polymorphic circuits, due to their intrinsic complexity, neither
effective function-level evolution approaches nor Divide-and-
Conquer approaches have been proposed, so far.

Compared to the CES, though the WSM can effectively
improve the success rate and decrease required evolutionary
generations for most polymorphic circuits. However, the
WSM needs to set up the appropriate weight values. In this
paper, an evolutionary algorithm based on periodical weight
adjustment is proposed. It can change its weights periodically
according to a predefined function, without the need of efforts
to do a number of experiments to obtain appropriate weights.

IV. EVOLUTION STRATEGY WITH PERIODICAL WEIGHT
ADJUSTMENT

For a polymorphic circuit with n functions, the fitness
value can be calculated as (1).

)()(
1

xFitwxFit i

n

i
i �� �

�

 (1)

Where denotes the fitness of the chromosome x

under mode i, and denotes the corresponding non-negative
weight factor.

)(xFiti
iw

Generally, the weight factor is important and will affect the
efficiency of EAs. In [5] , both weight factors are actually set
to 1. In [10], the weight factors are set in advance, and during
the evolutionary process, the weight factors don’t change,
while in this study, the weight factors are set to change
periodically. For convenience, it is named as PWAM.

In the PWAM method, the weight factors are set to change
dynamically and periodically according to the sinusoid
function, which is expressed as (2).

nitw ii ��	
� 11)2sin((2)

Where n means the number of functions included in a
polymorphic circuit, and is calculated according to (3).
Additionally, each weight factor is added by 1 in order to
avoid being negative.

it

ni
Pd

PdDenPdiCGti ��
�	

� 1mod)/)1(((3)

The objective of (3) is to map the number of current
generation into interval [0, 1), where CG means the current
evolutionary generation in the evolutionary process. Pd means
period, i.e. the changing period of the weight values, for

example, if Pd=100, it means after 100 evolutionary
generations will be same with its original value. Generally,
Pd is set smaller than the maximum number of evolutionary
generations.

it

Due to the sinusoidal function in itself is periodical, (3) can
be simplified into (4).

ni
Pd

DenPdiCGt i ��
�	

� 1/)1((4)

Den is a positive number, which can be set to n or other
designated values. Its main function is to generate phase
difference.

For convenience, a new variable PhaseDifference is
defined as follows.

DenPd
DenPdiirencePhaseDiffe

 2/)]1([2 �

��
�� (5)

The unit for PhaseDifference is radian. For example, for a
3-state polymorphic circuit, generally Den can be set to 3, and
the phase difference between weights will be 3/2
 ; if Den is
set to 5, the phase difference between weights will be . 5/2

Among all the experiments, the case where
PhaseDifference=0 should be paid more attention. It does not
mean ��Den . In this situation, (4) should be rewritten as (6).
This means all weights are changing with evolutionary
generations but still keep same with each other.

ni
Pd

PdCGt i ��� 1mod (6)

V. EXPERIMENTS

In this section, experiments are done to test the
performance of PWAM.

A. Parameter Settings
In TABLE II, the parameters of Evolution Strategy are

given. The number of runs is 100, which means that each
polymorphic circuit is evolved 100 times independently. In all
the experiments, the mutation rate is 0.05.

TABLE II. PARAMETERS USED IN THE EXPERIMENTS

100 Number of runs
0.05 Mutation rate

1�Num.GatesCircuit layout
300,000 Maximum number of evolutionary generations

� 4
� 128

The gate array of the CGP model is 1 Num.Gates. That is
to say, r=1, and the number of columns c is equal to the
number of gates (Num.Gates). Since the number of candidate

�

1501

gates used to evolve different polymorphic circuits is not same,
c is not a fixed number. For fair comparisons, the number of
the gates used for each polymorphic circuit are the same as
those in [10] (see TABLE I).

Performance indicators are Suc.Rate and Ave. Suc.Rate
means average success rate, and Ave. means the average
evolutionary generations. As for Ave., when one run cannot
find a functionally correct circuit, the maximum number of
evolutionary generations is counted

B. Comparisons of Different Weight Adjustment Methods

In this section, the experimental results of the evolutionary
design of two-state polymorphic circuits are presented. The
intention of these experiments is to test how well the
periodical weight adjustment method behaves. For this group
of experiments PhaseDifference=

Fig. 2. The relationship between the period and the success rate

 .

TABLE III. EXPERIMENTAL RESULTS OF DIFFERENT WEIGHT
ADJUSTMENT METHODS

WSM PWAM
(The best results) (Period(Pd)=10000)Circuit
Suc.Rate Ave.(Std.) Suc.Rate Ave.(Std.)

152915 755130.74 0.91 5b-parity-median-1 (102429) (88219)
145926 1790300.73 0.59 5b-parity-median-2 (114312) (115166)
123375 944860.84 0.91 2b-mult-add-1 (84513) (90565)
137054 1237732b-mult-add-2 0.83 (81271) 0.84 (104959) Fig. 3. The relationship between the phase lag and the success rate

169612 72706Mult2b-sn4b-1 0.75 (85035) 0.98 (59359)
215805 139953Mult2b-sn4b-2 0.47 (105613) 0.89 (89029) algorithm. In the following experiments, the parameter Period

is fixed at 10000.
Fig. 3 reveals how the phase lag (i.e. PhaseDifference)

affects the success rate. Similar to the parameter Period, the
PhaseDifference is also not a sensitive value in a certain range.
The ideal value for PhaseDifference can be chosen from

(

The data in parentheses are standard deviations. As is
shown in TABLE III, PWAM works well than the WSM. It
can be observed that, for the circuit 5b-parity-median-2, the
performance of the PWAM is worse than that of the WSM.
For the circuit 2b-mult-add-2, the success rates of WSM and
PWAM are similar. For other four circuits, the PWAM is
much better than the WSM. Especially, for the circuit Mult2b-
sn4b-2, the success rate of the PWAM is higher than that of
WSM by 42%.

Due to the PWAM is better, it will be further analyzed in
the following sections.

C. The Impact of Parameters
1) Period and PhaseDifference
In this section, how the parameters Period (Pd) and

PhaseDifference will affect the performance of the PWAM are
evaluated.

Fig. 2 demonstrates how the Period affects the success rate.
It can be observed that, when the Period is too small or too
large, the success rate is relatively low. The ideal value for the
Period is between 2000 and 100000. Within this range, the
Period is not a sensitive parameter for the evolutionary

o60 6/2
) to (1o330 /112 �
 2). When the phase lag is set
to (0) or (o0 o360
2), it means there are no phase differences
among the weight factors.

2) The Number of Candidate Gates

This section explore the relationship between the number
of candidate gates and the success rate. The two-state
polymorphic circuits 5b-parity-median-2 and 2b-mult-add-1
are taken as a test workbench. Since the trend is evident, only
the test parameters of 5b-parity-median-2 are given in details
in TABLE IV.

In TABLE IV, when Period=10000, with the number of
candidate gates increases from 40 to 60, the success rate
increases from 59% to 72%, and the average generation
needed for obtaining a solution decreases. It seems the number
of candidate gates has much impact on the evolution process.
Since the selected CGP array consists of one row, the number
of columns c is same with the number of candidate gates.

1502

TABLE IV. THE RELATIONSHIP BETWEEN THE NUMBER OF CANDIDATE
GATES AND THE SUCCESS RATE

Period(Pd)=2000 Period(Pd)=10000 5b-parity-median-2 Suc.Rate Ave.(Std.) Suc.Rate Ave.(Std.)
Num.Gates=40 196087 179030

(i.e. c=40) 0.56 (113462) 0.59 (115166)
Num.Gates=60

(i.e. c=60) 0.71 148324
(117044) 0.72 145594

(114527)

Fig. 4. The number of candidate gates and the success rate

In order to reveal how the number of candidate gates
affects the performance of the PWAM, more experiments on
5b-parity-median-2 and 2b-mult-add-1 are conducted, and
experimental results are given in Fig. 4.

Fig. 5. The number of candidate gates and the average evolutionary
generation

From Fig. 4, it can be observed that the success rate
increases with the increment of the number of candidate gates.
When the number of candidate gates is large enough, the
success rate is close to 100%. As can be observed from Fig. 5,
for circuits 5b-parity-median-2 and 2b-mult-add-1, the average
evolutionary generation decreases gradually at first. However,

when the number of candidate gates exceeds 500, the
difference of average evolutionary generations is no longer
obvious.

D. Evolving a Three-State Polymorphic Circuit with the
PWAM
In order to compare the performance of the CES, in which

each weight factor is 1, with that of the PWAM, experiments
on a 3-state polymorphic circuit are conducted. The 3-state
polymorphic circuit is composed of a 2-bit multiplier, a 2-bit
adder and a 4-bit sort net. In this experiment, Num.Gates=80,
Period=10000.

TABLE V. EXPERIMENTAL RESULTS OF A 3-STATE POLYMORPHIC
CIRCUIT

Suc.Rate Ave.(Std.) The style of weight adjustment

1w = = =1 3w2w 0.46 220995(98169)

PhaseDifference= 98287(83570) 3/2
 0.92

1w = = 3w2w 0.69 174362(105860)
(same but changing)

From TABLE V, it can be observed that, when all weight

factors are set at 1 (i.e. the CES is used), the success rate is
only 42%. While with the PWAM (PhaseDifference= 3/2
),
the success rate is 92%. It is higher by 50%. The case in which
all weight factors are equal but changing simultaneously is
also given in TABLE V. Its performance is between those of
the former two cases.

Except for two-state polymorphic circuits, the PWAM can
be used to evolve more complex circuits. An evolved solution
for the 3-state polymorphic circuit is shown in Fig. 6.

The difference of success rate caused by PhaseDifference
on the evolution design of a 3-state polymorphic circuit is
given in TABLE VI. It is obvious that when the
PhaseDifference is not close to or 360o the result is
acceptable. No matter which value is chosen from [60o, 300o]
for PhaseDifference, the performance of the algorithm will not
change greatly.

o0

TABLE VI. THE RELATIONSHIP BETWEEN PHASEDIFFERENCE AND THE
PERFORMANCE OF THE PWAM

PhaseDifference (in Degree) Statistics 60 120 180 240 300 360
0.91 0.92 0.89 0.92 0.91 0.69 Suc.Rate

97872 98287 105107 103468 95128 174362Ave.
(94321) (83570) (89125) (92527) (90799) (105860)(Std.)

1503

Fig. 6. A three-state polymorphic circuit 2b-mult-add-sn4b. The inputs: A (0-1), B (2-3); the outputs: 0-3 (0-2 in case of adder); gates: 0-nand/nor/or, 1-
or/xor/nand, 2-and/nand/and, 3-nor/and/nor

VI. DISCUSSION AND CONCLUSIONS
In order to improve the ability of the evolutionary design

of polymorphic circuits, the periodical weight adjustment
method for Evolutionary Strategy, i.e. the PWAM is proposed.
The weight factors are made to change dynamically during the
evolutionary process. Experiments on six 2-state circuits
demonstrate that the PWAM is better than the CES and the
WSM in most cases.

A 3-state polymorphic circuit is evolved for the first time.
The PWAM shows much better performance. However, for a
polymorphic circuit with a bit large scale (e.g. a 3-bit
multiplier/3-bit adder); the PWAM still can not design it easily.
Therefore, in the future, the scalability is still an important
issue to be resolved and why PWAM is better than CES and
WSM should be further analyzed.

REFERENCES

[1] Adrian Stoica, Ricardo Zebulum and Didier Keymeulen, "Polymorphic

Electronics," in the 4th International Conference on Evolvable Systems:
From Biology to Hardware (ICES'01), Tokyo, Japan, 2001, pp. 291-301.

[2] Richard Ruzicka and Lukas Sekanina, "Physical Demonstration of
Polymorphic Self-Checking Circuits," in IEEE International On-Line
Testing Symposium, 2008, pp. 31-36.

[3] Adrian Stoica, Ricardo Zebulum and Didier Keymeulen, "Taking
evolutionary circuit design from experimentation to implementation:
some useful techniques and a silicon demonstration," IEE Proceedings
on Computers and Digital Techniques, vol. 151, pp. 295 - 300, 18 July
2004.

[4] Adrian Stoica, Ricardo Zebulum and Didier Keymeulen, "On
Polymorphic Circuits and Their Design using Evolutionary

Algorithms," in IASTED International Conference on Applied
Informatics(AI2002), Innsbruck, Austrilia, 2002.

[5] Lukas Sekanina, "Evolutionary Design of Gate-Level Polymorphic
Digital Circuits," in Applications on Evolutionary Computing:
EvoWorkkshops 2005, 2005, pp. 185-194.

[6] Lukas Sekanina and Zdenek Vasicek, "A SAT-based Fitness Function
for Evolutionary Optimization of Polymorphic Circuits " in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2012,
Singapore, 2012, pp. 96-103.

[7] Lukas Sekanina, Vojtech Salajka and Zdenek Vasicek, "Two-Step
Evolution of Polymorphic Circuits for Image Multi-Filtering," in WCCI
2012 IEEE World Congress on Computational Intelligence, Brisbane,
Australia, 2012, pp. 1-8.

[8] Z. Gajda and L. Sekanina, "On Evolutionary Synthesis of Compact
Polymorphic Combinational Circuits," Multiple-Valued Logic and Soft
Computing, pp. 607-631, 2011.

[9] Z. Gajda and L. Sekanina, "Gate-level optimization of polymorphic
circuits using Cartesian Genetic Programming," in IEEE Congress on
Evolutionary Computation, Trondheim, Norway, 2009, pp. 1599-1604.

[10] Houjun Liang, Wenjian Luo and Xufa Wang, "Designing Polymorphic
Circuits with Evolutionary Algorithm Based on Weighted Sum
Method," in the 7th International Conference on Evolvable Systems:
From Biology to Hardware (ICES'07), Wuhan, China, 2007, pp. 331-
342.

[11] Julian F. Miller, Cartisian genetic programming: Springer Berlin
Heidelberg, 2011.

[12] P. Burian, "Reduction of Fitness Calculations in Cartesian Genetic
Programming," in 2013 International Conference on Applied
Electronics (AE), Pilsen, 2013, pp. 1-6.

[13] P. Burian, "Compact Version of Cartesian Genetic Programming " in
2014 International Conference on Applied Electronics (AE), Pilsen,
2014, pp. 63-66.

[14] B.W. Goldman and W.F. Punch, "Analysis of Cartesian Genetic
Programming's Evolutionary Mechanisms," IEEE Transactions on
Evolutionary Computation, vol. 19, pp. 359-373, 2015.

1504

[15] Julian Miller and Dominic Job, "Principles in the Evolutionary Design
of Digital Circuits - Part I," in Genetic Programming and Evolvable
Machines. vol. 1, 2000, pp. 7-35.

[16] Michal Bidlo and Zdenek Vasicek, "Cellular Automata-Based
Development of Combinational and Polymorphic Circuits: A
Comparative Study," in International Conference on Evolvable Systems:
From Biology to Hardware (ICES'08), 2008, pp. 106-117.

[17] Emanuele Stomeo, Tatiana Kalganova and Cyrille Lambert,
"Generalized disjunction decomposition for evolvable hardware," IEEE
Transactions on Systems, Man and Cybernetics, Part B, vol. 36, pp.
1024-1043, 2006.

1505

