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Abstract—A polymorphic circuit can perform two or more 
functions under different conditions without the need of extra 
components. Those functions can be activated by environmental 
signals, such as temperature, power supply voltage, illumination, 
and so on. So far, existent evolutionary algorithms can only 
evolve polymorphic circuits at lower success rate. In this paper, 
the periodical weight adjustment method is proposed for the 
Evolutionary Strategy to evolve polymorphic circuits. The 
experimental results demonstrate that the periodical weight 
adjustment method can perform better than existent 
evolutionary techniques for polymorphic circuits, and it has the 
potential to evolve more complex polymorphic circuits, e.g., by 
this method a three-state polymorphic circuit is evolved for the 
first time. 

          

        

I. INTRODUCTION 
The concept of polymorphic electronics was proposed by 

Stoica et al [1]. Unlike traditional multifunctional electronics, 
which are based on switches or multiplexers, the polymorphic 
circuit does not need any extra components to switch its 
different functions, but by some external factors, such as 
power supply voltage, temperature and light [2-4]. 

The Evolutionary Algorithms (EAs) for designing the 
polymorphic circuits are firstly proposed by Sekanina and his 
colleagues [5-7]. The advantages of evolutionary design 
approaches are: i) the circuits designed by the evolutionary 
design approach often need fewer gates. ii) The evolutionary 
design approach can find novel and creative topologies for the 
circuits.  

Gajda and Sekanina have done a lot of important work on 
designing polymorphic circuits with evolutionary algorithms 
[5, 8, 9]. Especially in [8], two-state polymorphic circuits with 
8-inputs/8-outputs and 13-inputs/1-output have being evolved 
with the aid of the binary decision diagrams (BDD) and 
multiplexer. However, designing polymorphic circuits purely 
by evolutionary algorithms is still a hard problem. In [10], an 
improved Evolutionary Strategy (ES) based on weighted sum 
method was proposed to design polymorphic circuits. 

Nevertheless, this improved algorithm need to set weight 
factors manually, and the success rates are still relatively low. 
So, more effective design method should be developed. 

Because a polymorphic circuit has two or more different 
functions, it is necessary to balance the search preferences 
among different functions. The objective of the periodical 
weight adjustment method in this paper is to balance the 
search preference among different functions automatically. 
The experimental results demonstrate that the success rates are 
improved. The ES based on periodical weight adjustment can 
evolve polymorphic circuits more effectively and has the 
potential to evolve more complex polymorphic circuits, e.g. 
three-state polymorphic circuits. 

This paper proposes a method for designing polymorphic 
circuits by periodically adjusting weights, the rest is is 
organized as follows. Section II introduces some related work. 
Section III considers the existent problems. Section IV 
describes the Periodical Weight Adjustment Method (PWAM) 
in detail. Section V gives the experimental results. Finally, a 
brief conclusion is given in section VI. 

II. RELATED WORK 

A. Cartesian Genetic Programming 
The evolutionary algorithm adopted in this paper is based 

on Cartesian Genetic Programming (CGP) [11-14], which was 
originally introduced into Evolvable Hardware (EHW) field by 
Miller et al. [15]. CGP has already demonstrated its efficiency 
and is widely used for the evolutionary design of digital 
circuits [8, 9, 14]. The CGP model is described as follows. 

� Representation: CGP uses an array of c (columns) × r 
(rows) of Programmable Elements (PEs) to represent 
the desired circuit. The programmable elements can be 
traditional primary logic gates (e.g. AND, OR, NOT), 
or polymorphic gates (e.g. AND/OR, AND/AND), or 
high-level functional units. If r=1, it means the number 
of candidate PEs is same with c. 

� Connection: Each Programmable Element has its own 
inputs and outputs. The inputs of each PE can only be 
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connected to the previous columns or the circuit inputs, 
but cannot be connected to the latter columns. The 
interconnectivity of each PE is defined by the levels 
back parameter L, which determines how many 
previous columns can be connected to the current one. 
In this paper, L = c, and this means that all previous 
columns can be connected. It is noted that the PEs in 
the first column can only connect to the primary inputs 
of the circuit. 

In order that the expected circuit can be evolved under the 
control of EAs, the candidate circuits must be mapped into 
chromosomes. A chromosome is a string of parameters (genes) 
that are joined together. It represents a potential solution to a 
given problem and defines the topology of a candidate circuit. 
Although the CGP model is often adopted in evolvable 
hardware community, the exact encoding methods are often 
with minor differences. The encoding method used in this 
paper is exactly the same as that in [10]. The initial population 
is generated randomly. 

B. Evolutionary Algorithms and Existent Results 
The evolutionary algorithm chosen for designing 

polymorphic circuits is (�, �)-ES [5, 10]. In this algorithm, 
each individual of the population represents a potential 
solution to the desired polymorphic circuit.  

Generally, the procedure of the fitness evaluation of an 
individual can be described as that in Fig. 1. For a circuit in the 
ith mode with ni inputs and no outputs, the maximum fitness 
value of Fiti is . When both weight factors and are set 

to 1, it means the circuit in each mode is treated with equal 
emphasis. For convenience, this kind of ES is called as 
Conventional ES (CES). Using this method, several kinds of 
polymorphic circuits using polymorphic gates as primary 
building blocks were evolved [5]. However, the success rate of 
evolutionary design of polymorphic circuits with CES is very 
low. In [10], a Weighted Sum Method (WSM) is proposed to 
improve the evolutionary process, where  and  are set 
according to the evolutionary difficulties under different 
modes. 

o
n ni �2

1w 2w

/* Suppose the expected polymorphic circuit behaves as a function in 
mode 1 and as a function  in mode 2, and the weight factors for two 

functions are denoted by  and , respectively.*/ 

1f

2f

1w 2w
1. Initialize the fitness value  and temporary variables 0�Fit 01 �Fit , 

02 �Fit . 
2. For each input-output combination do 

2.1  Set the circuit into mode 1 and calculate corresponding fitness ; 1Fit
2.2  Set the circuit into mode 2 and calculate corresponding fitness ; 2Fit

3. Calculate the fitness of the complete polymorphic circuit as  
Fit = 1w �  +1Fit 2w � 2Fit . 

Fig. 1. The procedure of the fitness evaluation of an individual. 

The typical results of both CES and WSM  are listed in 
TABLE I. It can be seen that the scale of the evolved 
polymorphic circuits is small, and the success rate is still 
relatively low. 

All the six kinds of polymorphic circuits are also adopted 
as the benchmark circuits in this paper. 

 

TABLE I.  THE RESULTS OF EXISTENT  EVOLUTIONARY TECHNIQUES 

Results [5] Results [10] 
Num.Gates*

1w 1w= =12w = =1 2w Best Results Circuits Gates Used 
Ave. Ave. 

21 / wwSuc.Rate** Suc.Rate Suc.Rate[5] [10]  (Std.) (Std.) 

5b-parity-median-1 NAND/NOR 181654 152915 24 50 0.080 0.65 0.74 1/2000 XOR/XOR (106159) (102429)

 NAND/XOR 5b-parity-median-2 XOR/NOR 20 40 0.053 0.3 248480 145926 0.73 1/8192 (91685) (114312)
NAND/NOR 204399 169612 40 40 0.008 0.57 0.75 6/1 Mult2b-sn4b-1 AND/AND (104416) (85035) 

ba�( )/XOR 251233 215805 40 60 0.020 0.34 0.47 1/256 Mult2b-sn4b-2 (117700) (105613)ba� ) XOR/(
NAND/NOR 207557 123375 40 40 0.055 0.59 0.84 48/1 2b-mult-add-1 OR/XOR (106129) (84513) 
NAND/NOR 203779 137054 40 40 0.025 0.57 0.83 1/16 2b-mult-add-2 AND/AND (105874) (81271) 

                              *Num.Gates denotes the number of total gates in each chromosome. 

                                      **Suc.Rate denotes the success rate.  
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III. PROBLEM AND STRATEGY 
As descriptions in the former section, the success rate of 

existent Evolutionary Algorithms (EAs) is relatively low, even 
for small-scale two-state polymorphic circuits. 

The typical approaches for improving the evolutionary 
ability is to design improved versions of to EAs [16], or to 
introduce high-level functional components as the building 
blocks instead of primary gates (i.e. function-level evolution)
[7], or to develop the Divide-and-Conquer techniques [17]. For 
polymorphic circuits, due to their intrinsic complexity, neither 
effective function-level evolution approaches nor Divide-and-
Conquer approaches have been proposed, so far. 

Compared to the CES, though the WSM can effectively 
improve the success rate and decrease required evolutionary 
generations for most polymorphic circuits. However, the 
WSM needs to set up the appropriate weight values. In this 
paper, an evolutionary algorithm based on periodical weight 
adjustment is proposed. It can change its weights periodically 
according to a predefined function, without the need of efforts 
to do a number of experiments to obtain appropriate weights. 

IV. EVOLUTION STRATEGY WITH PERIODICAL WEIGHT 
ADJUSTMENT 

For a polymorphic circuit with n functions, the fitness 
value can be calculated as (1). 

)()(
1

xFitwxFit i

n

i
i �� �

�

 (1)

Where  denotes the fitness of the chromosome x 

under mode i, and  denotes the corresponding non-negative 
weight factor.  

)(xFiti
iw

Generally, the weight factor is important and will affect the 
efficiency of EAs. In [5] , both weight factors are actually set 
to 1. In [10], the weight factors are set in advance, and during 
the evolutionary process, the weight factors don’t change, 
while in this study, the weight factors are set to change 
periodically. For convenience, it is named as PWAM.  

In the PWAM method, the weight factors are set to change 
dynamically and periodically according to the sinusoid 
function, which is expressed as (2). 

nitw ii ��	
� 11)2sin(  (2)

Where n means the number of functions included in a 
polymorphic circuit, and  is calculated according to (3). 
Additionally, each weight factor is added by 1 in order to 
avoid being negative. 

it

ni
Pd

PdDenPdiCGti ��
�	

� 1mod)/)1(( (3)

The objective of (3) is to map the number of current 
generation into interval [0, 1), where CG means the current 
evolutionary generation in the evolutionary process. Pd means 
period, i.e. the changing period of the weight values, for 

example, if Pd=100, it means after 100 evolutionary 
generations  will be same with its original value. Generally, 
Pd is set smaller than the maximum number of evolutionary 
generations.  

it

Due to the sinusoidal function in itself is periodical, (3) can 
be simplified into (4). 

ni
Pd

DenPdiCGt i ��
�	

� 1/)1( (4)

Den is a positive number, which can be set to n or other 
designated values. Its main function is to generate phase 
difference. 

For convenience, a new variable PhaseDifference is 
defined as follows. 

DenPd
DenPdiirencePhaseDiffe 

 2/)]1([2 �

��
��  (5)

The unit for PhaseDifference is radian. For example, for a 
3-state polymorphic circuit, generally Den can be set to 3, and 
the phase difference between weights will be 3/2
 ; if Den is 
set to 5, the phase difference between weights will be . 5/2


Among all the experiments, the case where 
PhaseDifference=0 should be paid more attention. It does not 
mean ��Den . In this situation, (4) should be rewritten as (6). 
This means all weights are changing with evolutionary 
generations but still keep same with each other. 

ni
Pd

PdCGt i ��� 1mod  (6)

 

V. EXPERIMENTS 
 

In this section, experiments are done to test the 
performance of PWAM. 

A. Parameter Settings 
In TABLE II, the parameters of Evolution Strategy are 

given. The number of runs is 100, which means that each 
polymorphic circuit is evolved 100 times independently. In all 
the experiments, the mutation rate is 0.05.  

TABLE II.  PARAMETERS USED IN THE EXPERIMENTS 

100 Number of runs  
0.05 Mutation rate 

1�Num.GatesCircuit layout 
300,000 Maximum number of evolutionary generations

� 4 
� 128 

 

The gate array of the CGP model is 1 Num.Gates. That is 
to say, r=1, and the number of columns c is equal to the 
number of gates (Num.Gates). Since the number of candidate 

�
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gates used to evolve different polymorphic circuits is not same, 
c is not a fixed number. For fair comparisons, the number of 
the gates used for each polymorphic circuit are the same as 
those in [10] (see TABLE I).  

Performance indicators are Suc.Rate and Ave. Suc.Rate 
means average success rate, and Ave. means the average 
evolutionary generations. As for Ave., when one run cannot 
find a functionally correct circuit, the maximum number of 
evolutionary generations is counted 

B. Comparisons of Different Weight Adjustment Methods 
  

In this section, the experimental results of the evolutionary 
design of two-state polymorphic circuits are presented. The 
intention of these experiments is to test how well the 
periodical weight adjustment method behaves. For this group 
of experiments PhaseDifference=

Fig. 2. The relationship between the period and the success rate 

 


 . 

TABLE III.  EXPERIMENTAL RESULTS OF DIFFERENT WEIGHT 
ADJUSTMENT METHODS 

WSM PWAM 
(The best results) (Period(Pd)=10000)Circuit 
Suc.Rate Ave.(Std.) Suc.Rate Ave.(Std.)

152915 755130.74 0.91 5b-parity-median-1 (102429) (88219)
145926 1790300.73 0.59 5b-parity-median-2 (114312) (115166)
123375 944860.84 0.91 2b-mult-add-1 (84513) (90565)  
137054 1237732b-mult-add-2 0.83 (81271) 0.84 (104959) Fig. 3. The relationship between the phase lag and the success rate 

169612 72706Mult2b-sn4b-1 0.75 (85035) 0.98 (59359)  
215805 139953Mult2b-sn4b-2 0.47 (105613) 0.89 (89029) algorithm. In the following experiments, the parameter Period 

is fixed at 10000.  
Fig. 3 reveals how the phase lag (i.e. PhaseDifference) 

affects the success rate. Similar to the parameter Period, the 
PhaseDifference is also not a sensitive value in a certain range. 
The ideal value for PhaseDifference can be chosen from 

(

The data in parentheses are standard deviations. As is 
shown in TABLE III, PWAM works well than the WSM. It 
can be observed that, for the circuit 5b-parity-median-2, the 
performance of the PWAM is worse than that of the WSM. 
For the circuit 2b-mult-add-2, the success rates of WSM and 
PWAM are similar. For other four circuits, the PWAM is 
much better than the WSM. Especially, for the circuit Mult2b-
sn4b-2, the success rate of the PWAM is higher than that of 
WSM by 42%. 

Due to the PWAM is better, it will be further analyzed in 
the following sections. 

C. The Impact of Parameters 
1) Period and PhaseDifference 
In this section, how the parameters Period (Pd) and 

PhaseDifference will affect the performance of the PWAM are 
evaluated. 

Fig. 2 demonstrates how the Period affects the success rate. 
It can be observed that, when the Period is too small or too 
large, the success rate is relatively low. The ideal value for the 
Period is between 2000 and 100000. Within this range, the 
Period is not a sensitive parameter for the evolutionary 

o60 6/2
 ) to ( 1o330 /112 �
 2 ). When the phase lag is set 
to (0) or (o0 o360 
2 ), it means there are no phase differences 
among the weight factors. 

2) The Number of Candidate Gates 
 

This section explore the relationship between the number 
of candidate gates and the success rate. The two-state 
polymorphic circuits 5b-parity-median-2 and 2b-mult-add-1 
are taken as a test workbench. Since the trend is evident, only 
the test parameters of 5b-parity-median-2 are given in details 
in TABLE IV. 

In TABLE IV, when Period=10000, with the number of 
candidate gates increases from 40 to 60, the success rate 
increases from 59% to 72%, and the average generation 
needed for obtaining a solution decreases. It seems the number 
of candidate gates has much impact on the evolution process. 
Since the selected CGP array consists of one row, the number 
of columns c is same with the number of candidate gates. 
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TABLE IV.  THE RELATIONSHIP BETWEEN THE NUMBER OF CANDIDATE 
GATES AND THE SUCCESS RATE  

Period(Pd)=2000 Period(Pd)=10000 5b-parity-median-2 Suc.Rate Ave.(Std.) Suc.Rate Ave.(Std.)
Num.Gates=40 196087 179030 

(i.e. c=40) 0.56 (113462) 0.59 (115166)
Num.Gates=60 

(i.e. c=60) 0.71 148324 
(117044) 0.72 145594 

(114527)
 

 
Fig. 4. The number of candidate gates and the success rate 

In order to reveal how the number of candidate gates 
affects the performance of the PWAM, more experiments on 
5b-parity-median-2 and 2b-mult-add-1 are conducted, and 
experimental results are given in Fig. 4.  

 

 
Fig. 5. The number of candidate gates and the average evolutionary 
generation 

From Fig. 4, it can be observed that the success rate 
increases with the increment of the number of candidate gates. 
When the number of candidate gates is large enough, the 
success rate is close to 100%. As can be observed from Fig. 5, 
for circuits 5b-parity-median-2 and 2b-mult-add-1, the average 
evolutionary generation decreases gradually at first. However, 

when the number of candidate gates exceeds 500, the 
difference of average evolutionary generations is no longer 
obvious. 

D. Evolving a Three-State Polymorphic Circuit with the 
PWAM 
In order to compare the performance of the CES, in which 

each weight factor is 1, with that of the PWAM, experiments 
on a 3-state polymorphic circuit are conducted. The 3-state 
polymorphic circuit is composed of a 2-bit multiplier, a 2-bit 
adder and a 4-bit sort net. In this experiment, Num.Gates=80, 
Period=10000. 

TABLE V.  EXPERIMENTAL RESULTS OF A 3-STATE POLYMORPHIC 
CIRCUIT 

Suc.Rate Ave.(Std.) The style of weight adjustment 

1w = = =1 3w2w 0.46 220995(98169) 

PhaseDifference= 98287(83570)  3/2
 0.92 

1w = =  3w2w 0.69 174362(105860)
(same but changing) 

 
From TABLE V, it can be observed that, when all weight 

factors are set at 1 (i.e. the CES is used), the success rate is 
only 42%. While with the PWAM (PhaseDifference= 3/2
 ), 
the success rate is 92%. It is higher by 50%. The case in which 
all weight factors are equal but changing simultaneously is 
also given in TABLE V. Its performance is between those of 
the former two cases.  

Except for two-state polymorphic circuits, the PWAM can 
be used to evolve more complex circuits. An evolved solution 
for the 3-state polymorphic circuit is shown in Fig. 6. 

The difference of success rate caused by PhaseDifference 
on the evolution design of a 3-state polymorphic circuit is 
given in TABLE VI. It is obvious that when the 
PhaseDifference is not close to  or 360o the result is 
acceptable. No matter which value is chosen from [60o, 300o] 
for PhaseDifference, the performance of the algorithm will not 
change greatly.  

o0

TABLE VI.  THE RELATIONSHIP BETWEEN PHASEDIFFERENCE AND THE 
PERFORMANCE OF THE PWAM 

PhaseDifference (in Degree) Statistics 60 120 180 240 300 360 
0.91 0.92 0.89 0.92 0.91 0.69 Suc.Rate

97872 98287 105107 103468 95128 174362Ave. 
(94321) (83570) (89125) (92527) (90799) (105860)(Std.) 
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Fig. 6. A three-state polymorphic circuit 2b-mult-add-sn4b. The inputs: A (0-1), B (2-3); the outputs: 0-3 (0-2 in case of adder); gates: 0-nand/nor/or, 1-
or/xor/nand, 2-and/nand/and, 3-nor/and/nor 

 

VI. DISCUSSION AND CONCLUSIONS 
In order to improve the ability of the evolutionary design 

of polymorphic circuits, the periodical weight adjustment 
method for Evolutionary Strategy, i.e. the PWAM is proposed. 
The weight factors are made to change dynamically during the 
evolutionary process. Experiments on six 2-state circuits 
demonstrate that the PWAM is better than the CES and the 
WSM in most cases. 

A 3-state polymorphic circuit is evolved for the first time. 
The PWAM shows much better performance. However, for a 
polymorphic circuit with a bit large scale (e.g. a 3-bit 
multiplier/3-bit adder); the PWAM still can not design it easily. 
Therefore, in the future, the scalability is still an important 
issue to be resolved and why PWAM is better than CES and 
WSM should be further analyzed. 
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