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Abstract—In this paper we investigate the evolutionary design
of replicating tiles in cellular automata. In particular, various
sizes of the tiles will be considered whose replication ought to
be performed by satisfying a given arrangement of the tiles with
respect to each other. The goal is to determine the abilities of the
genetic algorithm in combination with conditionally matching
rules used for representing the transition functions of cellular
automata to find solutions for tiles consisting of up to a hundred
of cells. A comparative study will be presented considering the
success rate, computational effort and complexity of the obtained
solutions as the main values of interest. It will be shown that, in
addition to the tile size and the number of states of the cellular
automaton, the probability of finding a correct solution is also
substantially influenced by the arrangement style. The results
show that the tile arrangement that may be considered as the
simplest one does not have to necessarily be easily realisable
by the genetic algorithm as a transition function for a cellular
automaton.

I. INTRODUCTION

Self-organisation, replication and emergent behaviour in
general represent some of the popular issues often studied
with respect to systems which behaviour is typically spatially-
controlled (distributed) without any centralised control. As the
systems become more complex, these processes may represent
the only reasonable way of achieving a required state or condi-
tions for a correct operation. These phenomena are important,
among others, in nanotechnology, e.g. for designing new mate-
rials with some specific properties, molecular systems etc. [1].
Moreover, a study has been published demonstrating a platform
that utilizes self-organization in order to perform some kinds of
computation [2]. The area of potential applications is thus wide
and the research of those techniques may become increasingly
important in the near future.

Cellular automata (CA) represent a simple uniform plat-
form that provided a convenient way for the investigation of
the behaviour of complex systems. Since their introduction by
Ulam and von Neumann in 1966 [3] where self-reproduction of
computing structures was one of the primary goal researchers
have dealt, among others, how to effectively design a cellular
automaton (and its transition function in particular) to solve
specific tasks. Some of the most popular applications of CA
include the famous Conway’s Game of Life [4], simulation of

various concepts of universal computation [5][6] or modelling
physical and biological systems [7][8].

The problem of self-replication was investigated using var-
ious structures (usually known as replicating loops). Langton’s
loop [9] or some simplified variants like Byl’s loop [10]
or a loop of Chou and Reggia [11] probably represent the
most known instances. The replication task basically involves
a given structure that is able to make its identical copies
filling out the cellular space in a well-organised way. Although
the original Langton’s loop utilizes some concepts from von
Neumann’s universal constructor [3] (especially a construction
“arm” used to develop a copy of the loop according to some
“signal” states inside it), the CA development results in a
regular grid of static structures tessellating the cellular array.
The latter works tried to simplify this process while preserving
the original (abstract) Langton’s concept of the replication
control. The result is that the CA is tessellated by the given
structures (some of them can even exhibit dynamic behaviour
[10]) whose organisation in the cellular array is very similar.

In addition to the self-replication a growth of self-
organising structures in cellular automata has also been widely
studied both from theoretical and application perspective. In
such case the CA works as a generator of specific struc-
tures (patterns) with some given properties or abilities. Some
transition functions exist for one-dimensional (1D) CA whose
development produces a sequence of states that can be, for in-
stance, interpreted as pseudo-random numbers, Turing machine
simulation, square calculation or prime numbers [8][12]. In
[13] Basanta et al. used a genetic algorithm to evolve the rules
of effector automata (a generalised variant of CA) to create
microstructural patterns (similar to crystal structures known
from some materials). An important aspect of this work was
to investigate new materials with specific properties and their
simulation using computers. Suzudo proposed an approach to
the evolutionary design of 2D asynchronous CA for a specific
formation of patterns in groups in order to better understand of
the pattern-forming processes known from nature [14]. Elmen-
reich et al. proposed an original technique for growing self-
organising structures in CA whose development is controlled
by neural networks according to the internal cell states [15].

In general the study of the cellular automata behaviour
represents an important issue in the area of complex sys-
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tems. Considering the uniform structure of the CA as an
architecture potentially suitable for some future technologies,
the understanding of their capabilities and functioning at the
elementary level may become crucial for successful applica-
tions. Therefore, the research of efficient approaches to the
design (programming) of cellular systems and investigating
their features related to the emergent behaviour can provide
worthwhile pieces of knowledge both from the theoretical and
practical point of view.

A new approach for representing the transition functions
of the CA for the purposes of the evolutionary design called
conditionally matching rules (CMR) was proposed in [16].
This method showed as very promising even for the design
of complex cellular automata (e.g. see [17]). The experiments
showed that using the CMR approach in combination with
a genetic algorithm is able to provide solutions for some
problems in CA for which the conventional (table-based)
representation of the transition function failed.

For the purposes of this paper the CA will be investigated
with respect to their ability to replicate some specific tile-like
structures of various sizes and target arrangements. The goal is
to demonstrate that such CA can be discovered automatically
using a genetic algorithm in combination with the conditionally
matching rules. One of the key factors of this study is the aim
to discover various tessellation scenarios for squared tiles as
large as possible. The tessellation of the cellular array by the
tiles is performed through the process of the tile replication. It
will be shown that the success of finding working tessellation
rules for a given tile strongly depends, in addition to the tile
size, also on the required tessellation style.

II. FUNDAMENTALS OF CELLULAR AUTOMATA

The original concept of cellular automaton introduced in
[3], that will be considered in this paper, assumes a 2D matrix
of cells, each of which at a given moment acquires a state
from a finite set of states. The development of the CA is
performed synchronously in discrete time steps by updating
the cell states according to local transition functions of the
cells. Uniform cellular automata will be considered in which
the local transition function is identical for all cells and will be
denominated as a transition function of the CA. The state of a
cell in a subsequent time step depends on the combination of
states in the cell neighbourhood. In this paper von Neumann
neighbourhood will be assumed that includes the central (C)
cell to be updated and its immediate neighbours in the north
(N), south (S), east (E) and west (W) direction (i.e. the
neighbourhood of each cell consists of 5 cells in total).

Since the CA behaviour can be practically evaluated in
a finite-size cellular array, boundary conditions need to be
specified in order to correctly determine cell states at the edge
of the array. In this paper cyclic boundary conditions will be
implemented which means that the cells at an edge of the
CA are “connected” with the appropriate cells on the opposite
edge (i.e. these cells are considered as neighbours) in each
dimension. In case of the 2D CA the shape of the cellular
array can be viewed as a toroid.

The transition function is usually defined as a mapping
that for all possible combinations of states in the cellular
neighbourhood determines a new state. This mapping can be

represented as a set of rules of the form N W C E S → Ct+1

where N,W,C,E and S denote cell states in the defined
neighbourhood at a time t and Ct+1 is the new state of the
cell in the middle of the neighbourhood. It means that for
every possible combination of states N W C E S a new state
Ct+1 needs to be determined. However, if the number of cell
states increases (typically in non-binary, i.e. multi-state CA),
the number of possible transition rules grows exponentially
which is inconvenient for efficient CA design. Of course,
not all transition rules need to be specified explicitly but the
problem is how to choose the rules which modify the central
cell in the neighbourhood. In order to overcome this issue,
advanced representation was proposed in [16] and denominated
as Conditionally Matching Rules that allows to reduce the size
of representation of the transition functions. This approach will
be considered in this paper for the purposes of the evolutionary
design of cellular automata.

Fig. 1. Example of a conditionally matching rule specified for 5-cell
neighbourhood. The value of the new state is written in bold. (A) example of
a matching CMR, (B) example of a CMR that does not match – the second
and third condition is evaluated as false.

Fig. 2. Structure of a chromosome for genetic algorithm encoding a CMR-
based transition function. cx denote a condition for the cell at position x
in the neighbourhood, sx represents the state value to be investigated using
the appropriate condition with respect to the state of cell at position x, ns
specifies the next state for a given CMR. All the conditions and state values
are represented by integer numbers.

III. CONDITIONALLY MATCHING RULES

The concept of conditionally matching rules showed as a
very promising technique in comparison with the conventional
table-based approach considering various experiments with
binary cellular automata (e.g. in [16]) as well as more complex
multi-state CA [17].

A conditionally matching rule represents a generalized rule
of a transition function for determining a new cell state. Whilst
the common approach specifies a new state for each specific
combination of states in the cellular neighbourhood, the CMR
allows to specify a wider range of combinations in a single
rule. A CMR is composed of two parts: a conditional part and
a new state. The number of items (size) of the conditional
part corresponds to the number of cells in the cellular neigh-
bourhood. Let us define a condition item as an ordered pair
of a condition and a state value. The condition is typically
expressed as a function whose result can be interpreted either
as true or false. The condition function evaluates the state
value in the condition item with respect to state of a given cell
in the cellular neighbourhood. In particular, each item of the
conditional part is associated with a cell in the neighbourhood
with respect to which the condition is evaluated. If the result
of evaluation is true, then the condition item is said to match
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with the state of the appropriate cell in the neighbourhood.
In order to be able to determine the new state according to a
given CMR, all its condition items must match (in such case
the CMR is said to match).

The following condition functions will be considered:
== 0, 6= 0,≤,≥. Note that this condition set represents a
result of our long-term experimentation and experience with
the CMR approach and will be used for all the experiments
in this paper. The first two conditions == 0, respective 6= 0
evaluates whether the corresponding cell state is equal to 0 (i.e.
a “dead” state), respective whether it is different from state 0.
Note that the state value of the condition item for == 0 and
6= 0 is considered implicitly within the condition itself. The
remaining two conditions represent relational operators “less
or equal” and “greater or equal” for which the state value of
the condition item must be explicitly specified.

Figure 1 shows an example of conditionally matching
rules define for a 2D CA with 5-cell neighbourhood together
with illustration of cells the condition entities are related to.
CMR (A) is a matching CMR since all the conditions of its
conditional part are evaluated as true with respect to the sample
neighbourhood. On the other hand, CMR (B) does not match
because the second condition item ! = 2 evaluates as false
with respect to the west cell that possesses state 2. Similarly,
the third condition == 0 is not true as the central cell is in
state 2.

A CMR-based transition function can be specified as a
finite sequence of conditionally matching rules. The following
algorithm will be applied to determine a new state of a cell.
The CMRs are evaluated sequentially one by one. The first
matching CMR in the sequence is used to determine the new
state. If no of the CMRs matches, then the cell keeps its
current state. The conventions for evaluating and applying the
CMRs ensure that the process of calculating the new state
is deterministic (considering an assumption that the condition
functions are deterministic too). Therefore, it is possible to
convert the CMR-based transition function to a corresponding
table-based representation, preserving the fundamental concept
of cellular automata. Moreover, every condition set that in-
cludes relation == allows to formulate transition rules for a
specific combination of states if needed (by specifying == as a
condition for all items of the CMR similarly to the table-based
approach).

In order to obtain the conventional representation of the
transition function from an evolved CMR solution, the follow-
ing algorithm is applied using the same CA that was considered
during evolution. Let Ct and Ct+1 denote states of a cell in two
successive steps at the time t and t+1 respectively. A transition
rule of the form Nt Wt Ct Et St → Ct+1 is generated for
a given combination of states of the cellular neighbourhood
if Ct 6= Ct+1. This process is performed after each step and
for each cell until the CA reaches a stable or periodic state.
The set of (table-based) rules obtained from this transformation
process represents the corresponding conventional prescription
of the transition function.

IV. EVOLUTIONARY SYSTEM SETUP

A simple genetic algorithm (GA) was utilized for the evo-
lution of CMR-based transition functions in order to achieve a

Fig. 3. Structure of the tile and tessellation arrangements considered in this
paper: (a) Various sizes of the (squared) tile is considered which is given by
the parameter x. A single tile represents the initial CA state. (b)-(e) Various
tessellation styles are specified by a shift parameter determining a required
arrangement of the target (replicated) tile with respect to the initial tile. A line
of cells in state 0 is required to separate the tiles.

Fig. 4. Example of pattern transformation considering 8x8-cell tile whose
replica ought to be shifted by 1 cell upward: (a) initial CA state, (b) target
pattern (the thick rectangle represents the smallest bounding box of the initial
tile and its copy.

given behaviour in cellular automata. Each chromosome of
the GA represents a candidate transition function encoded
as a finite sequence of conditionally matching rules. The
chromosome is implemented as a vector of integers encoding
the condition items and next states of the CMRs. The length
of the chromosomes is given by the number of CMRs which
is specified as a parameter for a specific experiment. The
structure of a chromosome is shown in Figure 2.

The population of the GA consists of 8 chromosomes that
are initialized randomly at the beginning of the evolutionary
process. In each generation four individuals are selected ran-
domly from the current population the best one of which is
considered as a parent (i.e. it is a case of tournament selection
with the base 4). In order to generate an offspring, the parent
undergoes a process of mutation as follows. A random integer
M in range from 0 to 2 is generated. Then M random positions
within the parent chromosome are selected. The offspring is
created by replacing the original integers at these positions by
new randomly generated values. If M equals 0, the mutation
is not performed and the offspring is identical to the parent.
The selection and mutation is repeated until a whole new
population is created. Crossover is not applied because the
experiments showed no significant benefit of this operator with
respect to the obtained results.

Several sets of experiments were performed considering
various numbers of CMRs, sizes of the tiles and tessellation
styles. In particular, the tile is considered as a squared circuit
of cells in state 1 whose corners are represented by cells in
states 2, 3, 4 and 5 (see Figure 3a). Various sizes of the tile
are considered, a specific size is given by a parameter x that
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determines the number of cells of the tile side (i.e. for the
squared tiles the area occupied by the tile is x × x cells). A
tile of a specific size is considered as initial CA state. The
goal of each experiment is to find suitable transition rules of
the CA according to which the tile will replicate with respect
to a required tessellation style. The tessellation style specifies
the arrangement of the tile replica with respect to the initial
state or the previous replica (let us call it a predecessor). In
all cases the replica is required to emerge on the right of the
predecessor and separated by a single “column” of cells in
state 0. Various tessellation styles are considered in which the
tile replica is shifted upward by a given number of cells against
its predecessor. The number of cells of the shift is specified as
a parameter that determines vertical arrangement of the tiles
as shown in Figure 3b-e.

The following fitness function is considered to evaluate the
candidate solutions. A partial fitness is defined after each CA
step as the number of cells in correct state. A final fitness
is defined as the maximum from all the partial fitness values
for a given number of CA steps. The tile replication is thus
considered as a pattern transformation problem developing
a tile replica from the original (initial) tile. The CA state
containing the initial tile and its copy (satisfying the required
arrangement given by the shift value) is considered as a
target pattern. For example, if 8x8-cell tile is considered with
the shift parameter of value 1, then the CA initial state
corresponds to the pattern shown in Figure 4a and the target
state developed after a finite CA steps contains the original
tile and its replica on the right shifted by 1 cell upward as
illustrated in Figure 4b. Note that the CA size is chosen by two
cells larger on each side with respect to the target state marked
by a thick rectangle in order to allow to directly evaluate the
target pattern and not to strictly limit the tile development by
the CA boundary conditions. It means that for the example
from Figure 4 the maximal fitness value (given by the CA
size) corresponds to Fmax = 13× 21 = 273. Although only a
single copy of the tile is required during the evolution, the main
goal is to search for such solutions that are able to produce
more copies tessellating the cellular space with respect to the
given parameters. Therefore, the obtained results need to be
verified in larger CA in order to determine which of them are
general. For the purposes of this paper all solutions that are
able to develop more than two copies of the original tile are
considered as general.

Each set of experiments is performed for a specific setup
of the following parameters: the number of CMRs (considered
for the values 20, 30, 40 and 50), the size of the tile x
(considered sizes are 6, 8 and 10), the number of cell states
(the CA working with 6, 8 and 10 states) and the shift of
the tiles (considered by 0, 1, 4 and 7 cells). In order to
evaluate the fitness, the CA develops for 40 steps for the
tile size x = 10, for the smaller tiles (if x is 8 or 6)
the CA develops for 30 steps. For each setup (combination
of the aforementioned values) 100 independent evolutionary
runs are performed. The genetic algorithm is executed for a
maximum 2 millions of generations. If no correct solution is
found within this generation limit, the evolution is terminated.
The experiments were executed using the Anselm cluster1, the

1http://www.it4i.cz/?lang=en
https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview

execution time of a single evolutionary run was from 6 to 12
hours depending on the size of the tile (CA). The results were
analysed regarding the success rate, computational effort and
quality of the solutions generated by the CA.

Fig. 5. One of the best transition functions obtained for the 10 × 10-cell
tile whose arrangement is given by the parameter shift = 7. It consists of
112 rules and the tile replicates in 40 steps. This solution was evaluated as
general.

V. EXPERIMENTAL RESULTS

The experiments provided successful solutions for most
setups mentioned in Section IV. Several general solutions were
discovered for all considered sizes of the tiles. Table I sum-
marises the statistical results of all the considered evolutionary
experiments. Although the solutions of the tessellating tiles
were required to be static (i.e. a finished tile should not longer
change during the CA development), some general results
were identified that are able to generate more complex tile
behaviour that fulfils the fitness specification too. For example,
the tile possesses a blinking cell or a small part of the tile
changes periodically for several steps producing a dynamic
effect that does not lead to the tile destruction. These solutions
are described by “with a blinking cell” or “partially dynamic”
in Table I.

The results show that a wide variety of tile replication
processes can be discovered to tessellate the cellular space.
It is indicated by the minimal CA steps needed to produce
the target pattern in comparison with the maximal value of
this parameter that was specified as 40 steps for the 10× 10-
cell tiles and 30 steps for smaller tiles. The analysis of the
results showed that the number of steps needed to produce a
tile copy varies for the obtained solutions from the minimal
number for a given experiment up to the maximal value. It
can be seen that the number of obtained solutions (i.e. the
success rate) decreases with the tile size which is expectable
because the transformation process of a large structure can not
be considered as a trivial task. The 10×10-cell tile represents
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Fig. 7. Example of a general tessellation by means of a 10 × 10-cell tile
according to the transition function from Figure 5. The development took 480
steps in 50x50-cell CA using cyclic boundary conditions. The numbers in tiles
indicate their order of creation.

Fig. 8. Example a CA state from a 6×6-cell tile development in which state
changes can be observed over the whole tile area.(a) The 13th step showing
the tile under development, (b) the 21st steps after which the tile is finished.
The CA works with 6 cell states and its transition function consists of 70
effective rules. This solution was evaluated as general.

the largest structure of this type for which a working solution
was obtained so far in our sets of experiments. An interesting
phenomenon can be observed considering the scenarios with
various values of the shift parameters. The results from
Table I show that the highest success rate was achieved for
shift = 4. In this case the highest number of general solutions
can mostly be identified (especially for the smallest tile con-
sidered consisting of 6x6 cells). Surprisingly, the scenario with
shift = 0 (which can be visually considered as the simplest
tile arrangement) provided only 4 general solutions in total
which is the lowest value out of all the tessellation styles if
the shift parameter is considered. A possible explanation of
this fact may be in a complexity of the process transforming
the corners of the original tile onto its copy when the top and
bottom corners of both tiles lie at the same levels (see Figure
3a-b). Some of the potential solutions to overcome this issue
may be to increase the number of CMRs, the maximal number

of CA steps or to provide more evolution time. However, the
problem of scale would probably represent a major obstacle
for obtaining more successful solutions in a reasonable time.
Considering the number of cell states it can be observed that in
some cases more cell states provide slightly higher success rate
or the number of general solutions for a given tile size. It is
understandable because more cell states allow more rules to be
available for the tile transformation process, on the other hand,
however, an increase of the cell states causes an exponential
growth of the solution space needed to be explored by the GA
(the problem of scale). Therefore, the increase of the success
rate is rather low for the same generation limit.

In order to demonstrate some of the successful results in
more detail, the 10 × 10-cell tiles will be considered in CA
working with 10 cell states and shift = 7 which represents
one of the most complex setups investigated in this paper.
Figure 5 shows a transition function (in particular its table
form generated from the corresponding evolved CMR-based
representation) for the replication of the tile. The complete
CA development of a single replica from the initial state is
shown in Figure 6. The CA needs 40 steps in order to finish
the replication process which is the maximal value allowed
for this experiment. The transition function consists of 112
effective rules and represents one of the best solutions obtained
in this paper. As evident from Figure 6 the transformation
process starts from the upper-right corner which is probably
the simplest solution with respect to the fact that the replica
ought to be shifted 7 cells upwards against the original tile.
The development also shows that after the 10th step the replica
is created by a parallel construction of the left and bottom
edge of the tile and continues with the right and upper edge
that “close” the complete tile after the 40th step. More results
can be identified that construct the tiles by “following” its
edges which is actually a dominant approach evolved for the
successful solutions of larger tiles. One of the other solutions
for the 10 × 10-cell tile was found whose development takes
36 steps to finish the replica, its transition function contains
815 effective rules. This is the best result considering the
replication speed, however, the transition functions is several
times more complex than that from Figure 5. For smaller
tiles (especially 6 × 6-cell instances) the development often
utilizes also the “inner” part of the tile where the states are
altered during the tile construction and then progressively
“cleared” by setting states 0 before the replica is finished
(see an example state from a 6 × 6-cell tile development in
Figure 8). Although the results are able to develop tiles with
a required (regular) arrangement, the process of construction
from the initial state appears to be rather chaotic so it is
difficult to manually alter or optimize the transition function.
Note that all the mentioned results were evaluated as general,
i.e. the CA is able to produce more tile replicas with the given
arrangement (given by the shift parameter) if the development
continues. Figure 7 demonstrates a tessellation of 10 × 10-
cell tiles according to the transition function from Figure 5.
It is a case of ongoing development of the tile from Figure
6 if a larger CA is considered which shows the ability to
successfully perform the replication for the situation that was
not explicitly considered in the fitness evaluation performed
during the evolutionary process (i.e. for more than 40 steps of
the CA).
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Overall the results obtained from the experiments showed
an ability of the CA to perform a wide variety of trans-
formation processes that can be interpreted as a (general)
replication of tiles of given dimensions and shape. Although
no other specific operation was required in addition to the
copying te tiles, the information provided by the replication
process give rise of some open questions related to various
aspects of cellular automata. For example, could some of these
processes be utilized practically? For instance, the concept of
tessellation of an area by a specific entity may be interesting
in nanotechnology and artificial molecular systems to create
(or simulate the creation of) a surface with given properties.
Another view of the results may consider performing com-
putations (or more general information processing) using a
special encoding by means of cell states inside (or along with)
the transforming structures. For example, a concept of self-
replicating structures capable of computation were presented
in [18] which indicate that more similar techniques could
be possible using similar structures and suitable encoding
implemented in CA. Moreover, because of a primary interest
in uniform cellular automata, their physical realisation would
be feasible.

VI. CONCLUSIONS

This paper investigated automatic evolutionary design of
cellular automata in the problem of replication of tile-like
structures with some predefined arrangements in the cellular
array. The goal was to automatically dioscover suitable tran-
sition functions for the CA using genetic algorithm and Con-
ditionally Matching Rules and to determine some interesting
aspects of the design process and obtained results depending
on the setup parameters.

The results showed that it is possible to design general
replication functions for each of the considered tile sizes
in most sets of experiments. Although the discovery of the
transition functions represents a difficult task especially for
larger tiles, the evolution provided a wide variety of algorithms
that are able to successfully replicate the loops in CA satisfying
the given parameters. It was shown that the arrangement of
the tiles significantly influence both the success rate of the
evolution and the probability of discovering general solutions.
Specifically, the design of a CA for the replication of tiles lying
in the same horizontal “level” in the cellular array showed to be
much more difficult than if the tile replicas of the same size are
required to shift vertically by several cells with respect to each
other. This is an interesting observation because the tiles in the
same level can be considered as the simplest tessellation style.
Nevertheless, the successful experiments provided some results
for most of the considered setups. Note that the solutions
obtained for the 10×10-cell tiles in 10-state CA still represent
the largest and most complex structures of this type for
which transition functions were automatically designed by the
evolution.

The number of various solutions discovered in the experi-
ments indicates that there may be a big potential of the CA for
utilization of similar processes in some specific practical appli-
cations. The representation of the transition functions by means
of conditionally matching rules in combination with the genetic
algorithm still appears as an efficient tool to automatically
design cellular automata. Therefore, the research will continue

with investigating other specific processes and algorithms that
the CA may implement (including computations using some
unconventional encodings, simulation of biological or physical
phenomena and so on).
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TABLE I. STATISTICAL RESULTS OF THE EVOLUTIONARY EXPERIMENTS CONSIDERING THE DESIGN OF CELLULAR AUTOMATA TESSELLATING THE
TILES ACCORDING TO THE SCHEME FROM FIGURE 3. THE FOLLOWING INDICATORS WERE MEASURED: SUCC. RATE – THE NUMBER OF SUCCESSFUL

EXPERIMENTS OUT OF 100 INDEPENDENT RUNS, AVG. #GEN – THE AVERAGE NUMBER OF GENERATIONS NEEDED TO EVOLVE A WORKING SOLUTION, MIN.
STEPS – THE MINIMAL NUMBER OF STEPS OF THE CA NEEDED TO DEVELOP A TARGET PATTERN, MIN. RULES – THE MINIMAL NUMBER OF TABLE-BASED

TRANSITION RULES GENERATED FROM THE EVOLVED CMRS THAT ARE ABLE TO DEVELOP THE TARGET PATTERN, #GENERAL – THE NUMBER OF GENERAL
SOLUTIONS OUT OF THE SUCCESSFUL RESULTS IN A GIVEN SET OF EXPERIMENTS.

Tile: 6x6, 6-state CA
shift → 0 1 4 7

succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.
#CMRs rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules

20 19 1118918 18 40 10 1437378 18 52 5 1450986 22 74 0 - - -
30 9 1107742 14 47 19 928397 16 38 23 1082634 18 58 2 771103 28 143
40 3 1505039 14 82 11 1005075 18 70 22 1104610 17 60 2 621280 28 143
50 8 1254517 14 58 6 1229602 20 105 18 1085582 23 60 9 1192477 24 110

#general 0 17 30 0

Tile: 6x6, 8-state CA
shift → 0 1 4 7

succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.
#CMRs rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules

20 4 998526 19 66 10 1207402 16 66 7 1195744 23 41 0 - - -
30 7 1179472 13 45 17 1041444 17 57 24 1081683 18 60 0 - - -
40 12 704103 14 81 7 827102 16 95 27 1067662 18 59 2 845255 26 224
50 4 1368359 14 189 9 1079094 20 76 23 1132952 18 88 3 577865 28 161

#general 1 with a blinking cell 21 38 1 partially dynamic

Tile: 6x6, 10-state CA
shift → 0 1 4 7

succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.
#CMRs rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules

20 9 1120262 18 53 4 1390380 21 55 8 1097559 17 51 0 - - -
30 3 576642 20 58 11 1156451 17 56 13 1389473 19 57 0 - - -
40 9 1089556 14 43 19 1215044 18 60 20 1101590 17 54 1 591975 30 276
50 9 1309687 14 76 6 886018 28 68 28 1012288 18 71 1 438305 30 375

#general 1 20 34 0

Tile: 8x8, 6-state CA
shift → 0 1 4 7

succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.
#CMRs rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules

20 6 1086616 24 33 0 - - - 0 - - - 0 - - -
30 5 785931 24 41 1 1751265 26 298 1 449621 30 187 1 1012185 30 56
40 10 1256073 24 63 5 1100859 24 86 0 - - - 2 1050160 27 70
50 2 697325 24 234 2 1394366 22 119 3 1780271 28 98 1 1687649 30 243

#general 0 0 1 with a blinking cell 0

Tile: 8x8, 8-state CA
shift → 0 1 4 7

succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.
#CMRs rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules

20 7 850749 19 41 3 1484130 20 83 0 - - - 0 - - -
30 4 1256364 28 53 4 1365843 20 31 2 1489461 28 102 1 1338644 30 77
40 7 1028698 18 48 1 376047 30 325 4 1384559 26 127 0 - - -
50 9 950239 24 42 2 670553 30 136 6 1340406 25 52 1 1320655 27 135

#general 2 partially dynamic 2 7 1 with a blinking cell

Tile: 8x8, 10-state CA
shift → 0 1 4 7

succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.
#CMRs rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules

20 4 1732212 26 49 1 1720045 25 55 0 - - - 0 - - -
30 6 1172231 29 46 4 1081762 18 81 2 1931238 26 85 1 889316 30 357
40 7 1414253 22 44 3 811286 24 63 4 1354683 26 126 1 713803 30 156
50 4 1083095 18 88 1 751772 21 104 6 1248443 22 79 1 648766 28 119

#general 2 1 partially dynamic 8 0

Tile: 10 × 10, 6-state CA
shift → 0 1 4 7

succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.
#CMRs rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules

20 11 932021 34 42 1 1720787 39 116 0 - - - 0 - - -
30 6 755866 28 45 1 617867 34 93 0 - - - 3 1322751 36 86
40 3 964643 30 208 2 1113080 36 57 1 1928196 36 318 3 1155481 36 138
50 4 1383659 22 121 5 655085 30 128 0 - - - 3 1461295 40 101

#general 0 1 partially dynamic 0 2

Tile: 10 × 10, 8-state CA
shift → 0 1 4 7

succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.
#CMRs rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules

20 12 1094858 33 47 1 1092327 36 68 0 - - - 0 - - -
30 13 734892 31 42 8 1175000 24 53 0 - - - 2 1224878 32 110
40 11 742511 33 43 1 476685 40 159 2 1351586 34 88 2 883498 28 158
50 5 939542 22 49 1 859651 34 79 1 1317299 39 133 2 1217523 38 139

#general 0 0 0 2

Tile: 10 × 10, 10-state CA
shift → 0 1 4 7

succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.
#CMRs rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules rate #gen #steps #rules

20 7 1410195 34 43 0 - - - 0 - - - 1 1993618 30 58
30 8 1358227 36 51 6 1226543 30 64 1 734366 40 124 4 1575214 37 105
40 9 1031719 36 60 3 1263793 26 104 1 1527645 32 123 0 - - -
50 6 725987 22 58 4 909644 36 59 0 - - - 3 758387 33 94

#general 0 0 2 0
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Fig. 6. Development of a 10× 10-cell tile using the transition function from Figure 5. The sequence of steps reads from left to right and top to bottom.
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