
A Population Adaptation Mechanism for Differential 
Evolution Algorithm 

 

Johanna Aalto 
Department of Computer Science 

University of Vaasa 
Vaasa, Finland 

johanna.aalto@uva.fi 

Jouni Lampinen 
Department of Computer Science 

University of Vaasa 
Vaasa, Finland 

jouni.lampinen@uva.fi
 
 

Abstract— In the original Differential Evolution algorithm 
three different control parameter values must be pre-specified by 
a user. These parameters are the population size, the crossover 
constant and the mutation scale factor. Control parameters affect 
strongly the performance and reliability of the algorithm. 
However, choosing good parameters can be very difficult for a 
user. In this paper a new adaptive Differential Evolution 
algorithm called Cumu-DE is proposed. The aim of the algorithm 
is to be a user friendly and reliable algorithm with moderate 
convergence speed. In the proposed algorithm, the so called 
effective population size is adapted automatically using 
mechanism based on probability mass function. The actual 
population size is kept fixed. Even though we talk about two 
different population sizes, we have only one population. The 
effective population size describes the effective part of the actual 
population. The more we get successful trials, the smaller the 
effective population is and vice versa. The algorithm was initially 
evaluated by using the set of 25 benchmark functions provided 
by CEC2005 special session on real-parameter optimization. It 
was compared with the results of standard DE/rand/1/bin. The 
proposed algorithm Cumu-DE proved to be significantly faster 
due to its average of FES in four cases and significantly slower in 
six cases. Additionally, Cumu-DE was significantly more reliable 
in six cases and significantly less reliable in none. These results 
are demonstrating the potential of the proposed adaptation 
approach. 

 

I. INTRODUCTION 
Differential evolution (DE) algorithm is an evolutionary 

optimization method, which was first introduced by Storn and 
Price [1]. It is simple but yet an effective stochastic population-
based algorithm, which was originally designed to operate on 
continuous variables [2].  

Even though DE is one of the most successful algorithms 
for solving global optimization problems, there might be - as in 
many other evolutionary algorithms - difficulties for a user to 
choose appropriate control parameters. Often the user is not 
aware of or even interested in the complexity of tuning 
parameters. Control parameters affect substantially to 
performance and reliability of the algorithm. In DE, these 
control parameters are the population size NP, the crossover 
constant CR and the mutation scale factor F. Creating fully 

automatic plug-in solvers for global optimization requires an 
automatic adaptation to all three control parameters. 

Eiben [3] categorized the control parameter setting in three 
different classes: deterministic, adaptive and self-adaptive 
mechanism. When there is no feedback from the search 
process, the parameter control is called deterministic. In 
adaptive parameter control, there is some feedback obtained 
from the search process which can be used to tune parameters. 
In self-adaptive parameter control, parameters are encoded in 
individuals and they go through the recombination and 
mutation with the individual. In this paper, we propose an 
algorithm with adaptive approach.  

The aim of the algorithm is to adapt one of the control 
parameters – population size NP – automatically using a novel 
mechanism. The two other control parameters, F and CR, will 
be kept fixed. In the adaptation process, we tune the so called 
effective population size while the actual population size is 
kept fixed. Note, that even though we talk about two different 
population sizes, we do have only one population. The 
effective population size describes the very effective part of 
actual population.  

Briefly, the individuals for trial population are selected 
based on their probability. For example, if an individual has a 
very low probability, it is the most unlikely that it is selected 
for the trial population. The more individuals with low 
probability we have, the smaller the effective part of 
population is and vice versa. 

To calculate probabilities for each individual, we use a 
cumulative distribution function and a probability mass 
function which is also called a probability density function. 
Tuning these functions we can increase or decrease the 
effective population size in a needed direction. Increasing or 
decreasing depend on, how many successful trial vectors we 
had in previous generation. 

To compare the proposed approach Cumu-DE initially with 
the corresponding standard DE/rand/1/bin version, we used 25 
benchmark functions provided by CEC2005 special session on 
real-parameter optimization [4]. The statistical significance of 
the relative changes of FES was tested by the Wilcoxon two-
sample (the sum of rank) test and reliability rate by the Fisher 
exact test for 2-by-2 contingency table. 

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.214

1514



 
 

Cumu-DE was significantly faster in four cases and 
significantly slower in six cases. However, it was significantly 
more reliable in six cases and significantly less reliable in 
none. These results are motivating the studying further of the 
proposed adaptation approach. 

II. RELATED WORK 
A lot of research has been done within all of the categories 

Eiben introduced [3]. For example, Abbas et al. introduced 
both adaptive and self-adaptive versions of the Pareto-frontier 
Differential Evolution algorithm PDE [5, 6]. An adaptive 
algorithm FaDE [7] by Liu and Lampinen uses the fuzzy logic 
controller to adapt F and CR. Aalto and Lampinen introduces 
adaptive approaches in [8-10]. Also jDE [11] by Brest, JaDE 
by Zhang and Sanderson [12, 13], and Tvrdík in [14] use 
adaptive approaches. In self-adaptive approach called SaDE by 
Qin and Suganthan, a learning strategy is used to self-adapt F 
and CR [15, 16].  Mallipeddi and Suganthan introduced 
EPSDE in [17]. Tvrdík et al. compares adaptive variants in [18, 
19] and Tvrdík and Poláková in [20]. In CoDE by Wang et al. a 
multiple parameter setting approaches is combined [21]. 
Population adaptation has also been studied for example by 
Teo in [22, 23], Mallipeddi and Suganthan in [24], Teng in 
[25], Yang et al. in [26, 27] and many others. 

III. DIFFERENTIAL EVOLUTION ALGORITHM 
In this paper we applied a classic version of Differential 

Evolution algorithm, also called Classic DE or DE/rand/1/bin, 
both as a basis of constructing the proposed algorithm, and also 
to provide a baseline for experimental comparisons. All test 
functions used in this paper are global optimization problems, 
which can be expressed as in [1, 28]. 

First, the population will be initialized with random values 
generated within the given boundary constraints. From the first 
generation forward, vectors in the current population, PG are 
sampled and combined to create candidate vectors for the 
subsequent generation PG+1. The population of trial vectors 
P’G+1=uj, i, G+1, is generated as follows:  

 

( ), , 1 , , , , , ,3 1 2

, , 1

, ,

...

...if [0,1)

otherwise,

j i G j r G j r G j r G

j i G j

j i G

v x F x x

u rand CR j k

x

+

+

⎧ = + ⋅ −
⎪⎪= ≤ ∨ =⎨
⎪
⎪⎩

 (1) 

where { },..., ,i 1,2 NP= ,...,j 1,2 D= and { },...,k 1,2 D∈ . 

Additionally { }1 2 3 1 2 3, , ,..., | .r r r 1,2 NP r r r ì∈ ≠ ≠ ≠  

Coello gives guidelines how to choose the best constraint-
handling technique for different problems in [29]. In this study, 
if the trial vector violates possible boundary constraints, it will 
be handled as Liu and Lampinen [30] in (2). More detailed 
information of Differential Evolution algorithm can be found 
from [1] by Storn and Price.  

 , , , , ,( ) * [0,1]j i G j L j U j Lu x x x rand= + −  (2) 

IV. CUMULATIVE DISTRIBUTION FUNCTION, PROBABILITY 
MASS FUNCTION AND EXPECTED VALUE 

In this chapter we go through the basics of cumulative 
distribution function, probability mass function and the 
expected value. These contents are crucial when using Cumu-
DE.  

The cumulative distribution function (CDF) gives the 
probability P that a random variable X is less than or equal to 
the independent variable x. CDF is defined for discrete random 
variables as in (3). 

 F(x) = P(X ≤ x) (3) 

The probability P that a discrete random variable X takes 
on certain values x, is frequently denoted f(x). The function f(x) 
is typically called the probability mass function (PMF), 
although some authors also refer to it as the frequency function 
or probability density function. PMF is defined as in (4). 

 f(x) = P(X = x) (4) 

The expected value E(X), also known as population average 
μ of a discrete random variable X, is the average of all possible 
values based on their probability. The expected value of X is 
calculated by multiplying each possible value of the random 
variable by its probability and then adding the results up. E(X) 
is defined as in (5). 

 E(X) = ∑ x f(x) (5) 

In the proposed algorithm Cumu-DE, we adapt the so 
called effective population size NPeff using the mechanisms 
introduced above. In next chapter, we present the idea of this 
adaptation mechanism. 

V. CUMU-DE 
The basic idea of our algorithm is that we slow down the 

optimization process to achieve better reliability. It is obvious, 
that if we choose a population size large enough (population 
with all possible solutions), we can always find a feasible 
solution if there is one. However, this kind of procedure slows 
down the optimization process excessively. So, to choose a 
suitable population size can be very difficult for a user. Thus 
the goal of our algorithm is to be a user-friendly and reliable 
algorithm, which adapts the effective population size and finds 
a solution with moderate speed. To achieve this goal, we 
increase the effective population size when we get too many 
trials that fail or are even with corresponding vector in current 
population, and decrease the size when we have enough 
successful trials. Next we introduce this procedure more 
precisely. 

The Cumu-DE is identical with the classic DE/rand/1/bin 
algorithm with the exception of adaptation of the effective 
population size NPEff. Note, that even though we talk about two 
different population sizes, we still have only one population. 
The effective population size NPEff describes the effective part 

1515



 
 

of actual population NP. So, we have a fixed population size 
NP during the whole run. What we adapt during the run, is this 
very effective population size NPEff. Population is not sorted in 
any point of process. 

First we calculate the cumulative distribution function 
CDF, the probability mass function PMF and the expected 
value E(X), as introduced in previous section. In order to 
calculate CDF, we include an exponent value ExV as in (6). 
Next we calculate the probability mass function PMF as in (7) 
and (8). Population index is denoted by xi. 

 F(xi) = (xi / NP)ExV | i=1,2,…,NP (6) 

 f(1)=F(1) (7) 

 f(xi)=F(xi) - F(xi-1) | i=2,3,…,NP (8) 

After calculating PMF, we can calculate expected value as 
in (9). Finally we can resolve the effective population size as in 
(10). Examples 1 and 2 show how ExV defines NPeff. 

 E(X) = ∑ xi f( xi ) (9) 

 NPeff = 2 ( NP – E(X) ) + 1 (10) 

A. Example 1 
To achieve the same effective population size NPEff as the fixed 
population size NP (and like DE/rand/1/bin with population 
size NP), we define ExV=1. To keep the example simple, we 
choose NP=10. Table I reports the summary of calculations. 
Column 1 represents the individuals in population. Columns 2 
and 3 show CDF and PMF, respectively. Column 4 shows the 
run of iterations, when calculating E(X). Fig. 1 illustrates the 
CDF and PMF.  From lower chart we can see clearly, how all 
the individuals have same probability that they are selected to 
next trial population. The status is now equal with 
DE/rand/1/bin. 

TABLE I.   CDF, PMF, E(X) AND THE EFFECTIVE POPULATION SIZE, IN 
EXAMPLE 1, WHEN EXV = 1 

x CDF PMF xi f(xi) 
1 0,100 0,100 0,100 
2 0,200 0,100 0,200 
3 0,300 0,100 0,300 
4 0,400 0,100 0,400 
5 0,500 0,100 0,500 
6 0,600 0,100 0,600 
7 0,700 0,100 0,700 
8 0,800 0,100 0,800 
9 0,900 0,100 0,900 

10 1,000 0,100 1,000 
  E(X) 5,500 
  NP eff 10 

 

 

Fig. 1. CMF (upper) and PMF (lower) in Example 1, where NP=10, ExV = 1.  

B. Example 2 
With the exponent value ExV=3, we can achieve an 

effective population size, which is approximately half of the 
actual population size NP. We choose again NP=10. Table II 
reports the summary of calculations. Fig. 2 illustrates the CDF 
and PMF. Lower chart shows clearly, how the individuals from 
the beginning of population have very small probability that 
they are selected to next trial population. The status would now 
be same as DE/rand/1/bin with NP=5. 

 

 

TABLE II.  CDF, PMF, E(X) AND THE EFFECTIVE POPULATION SIZE IN 
EXAMPLE 2, WHEN EXV=3 

x CDF PMF xi f(xi) 
1 0,001 0,001 0,001 
2 0,008 0,007 0,014 
3 0,027 0,019 0,057 
4 0,064 0,037 0,148 
5 0,125 0,061 0,305 
6 0,216 0,091 0,546 
7 0,343 0,127 0,889 
8 0,512 0,169 1,352 
9 0,729 0,217 1,953 

10 1,000 0,271 2,710 
  E(X) 7,975 
  NPeff 5,050 

 

1516



 
 

 

Fig. 2. CMF (upper) and PMF (lower) in Example 2, where ExV = 3. 

Examples 1 and 2 show, that the effective population size 
NPEff can be adapted by changing the value of ExV, while the 
true population size NP is kept fixed.  

In the beginning of the optimization process, the effective 
population size NPEff has the same value as the actual 
population size NP. When creating trial population, we choose 
the target vectors and three other randomly selected vectors as 
follows: 

 As target vectors we choose the most probable individuals 
from end of the population. For example, if the effective 
population size NPEff is 20 and the actual population size NP is 
50, we choose the 20 most probable individuals for targets. In 
this case, the target vectors are found from indexes 31-50.  

Next we choose three vectors r1, r2 and r3 randomly. The 
only difference here between Cumu-DE and DE/rand/1/bin is 
that in Cumu-DE we choose these vectors on the grounds of 
their probability. Fig. 3 also shows the pseudocode of this 
procedure more precisely.  

After generating the trial population, Cumu-DE continues 
to select the next generation as DE/rand/1/bin. In this 
connection, we count every trial vector, which is strictly better 
(hit) than the comparable vector in the current population. We 
also count those selected trials, which are even (equal) with the 
comparable vector in current population. Variables hit and 
equal are needed in (11) and (12). 

As told previously, we need to change the value of ExV to 
adapt the effective population size NPEff. We cannot adapt 
NPEff directly, because we need to update probabilities first.  

 

Fig. 3. Pseudocode of choosing target vectors and three randomly selected 
vectors r1, r2 and r3 using PMF in Cumu-DE. 

However, adapting the NPEff using ExV is not that 
straightforward. The larger the effective population size is, the 
more even small variations of exponent value affect it, and vice 
versa. As a consequence, the degree of increase or decrease of 
ExV depends on the current effective population size NPEff. If 
we need to have larger effective population size, we update 
ExV as in (11). When smaller NPEff is needed, we use equation 
as in (12).  

 ExV = ExV - (1-(NPeff  / NP)) (11) 

 ExV = ExV + hit * (NPeff  / NP) (12) 

The reason, why we have two different update values       
(1- (NPeff / NP)) and (NPeff / NP) is, that the smaller effective 
population size we have, the faster we want to increase it to 
avoid premature convergence. Respectively, the larger 
effective population size we have, the faster we want to 
decrease it to avoid optimization process getting too slow. 
Also, if we already have a small effective population size and 
we still get more strictly better trials, we are in no hurry to 
decrease the effective population size to be even smaller. The 
smaller effective population size we have, the less it is 
decreasing and vice versa. Table III shows some examples of 
how the update values (columns 3 and 4) affect ExV and NPEff. 

According to our comprehensive tests, it is sufficient to 
check if ExV needs to be updated only once in every NP:th 
generation. If hit > 0, we increase ExV to get a smaller 
effective population. If hit <= 1, we decrease the ExV to get 
larger NPeff. In addition, when we find selected trials which 
have equal value than corresponding vector in current 
population (equal), we need to update ExV every generation. In 
this case, ExV is decreased even more as in (13). This 
procedure helps to avoid premature convergence of population.  

 ExV = ExV – equal * (1-(NPeff  / NPx)) (13) 

1517



 
 

The whole procedure of adapting process can be found in 
Fig. 4. 

 

Fig. 4. Pseudocode of adapting process in Cumu-DE. Value of exponent ExV 
is updated. 

TABLE III.  EXAMPLE OF EXV, NPEFF AND UPDATE VALUES. 

ExV ≈ NPeff ≈ NPeff/N ≈ 1-(NPeff/N)≈ 
1,00 50 1,00 0,00 
1,22 45 0,90 0,10 
1,50 40 0,80 0,20 
1,86 35 0,70 0,30 
2,35 30 0,60 0,40 
3,00 25 0,50 0,50 
4,00 20 0,40 0,60 
5,68 15 0,30 0,70 
9,00 10 0,20 0,80 

10,20 9 0,18 0,82 
11,50 8 0,16 0,84 
13,40 7 0,14 0,86 
15,70 6 0,12 0,88 
19,20 5 0,10 0,90 
24,50 4 0,08 0,92 

 

VI. EXPERIMENTAL SETTINGS 
To compare DE/rand/1/bin and Cumu-DE with each other, 

we used 25 benchmark functions and experimental 
arrangements as provided for CEC2005 special session on real-
parameter optimization [4]. The most important evaluation 
criteria are: 

 

• 25 ten-dimensional minimization problems.  

• Runs per problem: 25. 

• Max_FES: 20000*D. Due to slowing down the 
optimization process, we define Max_FES larger than in 
[4]. 

• Terminate before reaching Max_FES, if the error in the 
function value is 10e-8 or less.  

• In both algorithms F and CR has been initialized to 0.9, 
which is often considered as a robust setting without 
unnecessary stagnation risk. 

• For DE/rand/1/bin: NP has been optimized similarly as 
in [31] by Rönkkönen et al. 

• For Cumu-DE: NP = 5 * D, to get population size large 
enough and thus avoid stagnation risk. 

• For Cumu-DE: NPEff = NP at the start of every run. 

• 1 < ExV <= NP/2 to keep effective population size 
between 4 and NP.  

To measure statistical significance between algorithms, the 
mean of the number of function evaluations FES was tested by 
Wilcoxon two-sample (sum of ranks) test and the reliability 
rate by the Fisher exact test for 2-by-2 contingency table as in 
[19]. The relative change of FES was evaluated as in (14). 

 Δfes = (FESCumu-DE – FESDE ) / FESDE )*100, (14) 

where FESCumu-DE and FESDE are the average numbers of 
function evaluations of Cumu-DE and DE/rand/1/bin, 
respectively.  

VII. RESULTS 
Only those problems, which at least one algorithm could 

solve at least once, are presented. Table IV presents number of 
FES to achieve the fixed accuracy level with mean, standard 
deviation, success rate and success performance for both 
Cumu-DE and DE/rand/1/bin (Classic-DE). It also shows the 
relative change (in %) due to Cumu-DE (Δfes) and its 
significance by Wilcoxon test (W). Note, that negative value of 
Δfes means better convergence with respect to average FES. In 
columns W and FT (FT=significance by Fisher test) the symbol 
‘+’ means better performance for Cumu-DE and symbol ‘-‘ 
better performance for DE/rand/1/bin. If there is no significant 
difference at the level 0.05, the corresponding cell is left 
empty. 

Results show that significant increase of FES was detected 
in six problems and significant decrease of FES in four 
problems. So, the Cumu-DE was slower in most cases, as 
expected. In 15 problems, there was no significant difference 
between algorithms (Table IV). 

Comparison of the reliability by Fisher test shows, that 
Cumu-DE was significantly better in five cases, including for 
example Shifted Rastrigin’s Function, Shifted Rotated 
Weierstrass Function and Schwefel’s Problem. Its success rate 
was also better in case 6 (Shifted Rosenbrock’s Function), 
although there were no significant difference comparing to 
DE/rand/1/bin. Cumu-DE was not significantly worse in any 
cases. In 20 problems there was no significant difference 
between algorithms (Table IV). 

Table V shows error values achieved for problems 1 – 5. 
Table VI shows error values achieved for problems 6, 9, 11-12 
and 15. Fig. 5 shows an example of progress of effective 
population size NPeff, and corresponding convergence graph for 
function 5 median run during the optimization process.  

VIII. CONCLUSIONS 
In this paper we proposed an adaptive version of 

Differential Evolution algorithm called Cumu-DE. The 
algorithm is adapting the so called effective population size 

1518



 
 

NPeff. The aim was to give the user an easier way to use DE, 
by taking care of population size automatically. The second 
goal was to make algorithm as reliable as possible.  Both 
expectations were achieved. First, a user does not need to 
choose the population size, which is one of the three control 
parameters. The algorithm takes care of it. Secondly, our 
algorithm was significantly more reliable in five cases and less 
reliable in none. Additionally, Cumu-DE was significantly 
faster based on average of FES in four cases. It was 
significantly slower in six cases.  

The algorithm was compared to the standard DE algorithm 
DE/rand/1/bin/. We used 25 benchmark functions provided by 
CEC2005 special session on real-parameter optimization. We 
used Wilcoxon two-sample sum of rank test and Fisher exact 
test for 2-by-2 contingency table to compare statistical 
significance of relative change of FES and reliability rate 
respectively. 

Thus this mechanism with current results is justifying and 
motivating further studying of the proposed adaptation 
approach. The next step is to investigate the possibility to 
combine Cumu-DE with EWMA-DEFCr, which is introduced 
in [10]. In EWMA-DEFCr the two other control parameters; F 
and CR are adapted automatically based on exponentially 
moving average. If the combining of these two algorithms is 
successful, we have a control parameter free algorithm. Finally 
we compare these variants with the contemporarily top-rated 
Differential Evolution algorithms. 

REFERENCES 
 

[1] R. Storn and K. Price, "Differential evolution – A simple and efficient 
heuristic for global optimization over continuous spaces", Journal of 
Global Optimization, Vol 11, pp. 341-359, 1997.  

[2] R. Storn and K. Price, "Differential evolution-a simple and efficient 
adaptive scheme for global optimization over continuous spaces", 
International Computer Science Institute Publications, 1995. 

[3] E. Eiben, "Parameter control in evolutionary algorithms", IEEE 
Transactions On Evolutionary Computation, pp. 124-141, 1999. 

[4] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. Chen, A. Auger and 
S. Tiwari, "Problem definitions and evaluation criteria for the CEC 2005 
special session on real-parameter optimization" Nanyang Technological 
University, Singapore, Technical Report, 2005. 

[5] H. A. Abbass, R. Sarker and C. Newton, "PDE: A pareto-frontier 
differential evolution approach for multi-objective optimization 
problems", Proceedings of the Congress on Evolutionary Computation, 
pp. 971-978, 2001.  

[6] H. A. Abbass and R. Sarker, "The pareto differential evolution 
algorithm",  International Journal of Artificial Intelligence Tools, Vol. 
11, pp. 531-552, 2002. 

[7] J. Liu and J. Lampinen, "A fuzzy adaptive differential evolution 
algorithm", Soft Computing, Vol. 9, pp. 448-462, 2002.  

[8] J. Aalto and J. Lampinen, "A mutation adaptation mechanism for 
Differential Evolution algorithm", IEEE Congress on Evolutionary 
Computation, pp. 55-62, 2013. 

[9] J. Aalto and J. Lampinen, "A crossover adaptation mechanism for 
Differential Evolution algorithm," Mendel - International Conference on 
Soft Computing, pp. 19-24, 2013. 

[10] J. Aalto and J. Lampinen, “A mutation and crossover adaptation 
mechanism for Differential Evolution algorithm", IEEE Congress on 
Evolutionary Computation, pp. 451-458, 2014. 

[11] J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer, "Self-
adapting control parameters in differential evolution: A comparative 
study on numerical benchmark problems", IEEE Transactions on 
Evolutionary Computation, pp. 646-657, 2006. 

[12] J. Zhang and A. C. Sanderson, “JADE: Self-adaptive differential 
evolution with fast and reliable convergence performance”, IEEE 
Congress on Evolutionary Computation, pp. 2251 – 2258, 2007. 

[13] J. Zhang, “JADE: Adaptive differential evolution with optional external 
archive”, IEEE Transactions on Evolutionary Computation, pp. 945-958, 
2009. 

[14] J. Tvrdík, I. Křivý, and L. Mišík “Adaptive population-based search: 
Application to estimation of nonlinear regression parameters”, 
Computational Statistics & Data Analysis, Vol. 52, pp. 713-724, 2007.  

[15] Qin and P. Suganthan, “Self-adaptive differential evolution algorithm 
for numerical optimization”, IEEE Congress on Evolutionary 
Computation, 2005. 

[16] A. K. Qin, “Differential evolution algorithm with strategy adaptation for 
global numerical optimization”, IEEE Transactions on Evolutionary 
Computation, pp. 398-417, 2009. 

[17] R. Mallipeddi, P. N. Suganthan, Q. K. Pan and M. F. Tasgetiren, 
“Differential evolution algorithm with ensemble of parameters and 
mutation strategies”, Applied Soft Computing, Vol. 11, pp. 1679-1696, 
2011. 

[18] J. Tvrdík, “Adaptation in differential evolution: A numerical 
comparison”, Applied Soft Computing, Vol. 9, pp. 1149-1155, 2009.  

[19] J. Tvrdík, R. Poláková, J. Veselský and P. Bujok, “Adaptive variants of 
differential evolution: Towards control-parameter-free optimizers”, 
Handbook of Optimization, 2013.  

[20] R. Poláková and J. Tvrdík, “Competitive differential evolution algorithm 
in comparison with other adaptive variants”, Soft Computing Models in 
Industrial and Environmental Applications, 2013. 

[21] Y. Wang, Z. Cai and Q. Zhang “Differential evolution with composite 
trial vector generation strategies and control parameters”, IEEE 
Transactions On Evolutionary Computation, Vol. 15, pp. 55-66, 2011.  

[22] J. Teo, “Differential evolution with self-adaptive populations”, 
Knowledge-Based Intelligent Information and Engineering Systems, pp. 
1284-1290,  2005. 

[23] J. Teo, “Exploring dynamic self-adaptive populations in differential 
evolution”, Soft Computing - A Fusion of Foundations, Methodologies 
& Applications, Vol. 10, pp. 673-686, 2006.  

[24] R. Mallipeddi, “Empirical study on the effect of population size on 
differential evolution algorithm”, IEEE Congress on Evolutionary 
Computation, pp. 3663 - 3670, 2008. 

[25] S. T. Nga, “Self-adaptive population sizing for a tune-free differential 
evolution”, Soft Computing - A Fusion of Foundations, Methodologies 
& Applications, Vol. 13, pp. 709-724 , 2009.  

[26] M. Yang, “An improved adaptive differential evolution algorithm with 
population adaptation”, Proceeding of the Fifteenth Annual Conference 
on Genetic and Evolutionary Computation Conference, 2013.  

[27] M. Yang, C. Li, Z. Cai and J. Guan, “Differential evolution with auto-
enhanced population diversity”, IEEE Transactions on Cybernetics, Vol. 
45, pp. 302-315, 2015. 

[28] J. Lampinen, “Global optimization by differential evolution”, 
Optimization, 1999.  

[29] A. Coello Coello, “Theoretical and numerical constraint-handling 
techniques used with evolutionary algorithms: A survey of the state of 
the art”, Computer Methods in Applied Mechanics and Engineering, 
Vol. 191, pp. 1245-1287, 2002. 

[30] J. Liu and J. Lampinen, “Adaptive parameter control of differential 
evolution”, MENDEL - Proceedings of the 8th International Conference 
on Soft Computing, pp. 19–26 , 2002. 

[31] J. Rönkkönen, S. Kukkonen and K. V. Price, “Real-parameter 
optimization with differential evolution”, IEEE Congress on 
Evolutionary_Computation,-pp.-506-513,_2005.

1519



 
 

 

Fig. 5. Progress of convergence (upper chart) and population adaptation (lower chart) for median run of function 5 – Schwefel’s Problem 

 

TABLE IV.  NUMBER OF FES, SUCCESS PERFORMANCE FOR CUMU-DE AND CLASSIC DE (DE/RAND/1/BIN), RELATIVE CHANGE OF FES  DUE TO CUMU-DE 
AND ITS SIGNIFICANCE BY WILCOXON TEST, P-VALUES OF RELIABILITY CHANGE DUE TO CUMU-DE AND ITS SIGNIFICANCE BY FISHER TEST FOR PROBLEMS 1-6, 9, 

11-12 AND 15. 

Strategy Fno 1st 7th 13th 19th 25th Mean Std Su SuccRate SuccPerf Δfes W p –value FT 
Cumu-DE 1 1,19E+04 1,70E+04 2,11E+04 2,45E+04 2,76E+04 2,09E+04 4,80E+03 25 100 % 2,09E+04 26 - 1  Classic-DE 1 1,47E+04 1,59E+04 1,65E+04 1,70E+04 1,80E+04 1,65E+04 8,42E+02 25 100 % 1,65E+04 
Cumu-DE 2 2,84E+04 3,83E+04 4,19E+04 4,38E+04 5,86E+04 4,11E+04 6,50E+03 25 100 % 4,11E+04 79 - 1  Classic-DE 2 1,97E+04 2,18E+04 2,33E+04 2,44E+04 2,57E+04 2,29E+04 1,61E+03 25 100 % 2,29E+04 
Cumu-DE 3 1,36E+05 1,65E+05 1,84E+05 2,00E+05 2,00E+05 1,70E+05 1,56E+04 15 60 % 2,84E+05 -12 + 9,96E-05 + Classic-DE 3 1,89E+05 2,00E+05 2,00E+05 2,00E+05 2,00E+05 1,93E+05 6,12E+03 2 8 % 2,42E+06 
Cumu-DE 4 2,97E+04 4,76E+04 5,25E+04 5,69E+04 7,37E+04 5,18E+04 9,94E+03 25 100 % 5,18E+04 94 - 1  Classic-DE 4 2,23E+04 2,50E+04 2,72E+04 2,80E+04 3,07E+04 2,67E+04 2,21E+03 25 100 % 2,67E+04 
Cumu-DE 5 9,94E+04 1,11E+05 1,24E+05 1,34E+05 1,61E+05 1,24E+05 1,60E+04 25 100 % 1,24E+05 105 - 1  Classic-DE 5 5,36E+04 5,89E+04 6,00E+04 6,13E+04 6,78E+04 6,07E+04 3,11E+03 25 100 % 6,07E+04 
Cumu-DE 6 3,13E+04 3,47E+04 4,16E+04 5,09E+04 2,00E+05 4,25E+04 8,36E+03 23 92 % 4,62E+04 73 - 3,26E-01  Classic-DE 6 1,67E+04 2,29E+04 2,52E+04 2,75E+04 2,00E+05 2,46E+04 3,19E+03 22 88 % 2,79E+04 
Cumu-DE 9 6,34E+04 1,38E+05 2,00E+05 2,00E+05 2,00E+05 1,23E+05 2,94E+04 10 40 % 3,07E+05 645 - 2,19E-03 + Classic-DE 9 1,65E+04 2,00E+05 2,00E+05 2,00E+05 2,00E+05 1,65E+04 0,00E+00 1 4 % 4,12E+05 
Cumu-DE 11 1,28E+05 1,80E+05 2,00E+05 2,00E+05 2,00E+05 1,65E+05 2,21E+04 10 40 % 4,12E+05 -6 + 2,19E-03 + Classic-DE 11 1,75E+05 2,00E+05 2,00E+05 2,00E+05 2,00E+05 1,75E+05 0,00E+00 1 4 % 4,37E+06 
Cumu-DE 12 2,50E+04 4,12E+04 4,67E+04 6,40E+04 2,00E+05 4,54E+04 1,08E+04 20 80 % 5,67E+04 -77 + 1,13E-09 + Classic-DE 12 2,00E+05 2,00E+05 2,00E+05 2,00E+05 2,00E+05 0,00+00 0,00+00 0 0 % 0,00+00 
Cumu-DE 15 6,96E+04 1,08E+05 2,00E+05 2,00E+05 2,00E+05 9,82E+04 3,23E+04 9 36 % 2,73E+05 -51 + 8,12E-04 + Classic-DE 15 2,00E+05 2,00E+05 2,00E+05 2,00E+05 2,00E+05 0,00+00 0,00+00 0 0 % 0,00+00 

 
 
 

1520



 
 

TABLE V.  ERROR VALUES ACHIEVED WHEN FES=1E3, FES=1E4, FES=1E5 AND FES=2E5 FOR PROBLEMS 1-5. 

  Probl. Function 1 Function 2 Function 3 Function 4 Function 5 
FES   Cumu-DE Classic DE Cumu-DE Classic DE Cumu-DE Classic DE Cumu-DE Classic DE Cumu-DE Classic DE 

1,
00

E
+0

3 

1.st 1,13E+03 1,04E+03 4,59E+03 3,51E+03 1,32E+07 1,57E+07 3,66E+03 2,84E+03 8,74E+03 6,22E+03 
7.th 4,37E+03 1,76E+03 7,90E+03 5,45E+03 3,63E+07 4,67E+07 9,30E+03 4,79E+03 1,14E+04 8,44E+03 
13.th 5,39E+03 2,33E+03 1,03E+04 6,41E+03 5,24E+07 5,42E+07 1,10E+04 6,63E+03 1,17E+04 9,26E+03 
19.th 6,29E+03 2,75E+03 1,15E+04 8,37E+03 7,56E+07 7,75E+07 1,30E+04 8,19E+03 1,29E+04 9,89E+03 
25.th 7,63E+03 4,08E+03 1,54E+04 1,13E+04 1,27E+08 9,80E+07 1,93E+04 1,37E+04 1,42E+04 1,16E+04 
Mean 5,15E+03 2,28E+03 9,62E+03 6,67E+03 5,76E+07 5,79E+07 1,12E+04 6,94E+03 1,19E+04 9,08E+03 

Std 1,43E+03 8,32E+02 2,67E+03 2,05E+03 3,06E+07 2,21E+07 3,48E+03 2,64E+03 1,25E+03 1,32E+03 

1,
00

E
+0

4 

1.st 1,37E-04 1,29E-03 8,12E-01 1,47E-02 6,09E+04 1,54E+06 2,81E+00 2,90E-01 3,59E+02 1,28E+02 
7.th 2,55E-02 5,71E-03 6,37E+01 3,96E-01 4,10E+05 3,21E+06 7,23E+01 1,31E+00 1,25E+03 2,30E+02 
13.th 2,45E-01 7,71E-03 1,21E+02 5,61E-01 9,55E+05 4,36E+06 2,35E+02 2,23E+00 1,88E+03 2,68E+02 
19.th 1,47E+00 1,32E-02 4,75E+02 1,67E+00 2,00E+06 5,42E+06 3,47E+02 4,78E+00 3,19E+03 3,39E+02 
25.th 3,49E+01 3,07E-02 8,60E+02 7,27E+00 8,42E+06 8,98E+06 1,10E+03 2,03E+01 4,25E+03 5,29E+02 
Mean 2,92E+00 1,02E-02 2,54E+02 1,24E+00 1,62E+06 4,39E+06 2,94E+02 3,80E+00 2,13E+03 2,97E+02 

Std 7,33E+00 7,14E-03 2,80E+02 1,64E+00 1,92E+06 1,73E+06 2,83E+02 4,34E+00 1,10E+03 9,93E+01 

1,
00

E
+0

5 

1.st 0,00+00 0,00+00 0,00+00 0,00+00 1,77E-03 7,03E-01 0,00+00 0,00+00 8,88E-07 0,00+00 
7.th 0,00+00 0,00+00 0,00+00 0,00+00 5,77E-02 5,08E+00 0,00+00 0,00+00 9,50E-06 0,00+00 
13.th 0,00+00 0,00+00 0,00+00 0,00+00 4,33E-01 8,38E+00 0,00+00 0,00+00 1,45E-04 0,00+00 
19.th 0,00+00 0,00+00 0,00+00 0,00+00 1,30E+01 1,94E+01 0,00+00 0,00+00 1,07E-03 0,00+00 
25.th 0,00+00 0,00+00 0,00+00 0,00+00 5,61E+02 5,11E+01 0,00+00 0,00+00 6,26E-03 0,00+00 
Mean 0,00+00 0,00+00 0,00+00 0,00+00 4,00E+01 1,48E+01 0,00+00 0,00+00 9,70E-04 0,00+00 

Std 0,00+00 0,00+00 0,00+00 0,00+00 1,16E+02 1,43E+01 0,00+00 0,00+00 1,67E-03 0,00+00 

2,
00

E
+0

5 

1.st 0,00+00 0,00+00 0,00+00 0,00+00 0,00+00 1,69E-07 0,00+00 0,00+00 0,00+00 0,00+00 
7.th 0,00+00 0,00+00 0,00+00 0,00+00 0,00+00 3,58E-06 0,00+00 0,00+00 0,00+00 0,00+00 
13.th 0,00+00 0,00+00 0,00+00 0,00+00 0,00+00 1,55E-05 0,00+00 0,00+00 0,00+00 0,00+00 
19.th 0,00+00 0,00+00 0,00+00 0,00+00 7,92E-05 3,42E-05 0,00+00 0,00+00 0,00+00 0,00+00 
25.th 0,00+00 0,00+00 0,00+00 0,00+00 1,71E-02 6,65E-05 0,00+00 0,00+00 0,00+00 0,00+00 
Mean 0,00+00 0,00+00 0,00+00 0,00+00 1,95E-03 2,13E-05 0,00+00 0,00+00 0,00+00 0,00+00 

Std 0,00+00 0,00+00 0,00+00 0,00+00 5,10E-03 2,07E-05 0,00+00 0,00+00 0,00+00 0,00+00 

TABLE VI.  ERROR VALUES ACHIEVED WHEN FES=1E3, FES=1E4, FES=1E5 AND FES=2E5 FOR PROBLEMS 6, 9, 11-12 AND 15. 

  Probl. Function 6 Function 9 Function 11 Function 12 Function 15 

FES   Cumu-DE Classic DE Cumu-DE Classic DE Cumu-DE Classic DE Cumu-DE Classic DE Cumu-DE Classic DE 

1,
00

E
+0

3 

1.st 2,23E+07 1,09E+07 5,55E+01 4,63E+01 1,12E+01 9,66E+00 1,90E+04 9,55E+03 6,12E+02 6,16E+02 
7.th 2,59E+08 4,05E+07 7,19E+01 6,35E+01 1,19E+01 1,15E+01 4,28E+04 6,20E+04 7,04E+02 7,52E+02 
13.th 4,46E+08 7,13E+07 7,75E+01 6,83E+01 1,21E+01 1,18E+01 5,61E+04 7,95E+04 7,39E+02 7,82E+02 
19.th 5,36E+08 9,63E+07 8,39E+01 7,57E+01 1,25E+01 1,22E+01 7,17E+04 9,02E+04 7,73E+02 8,30E+02 
25.th 1,15E+09 4,01E+08 9,59E+01 8,48E+01 1,30E+01 1,31E+01 9,45E+04 1,33E+05 8,08E+02 8,64E+02 
Mean 4,44E+08 9,11E+07 7,71E+01 6,79E+01 1,22E+01 1,17E+01 5,78E+04 7,47E+04 7,33E+02 7,75E+02 

Std 2,68E+08 9,25E+07 9,89E+00 9,47E+00 5,22E-01 8,64E-01 1,97E+04 3,12E+04 5,32E+01 6,53E+01 

1,
00

E
+0

4 

1.st 8,03E+00 9,50E+00 2,57E+01 4,96E+00 8,68E+00 8,90E+00 9,45E+01 9,55E+03 1,22E+02 4,29E+02 
7.th 1,35E+02 1,13E+01 4,02E+01 8,89E+00 1,01E+01 9,66E+00 2,70E+03 1,64E+04 3,83E+02 5,30E+02 
13.th 4,63E+02 1,81E+01 4,16E+01 1,86E+01 1,05E+01 1,03E+01 6,43E+03 1,82E+04 4,40E+02 5,54E+02 
19.th 2,56E+03 3,56E+01 4,75E+01 2,39E+01 1,09E+01 1,06E+01 9,30E+03 2,07E+04 4,97E+02 5,99E+02 
25.th 1,88E+04 1,78E+02 5,35E+01 3,92E+01 1,16E+01 1,12E+01 1,95E+04 2,40E+04 5,53E+02 6,58E+02 
Mean 3,12E+03 4,09E+01 4,22E+01 1,84E+01 1,05E+01 1,01E+01 6,84E+03 1,81E+04 4,11E+02 5,48E+02 

Std 5,35E+03 4,68E+01 6,79E+00 9,51E+00 7,23E-01 6,77E-01 5,11E+03 3,67E+03 1,26E+02 6,27E+01 

1,
00

E
+0

5 

1.st 0,00+00 0,00+00 0,00+00 0,00+00 2,25E-01 3,00E-01 0,00+00 5,57E+01 0,00+00 1,89E+02 
7.th 0,00+00 0,00+00 1,24E+00 1,99E+00 4,28E+00 4,52E+00 0,00+00 3,46E+02 4,04E+01 2,10E+02 
13.th 0,00+00 0,00+00 2,98E+00 2,98E+00 8,05E+00 8,04E+00 0,00+00 5,59E+02 6,32E+01 2,28E+02 
19.th 0,00+00 0,00+00 8,47E+00 5,11E+00 9,09E+00 8,90E+00 0,00+00 8,64E+02 1,19E+02 2,57E+02 
25.th 3,99E+00 3,99E+00 1,81E+01 1,57E+01 9,51E+00 9,48E+00 1,35E+03 2,19E+03 4,32E+02 2,77E+02 
Mean 3,99E+00 3,99E+00 5,13E+00 4,12E+00 6,41E+00 6,72E+00 2,77E+02 6,92E+02 1,30E+02 2,32E+02 

Std 0,00E+00 0,00E+00 4,67E+00 3,50E+00 3,29E+00 2,83E+00 5,98E+02 5,30E+02 1,28E+02 2,60E+01 

2,
00

E
+0

5 

1.st 0,00+00 0,00+00 0,00+00 0,00+00 1,28E-07 3,04E-03 0,00+00 3,74E-01 0,00+00 1,21E+02 
7.th 0,00+00 0,00+00 0,00+00 1,99E+00 5,47E-04 5,69E-02 0,00+00 1,95E+00 0,00+00 1,50E+02 
13.th 0,00+00 0,00+00 9,95E-01 2,98E+00 1,50E+00 5,30E-01 0,00+00 8,27E+00 4,15E+01 1,64E+02 
19.th 0,00+00 0,00+00 9,95E-01 5,11E+00 4,81E+00 4,73E+00 0,00+00 1,33E+01 7,54E+01 1,80E+02 
25.th 3,99E+00 3,99E+00 3,98E+00 1,57E+01 9,42E+00 9,17E+00 1,35E+03 4,46E+01 4,32E+02 2,07E+02 
Mean 3,99E+00 3,99E+00 1,47E+00 4,12E+00 2,68E+00 2,65E+00 2,77E+02 9,72E+00 1,39E+02 1,64E+02 

Std 0,00E+00 0,00E+00 9,80E-01 3,50E+00 3,27E+00 3,32E+00 5,98E+02 9,96E+00 1,41E+02 2,16E+01 
 

1521


