
Network Visualization of Population Dynamics in
the Differential Evolution
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Abstract—The dynamics of populational metaheuristic algo-
rithms, such as the differential evolution, can be represented
by evolving complex networks. The differential evolution is a
widely-used real parameter optimization method with excellent
results and many real-world applications. The search for hidden
relationships, behaviors, and patterns in complex networks rep-
resenting populational metaheuristics can provide an interesting
information about the underlying optimization processes. Various
methods for visual network investigation and mining became very
popular in the last decade and represent a natural set of tools for
such analyses. Here, we introduce a new approach for the visual
analysis of such network with a special emphasis on network
readability. The proposed method is universal and can be applied
to any type of complex network modelling any algorithm applied
to any problem.

I. INTRODUCTION

The interpretation of the dynamic aspects of evolutionary

algorithms as a complex network of interactions between

candidate solutions (population members) and the analysis of

static and dynamic properties of such network is a recent

research trend [19]. The investigation of the relations between

attributes of such networks and the properties of the mod-

elled algorithms opens a number of research questions and

provides a new class of instruments for a more efficient control

of nature-inspired metaheuristic methods [19]. Initial studies

were already presented for several variants of the differential

evolution algorithm applied e.g. to the flowshop scheduling

problem [2] and the permutative flowshop scheduling prob-

lem [3].

Visualization is an important and powerful step in the

analysis of networks and graph structures. Visual methods

represent complex networks in a graphical form suitable for

machine and human analysis. In this work, we model the dif-

ferential evolution applied to a collection of high-dimensional

benchmarking functions by a complex evolving network and

employ the Sammon’s mapping and Edge bundling methods

for its intuitive visual representation. A set of computational

experiments is conducted to demonstrate the properties and

quality of the proposed approach.

The remainder of this article is structured as follows: related

work on network visualization is briefly summarized in sec-

tion II. The differential evolution is outlined in section III.

The algorithms of Sammon’s mapping and Edge bundling are

described in section IV. The proposed visualization proce-

dure is detailed in section V which also includes a number

of illustrative examples of visualization results. Finally, the

work is concluded and future research directions are outlined

in section VI.

II. COMPLEX NETWORK DYNAMICS

The majority of biological and natural systems such as ant

colonies, various types of swarms, and neural networks, as

well as human-made artificial networks and linked structures,

can be interpreted as complex networks [1], [8]. Network

models are routinely used for the analysis of various data-

intensive domains such as social networks, World Wide Web,

wireless sensor networks, mobile ad-hoc networks, protein-

protein interaction and so on. However, they can be also

employed to describe and study bio-inspired computational

models [19].

Complex dynamic networks can be described by graphs that

consist of a huge number of dynamic units represented by

nodes and relationships represented by edges. Current research

efforts in the area of complex dynamic networks are focused

on the observation of behavioural patterns and on the develop-

ment of accurate models that can mimic or simulate dynamic

processes of the network. Several visualization techniques can

be used to handle and present a complex graph illustrating

population dynamics of a metaheuristic populational algorithm

such as the differential evolution [14], [17]. Most of them

can visualize the underlying temporal processes in the form

of image sequences or movies. A static approach based on

Sammon’s mapping [15], [13] and edge bundling visualization

[10], [9], [7] is proposed in this article. The proposed method

mixes the similarity of network units with the graph topology.

The method is demonstrated on the differential evolution

algorithm, but it is universal and can be used to illustrate any

type of complex network modelling any algorithm.

III. DIFFERENTIAL EVOLUTION

The differential evolution (DE) is a versatile and easy to

use stochastic evolutionary optimization algorithm [14]. It is
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a population-based optimizer that evolves a population of real

encoded vectors representing the solutions to given problem.

The DE was introduced by Storn and Price in 1995 [16] and

it quickly became a popular alternative to the more traditional

types of evolutionary algorithms. It evolves a population

of candidate solutions by iterative modification of candidate

solutions by the application of the differential mutation and

crossover [14]. In each iteration, so called trial vectors are

created from current population by the differential mutation

and further modified by various types of crossover operator.

At the end, the trial vectors compete with existing candidate

solutions for survival in the population.

A. Traditional differential evolution

The DE starts with an initial population of N real-valued

vectors. The vectors are initialized with real values either

randomly or so, that they are evenly spread over the problem

space. The latter initialization leads to better results of the

optimization [14]. During the optimization, the DE generates

new vectors that are scaled perturbations of existing population

vectors. The algorithm perturbs selected base vectors with the

scaled difference of two (or more) other population vectors in

order to produce the trial vectors. The trial vectors compete

with members of the current population with the same index

called the target vectors. If a trial vector represents a better

solution than the corresponding target vector, it takes its place

in the population [14].

The two most significant parameters of the DE are scal-

ing factor and mutation probability [14]. The scaling factor

F ∈ [0,∞] controls the rate at which the population evolves

and the crossover probability C ∈ [0, 1] determines the ratio

of components that are transferred to the trial vector from

its opponent. The size of the population and the choice of

operators are other important parameters of the optimization

process.

The basic operations of the classic DE can be summarized

using the following formulas [14]: the random initialization of

the ith vector with N parameters is defined by

xi
j = rand(bLj , b

U
j ), j ∈ {1, . . . , N} (1)

where bLj is the lower bound of jth parameter, bUj is the upper

bound of jth parameter and rand(a, b) is a function generating

a random number from the range [a, b]. A simple form of

standard differential mutation is given by

vi = vr1 + F (vr2 − vr3) (2)

where F is the scaling factor and vr1, vr2 and vr3 are three

random vectors from the population. The vector vr1 is the

base vector, vr2 and vr3 are the difference vectors, and the

ith vector in the population, vi is the trial vector. It is required

that i �= r1 �= r2 �= r3.

An alternative differential mutation which favours exploita-

tion over exploration is defined by

vi = xbest + F (vr1 − vr2) (3)

and combines two randomly chosen difference vectors with

the best vector in population, xbest.

The uniform (binomial) crossover that combines the target

vector, xi, with the trial vector, vi, is given by

vij =

{
vij if (rand(0, 1) < C) or j = jrand

xi
j , otherwise

(4)

for each j ∈ {1, . . . , N}. The random index jrand is in the

above selected randomly as jrand = rand(1, N). The uniform

crossover replaces the parameters in vi by the parameters from

the target vector xi with probability 1 − C . The outline

of the classic DE according to [6], [14] is summarized in

Algorithm 1.

Algorithm 1: A summary of classic Differential Evolution

1 Initialize the population P consisting of M vectors using eq. (1);
2 Evaluate an objective function ranking the vectors in the population;
3 while Termination criteria not satisfied do
4 Let G = number of current generation;
5 for i ∈ {1, . . . ,M} do
6 Differential mutation: Create trial vector vi according

to eq. (2);

7 Validate the range of coordinates of vi. Optionally adjust

coordinates of vi so, that it is a valid solution to a given
problem;

8 Perform uniform crossover. Select randomly one parameter

jrand in vi and modify the trial vector using eq. (4);

9 Evaluate the trial vector.;

10 if trial vector vi represent a better solution than target vector
xi then

11 add vi to PG+1

12 else
13 add xi to PG+1

14 end
15 end
16 end

IV. VISUALIZATION METHODS

Two advanced visualization methods were in this work

employed to obtain well-understandable, accurate, and visually

appealing graphical models of complex network representa-

tions of the DE algorithm.

A. Sammon’s projection

The Sammon’s projection [15] is one of several existing

methods for projecting a data set from an original, high–

dimensional data space to space with lower dimensionality. It

aims at preserving the between–point distances from the high–

dimensional data space in the lower–dimensional projection

space. This goal is achieved by minimizing an error criteria

that penalizes the changes of a distance between points in

the original high–dimensional data space and in the low–

dimensional projection space. For the purpose of visual data

analysis, projections into two and three–dimensional spaces

(2D and 3D) are of utmost importance.

Suppose that we have a collection X with p data points

X = {X1, X2, ..., Xp} where each data point Xi is an m–

dimensional vector Xi = 〈xi1, xi2, ..., xim〉. At the same time
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we define a collection Y of p data points Y = {Y1, Y2, ..., Yp}
where each data point Yi is a k–dimensional vector and

k < m. The initial values of the coordinates in Yi are

chosen at random. The distance between vectors Xi and Xj is

denoted d ∗ij while the distance between corresponding vectors

Yi and Yj in the lower–dimensional space is denoted dij . Here,

any distance measure can be used to evaluate dij . However,

the distance measure suggested originally by Sammon is the

traditional Euclidean metric [15]. In that case, d ∗ij and dij are

defined in the following way:

d ∗ij =

√√√√ m∑
k=1

(xik − xjk)2, (5)

dij =

√√√√ d∑
k=1

(yik − yjk)2. (6)

Projection error E (so–called Sammon’s stress) measures how

well the current configuration of p data points in the k–

dimensional space matches the p points in the original m–

dimensional space.

E =
1∑

i<j

(d ∗ij)

∑
i<j

(d ∗ij − dij)2

d ∗ij
(7)

In order to minimize the projection error, E, any min-

imization technique can be used. Sammon’s original paper

from 1969 [15] used widely known methods such as pseudo–

Newton (steepest descent) minimization:

y′ik(t+ 1) = y′ik(t)− α

∂E(t)
∂y′

ik(t)∣∣∣ ∂2E(t)
∂y′

ik(t)
2

∣∣∣ , (8)

where y′ik is the kth coordinate of the data point’s position

y′i in the projected low–dimensional space. The constant α is

usually taken from a range 0.3 – 0.4, originally proposed by

Sammon. However, this range is not optimal for all types of

problems. Equation (8) can cause a problem at the inflection

points where the second derivative is very small. Therefore, the

gradient descent may be used as an alternative minimization

method. An illustrative CUBE example of the Sammon’s

projection shows a set of points laying on six cube faces (see

Figure 1) projected into 2D screen space (see Figure 2).

B. Edge bundling visualization

A suitable visualization technique must be chosen to be

able to visualize the dynamics of a complex network. The

usual node-link graph layouts represent a family of intuitive

and well-understandable graph drawing procedures. However,

the readability of such layouts is highly affected by the

number of nodes and edges in the graph. There exist several

advanced layouting algorithms [4], [20], but the mentioned

common problem still arises e.g. in case of dense graphs.

If there is no way to reduce the number of graph elements

and graph layouting does not improve the readability, some
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Fig. 1. A 3D view of the CUBE example data set before Sammon’s
projection.
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Fig. 2. A 2D view of the CUBE example data set after Sammon’s projection.

visualization techniques can help to obtain better outputs. The

edge bundling technique and its extensions were introduced

in [7] and used to visualize various data sets in different

application domains [7], [9], [12]. A hierarchical edge

bundling method based on Sammon’s projection was used in

the proposed method to achieve an accurate, readable, and

visually appealing representation of the complex network

representing the dynamics of the DE algorithm. It puts a

special emphasis on the relationships between the tuple of

nodes representing the three parent nodes and the child node

that take part in differential mutation and crossover in the

/DE/rand/1 differential evolution. The graph G can be

defined as follows:

• Let G = (N,E) be a graph that consists of a set of nodes

N and a set of egdes E.

• An edge e ∈ E is an ordered pair of elements of N ,

where E ⊂ (N ×N ).

• For all edges e = [n0, n1], where n0 ∈ N and n1 ∈ N ,

let n0 is called a child node and n1 is called a parent
node. Let E ⊂ (N ×N) and e ∈ E and n0 �= n1.

• A node n ∈ N represents an m–dimensional data vector
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projected into a 2D space by Sammon’s projection, such

that n = [R,R]. Then n = [x, y], where x ∈ R and y ∈ R

represent the screen space coordinates of the node n.

The primary goal of the use of edge bundling visualization

consists in the improvement of graph readability. Figure 3

and Figure 4 illustrate the same graph G with and without

edge bundling, respectively. Usually, the edges are represented

by some kind of splines that can be modified in terms of

number of control points, edge width, etc. The “bundling”

process runs for a defined number of iterations. During them,

a physically based simulation splits the edges, creates control

points, and moves spline control points close each other with

respect to an edge similarity matrix. We refer to [9], [11] for

more information on edge bundling techniques as this is out

of scope of this article.

Fig. 3. An illustrative graph, G, displayed in a circular graph layout with
direct edges.

Fig. 4. An illustrative graph, G, displayed in a circular graph layout with
edge bundling.

V. VISUALIZATION PROCESS

The proposed visualization methods are demonstrated on a

complex network model of a DE solving a test problem from

a well-known collection of benchmarking functions [18].

A. Test problem

For the sake of simplicity, all proposed visualization tech-

niques are demonstrated on the “Ackley” function in ten

dimensional space, i.e. m = 10.

f1(x) = −20 · exp
⎛
⎝−0.2

√√√√ 1

m
·

m∑
i=1

x2
i

⎞
⎠

− exp

(
1

m

m∑
i=1

cos(2πxi)

)
+ 20 + e (9)

where m is the problem dimension, x = (x1, . . . , xm) is param-
eter vector, e ≈ 2.71828 is Euler’s number, and exp(a) = ea

is exponential function.

It is one of the best-known and most used real-parameter

optimization test functions in the area of bio-inspired comput-

ing [18], [5]. Its shape in 3D space is illustrated in Figure 5.

As it can be seen, there are many local saddle points (local
optima). This function represents for all metaheuristic and bio-

inspired methods a challenging test problem because a poor

algorithm with a bad ability to escape local minima can easily

miss the global optimum and remain entrapped in an attraction

basin of one of its many local minima.

Fig. 5. The behavior of Ackley function in 3D.

B. Proposed visualization procedure

Algorithm 1 summarizes the standard steps of a traditional

DE. For the visualization, all DE iterations can be computed

in advance before the visualization. Then, the process of

visualization involves the following steps:

• StartIdx is chosen as an index of the first visualized

iteration of DE.

• IterCount is defined as a number of visualized itera-

tions.

• All individuals from the StartIdx-th up to StartIdx+
IterCount-th iteration make an input for Sammon’s

projection.

• Sammon’s projection is performed with defined number

of iterations, and final 2D vectors are stored.
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• A graph is constructed such that 2D vectors represent

nodes in the 2D space and edges are reconstructed from

the DE run. An edge is placed, or edge weight increased,

in every generation between every pair of nodes that take

part in the creation of a new solution (trial vector) that

is better (i.e. has lower fitness) than the target vector.

• Edge bundling visualization technique is performed to

achieve a more readable and visually appealing output in

case of dense graphs.

C. Evolution paths

As it was already mentioned, the proposed method is de-

signed to visualize the behavior of an evolutionary algorithm.

If the edge bundling technique is used, Sammon’s projection

can be employed to uncover and illustrate the improvements

of individuals in time. In this case, all generations must be

visualized together to be able to draw the paths of evolution

(see Figure 6). The dynamics of the DE algorithm is expressed

as a system of crossing evolution paths in the Sammon’s

projection space. A higher dynamics of the algorithm (i.e.

a large number of successful interactions between population

members) leads to a graph representation with a larger number

of crossing paths and longer average distances between the

nodes. Figure 6 A) represents an almost stable DE where the

changes of fitness values are rare and small. Contrariwise,

Figure 6 B) represents a DE in its early state where the

individuals in the population (data vectors in m–dimensional

space) change frequently and the improvements in their fitness

values are significant.

Here, the graph G is defined as follows:

• Let G = (N,E) is a graph that consists of a set of nodes

N and a set of edges E.

• N = N0 ∪ N1 ∪ · · · ∪ Ng−1, where g is the number

of generations, and if i ∈< 0, g − 1 > is a zero-based

generation index then Ni is a set of individuals in the

i-th generation.

• An edge e ∈ E is an ordered pair of elements of N , where

E ⊂ (N0 × N1) ∪ (N1 × N2) ∪ · · · ∪ (Ng−2 × Ng−1),
where where g is the number of generations.

• For all edges e = [n0, n1], where n0 ∈ Ni−1 and n1 ∈ Ni

where i ∈< 0, g − 1 >, let e is called an path edge, iff

n0 represents the node in the (i − 1)-th generation and

n1 represents the SAME node in the i-th generation.

• A node n ∈ N represents an m–dimensional data vector

projected into a 2D space by Sammon’s projection, such

that n = [R,R]. Then n = [x, y], where x ∈ R and y ∈ R

represent the screen space coordinates of the node n.

D. Evolution graph

Now an evolution graph can be constructed. This graph

illustrates the mutual influences in terms of evaluation of the

population. Again, g generations must be visualized together to

keep the information on similarity between individuals within

and across all generations (see Figure 7). Sammon’s projection

was in this case applied to obtain clusters of nodes. Here, the

A)

B)

Fig. 6. An illustrative visualizations of the evolution paths of two individuals
for five DE generations. The smaller size of the node, the older generation it
corresponds to. The dynamics of the DE algorithm is expressed as a system
of crossing evolution paths in the Sammon’s projection space.

usage of Edge bundling technique is demonstrated in Figure 7

B), where the non-selected edges were physically bundled

together to achieve better readability. Finally, Figure 8 illus-

trates a pure Edge bundling-based visualization with omitted

Sammon’s projection. Here, a well known force directed layout

was used at the cost of loosing valuable information about

clusters of nodes.

In this case, the graph G is defined as follows:

• Let G = (N,E) be a graph that consists of a set of nodes

N and a set of egdes E.

• N = N0 ∪ N1 ∪ · · · ∪ Ng−1, where g is the number

of generations, and if i ∈< 0, g − 1 > is a zero-based

generation index then Ni is a set of individuals in the
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i-th generation.

• An edge e ∈ E is an ordered pair of elements of N , where

E ⊂ (N0 × N1) ∪ (N1 × N2) ∪ · · · ∪ (Ng−2 × Ng−1),
where where g is the number of generations.

• For all edges e = [n0, n1], where n0 ∈ Ni−1 and n1 ∈ Ni

where i ∈< 0, g − 1 >, let e is called an path edge,

iff n0 represents the node in the (i − 1)-th generation

and n1 represents a DIFFERENT parent node in the i-th
generation.

• A node n ∈ N represents an m–dimensional data vector

projected into a 2D space by Sammon’s projection, such

that n = [R,R]. Then n = [x, y], where x ∈ R and y ∈ R

represent the screen space coordinates of the node n.

A)

B)

Fig. 7. An illustrative visualizations of the DE during five generations. All
five generations were processed by the Sammon’s projection. The smaller size
of the node, the older generation of the node. Graph A) is without the edge
bundling while graph B) demonstrates the visualization with edge bundling.

VI. CONCLUSION AND FUTURE WORKS

This work proposes a novel method for visual rendering

of a complex network representation of population dynamics

A) B)

Fig. 8. An illustrative visualizations of the DE during five generations without
Sammon’s projection. A simple force-directed layout was used place nodes in
2D space. Graph A) is without the edge bundling while graph B) demonstrates
the visualization with edge bundling.

in the differential evolution algorithm. The complex network

representation allows casting the dynamics of a DE algorithm

into a graph that can be studied and eventually used to

control the algorithm. The proposed visual rendering, based

on Sammmon’s projection and edge bundling, provides an

intuitive, accurate, and visually appealing representation of the

network.

The illustrative examples, provided in this work, demon-

strate the proposed method and confirm that the properties

of graph theory in combination with projection techniques

can provide a valuable information regarding the status of the

DE algorithm. The initial experiments show that the dynamics

of evolutionary algorithm can be projected as a sequence of

individual paths into 2D space with respect to similarity of

data vectors. Further analysis of the generated graph can be

used to control the DE e.g. by early detection of stagnation,

prevention of local minima entrapment etc.

Last but not least, the physically based edge bundling tech-

nique can be used to increase graph readability and emphasize

selected edges.

Network-based modeling and analysis is interesting also

from a broader perspective since it is now well-understood

that many of real-world processes can be mapped on network

properties and complex network models may provide new

insights into and accurate emulation of their behavior.
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