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Abstract—Ensemble of parameters and mutation strategies
differential evolution (EPSDE) is an elegant, promising optimiza-
tion framework recently introduced in the literature. The idea
behind it is that a pool of mutation and crossover strategies,
along with associated pools of parameters, can flexibly adapt
to a large variety of problems when a simple success based
rule is introduced. Modern versions of this scheme attempts
to improve upon the original performance at the cost of a
high complexity. One of most successful implementations of this
algorithmic scheme is the Self-adaptive Ensemble of Parameters
and Strategies Differential Evolution (SaEPSDE). This paper
operates on the SaEPSDE, reducing its complexity by identifying
some algorithmic components that we experimentally show as
possibly unnecessary. The result of this de-constructing opera-
tion is a novel algorithm implementation, here referred to as
“j” Ensemble of Strategies Differential Evolution (JESDE). The
proposed implementation is drastically simpler than SaEPSDE as
several parts of it have been removed or simplified. Nonetheless,
JESDE appears to display a competitive performance, on diverse
problems throughout various dimensionality values, with respect
to the original EPSDE algorithm, as well as to SaEPSDE and
three modern algorithms based on Differential Evolution.

I[. INTRODUCTION

Differential Evolution (DE), see [1], is a popular meta-
heuristic that thanks to its simplicity and high performance
on a wide spectrum of problems, has been successfully used
in several fields of engineering and applied sciences. After its
definition in 1995, see [2], DE has been applied to many do-
mains. Some striking examples of applications of DE presented
in the literature can be found, for instance, in sensor fusion [3],
image processing (with reference to paper production) [4], and
industrial robotics [5].

Over the past ten years, many research papers on DE have
been focused on improved versions and implementations of the
original scheme. As reported in [6], DE has a wide margin of
improvement due to the fact that it employs a limited number
of search moves. Although in some cases multiple variations
are performed within the same implementations, modified DE
schemes can be divided into the following categories:

e DE frameworks that include extra moving operators,
such as multiple mutation operators or local search

components, e.g. [7], [8], [9], [10] and [11];

DE frameworks that employ a randomization of pa-
rameters or the search operators, e.g. [12], [13], [14],
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and [15].

Jointly to these variations in the search techniques, usually
some adaptive schemes are included. These schemes are often
based on the success of parameters or operators, such as in
[16]. A successful example of such schemes is EPSDE [17]:
in a nutshell, EPSDE is a variation of DE that encompasses
multiple mutation/crossover operators and parameters, a ran-
domization in the search, and a success-based adaptive logic
(hence its name, i.e. Ensemble of Parameters and Strategies
Differential Evolution). In turn, many variants of EPSDE
have also been proposed in the literature. Some examples are
the ensemble of compact DE, in [18], the ensemble of DE
populations in [19], and constraint handling techniques in [20].

The main idea of the ensemble is simple and effective: pa-
rameter settings, search strategies, and operators are arranged
in “pools”, and selected in a randomized way. During an initial
learning stage, the success of each choice biases the random-
ized selection mechanism so that the most successful choices
have a higher chance to be selected. Despite its intuitiveness,
the successful functioning of the algorithm as a whole can be
a complex issue and may depend on the optimization problem
under examination. Furthermore, there is currently no general
knowledge about how to set the pools. This results in trial-and-
error design processes which usually lead to very complex
algorithm implementations, see [21]. Within the context of
ensemble structures in DE frameworks, an example of effective
implementation is reported in [22], where EPSDE is hybridized
with the self-adaptive logic proposed in [7]. The resulting
framework, named SaEPSDE, additionally incorporates as a
local search the large-scale optimization method introduced in
[23], which is in turn the combination of three optimizers.

This paper focuses on SaEPSDE, analysing its algorithmic
functioning in the attempt to identify redundant (i.e., possibly
unnecessary) components and thus obtain a new implemen-
tation which, albeit simpler, still displays a non-degraded
performance. Furthermore, the implementation proposed here
is realized in consideration of the fact that a pool of parameter
settings may introduce a bias without a prior knowledge of
the problem. On the contrary, we use a randomized sampling
within continuous intervals in the fashion of the logic in [13].

The remainder of the paper is organized as follows. Section
II shortly summarizes the working principles of DE, EPSDE,
and SaEPSDE. Section III describes our proposed implemen-
tation. Section IV shows the numerical results in different

IEEE
computer
® psouety



dimensionalities. Finally, Section V concludes this work.
II. ENSEMBLE OF PARAMETERS AND MUTATION
DIFFERENTIAL EVOLUTION

Without a loss of generality, this paper refers to the
solution of the minimization of the function f (x) with x =
(x[1],z[2],...x[n]) in a n—dimensional decision space D.

Basic DE is a population-based metaheuristic where each
individual in the population generates an offspring in two steps,
mutation and crossover. Scanning the population individuals
by running an index ¢ from 1 to the population size Sp.p,
for each individual x; a mutant individual x.g’ is generated
by applying a formula that contains at least one difference
between two solutions (this features gives the name to the algo-
rithm). The most classical mutation is the so-called DE/rand/1,
which involves three individuals randomly selected from the
population, X, Xs, and X, and a constant parameter F'. The
mutant is obtained by applying the formula:

Xoff! =Xt + F (Xp — Xs) - (1)

In the literature numerous other mutation formulas have
been proposed, see [6]. The candidate solution Xog’, often
referred to as provisional offspring, is then hybridized with
x; by means of a crossover operator. Two possible crossovers
are used in DE frameworks, namely binomial (abbreviated as
“bin”) and exponential (“exp”).

The binomial crossover is defined as follows:
{ 2] if (rand (0,1) < CR) or (j = jrand)
2

Torrlil otherwise
for j =1,2,...,n. The crossover probability, CR € [0,1], is
a user-specified constant that controls the fraction of parameter
values that are copied to the trial vector X (the offspring)
from the mutant vector Xof'. Jrang 1S a randomly chosen
integer in the range [1,n]. The condition (j = Jjrand) iS
introduced to ensure that the trial vector Xqg will differ from
its corresponding target vector X’ by at least one parameter.

In exponential crossover, an integer j.qnd4, chosen ran-
domly in [1,n], acts as a starting point in the target vector,
from where the exchange of components with the mutant
vector starts. Subsequently, a set of random numbers between
0 and 1 are generated. As long as rand(0,1) < CR,
where CR € [0,1] is again a predetermined parameter, the
design variables from the mutant vector are copied into the
corresponding positions of the trial vector. The first time that
rand (0,1) > CR, the copy process is interrupted. Then, all
the remaining design variables of the trial vector are copied
from the target vector. For the sake of clarity, the pseudo-code
of the exponential crossover is shown in Algorithm 1.

When the offspring has been generated, its fitness value
is calculated and compared with that of x;. The best of
the solutions is then retained in the subsequent generation
(this selection scheme is also known as one-to-one spawning,
see [6]). The process goes on until a stop criterion is met.
Starting from the original DE algorithm, the EPSDE scheme
modifies it by including an implicit adaptation and multiple
choices of mutation/crossover strategies and parameters. More
specifically, EPSDE is associated to four pools:
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Algorithm 1 Exponential crossover pseudo-code
Toff = Ti
generate .] = jf’and
orsli] = Tosy [l
while rand (0,1) < CR do
j=j+1
if j == n then
j=1
end if
Topslil = wors il
end while

pool of scale factors F' (Pr)
pool of crossover rates CR (Pcg)
e  pool of mutation strategies (Fy,qt)

e pool of crossover strategies (FPposs)

The first two pools contain the operator parameters that can
be selected. The latter two are more of interest. With reference
to [17], the mutation strategies in the pool are:

e DE/cur-to-pbest/l Xon' = X;i + F (Xpoo — Xi) +
F (xs — x¢)
where xp__,. is randomly chosen as one of the top 100p%

individuals in the current population, with p € (0, 1].

The last pool contains the two possible crossovers, i.e. bin
and exp as previously described.

It should be observed that after the DE/cur-to-rand/1 mu-
tation, the crossover operation is not applied, as this mutation
strategy contains an implicit arithmetic crossover, see [24].
Conversely, a crossover is applied after DE/cur-to-pbest/1 strat-
egy. Furthermore, DE/cur-to-pbest/1 makes use of a dynamic
p value, according to the following rule:

p= L0005 . (1 - neval/Neva,l)J (3)

where neyq and N, indicate, respectively, the current and
maximum number of fitness evaluation. In this way, at the
beginning of the optimization (¢, = 0) the mutation uses
a random solution among the top 50% individuals in the
current population: this guarantees a higher chance of taking a
suboptimal solution, thus increasing the exploration pressure.
Later on (neya; — Nevar), the percentage of top individuals
will progressively decrease, thus making the mutation strategy
more exploitative.

The selection and coordination of the parameters and
operators (mutation and crossover) is performed in a simplistic,
elegant, and effective manner. A setting of two parameters
and two strategies is randomly assigned to each individual,
i.e. for each individual a setting (i.e., a tuple of strategies and
parameters) is sampled from the pools {Put, Perosss Prs
Pcr}. If the setting is successful at generating an offspring
that outperforms the parent x;, the strategies/parameter setting
is retained and inherited by the offspring solution. If the setting
does not lead to the generation of a successful offspring, a new
setting is randomly sampled.

DE/cur-to-rand/1 X’ = x; + K (%, — X3) + F (x5 — X¢)



Algorithm 2 shows the pseudo-code of the implementation
of EPSDE algorithm proposed in [17].

Algorithm 2 EPSDE pseudo-code

initialize a pool of mutation strategies P,,,; and crossover
strategies Pross
initialize a pool of scale factors Pr and crossover probabil-
ities Popr
generate N, individuals of the initial population pseudo-
randomly
for i=1:N, do
assign to x; random strategies/parameters from { P,
Pcrossa PF’ PCR}
compute [ (x;)
end for
while budget condition do
fori=1:N, do
generate X_ g through mutation strategy/parameter as-
sociated to x;
generate Xoe through crossover strategy/parameter as-
sociated to x;
if f (Xoﬂ‘) < f (Xi) then
save index ¢ for replacing x; = X (including mu-
tation and crossover strategies as well as parameters)
in the next generation
else
assign to x; new random strategies/parameters from
the pools
end if
end for
perform replacements
end while

In order to enhance the performance of the EPSDE scheme,
a self-adaptive version has been proposed by incorporating
within it the self-adaptation proposed in [7], thus generating
Self-adaptive EPSDE (SaEPSDE). The main additions to the
original EPSDE scheme are that a learning period is performed
at the beginning of the optimization and a population split
is performed in the first 70% of the computational budget.
At the beginning of the optimization process, four pools of
strategies/parameters are set like in EPSDE and one setting
is associated to each individual. Since the beginning of the
optimization and for a period here referred to as Splitting Pe-
riod (and consisting of S P fitness evaluations), the population,
at each generation, is structured into two subpopulations. The
first one is composed of the N, individuals with the worst
fitness. The subpopulation size N, is given by:

N, p Neval

2 2SP)

where n.,4; is the budget spent and N, is the total budget
in terms of fitness evaluations. The remaining individuals with
the best fitness values compose the second subpopulation.

Np

Nps = round ( )

At the beginning of the optimization, for a budget of LP
fitness evaluations, the learning period is performed. During
this period, EPSDE is performed on the first subpopulation
after having assigned to each individual a random setting
(mutation, crossover, F', and C'R). During the learning period
the success of strategies and parameters is monitored and, for
each of them, the success rate is recorded. The remaining
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N, — N, individuals evolve like a simplified EPSDE. More
specifically, the DE/cur-to-rand/1 mutation shown above is
used. In this case, K = 0.5(1+ F;) and F; is sampled
from the EPSDE pool and gets updated according the EPSDE
success rule. As for crossover, these individuals undergo only
exponential crossover with a fixed crossover rate CR = 0.9.

At the end of the learning period the most successful
setting is used for the first subpopulation while the remaining
individuals (second subpopulation) are processed with DE/cur-
to-rand/1 mutation and exponential crossover as described
above (as during the learning period).

At the end of the splitting period and until the budget
exhaustion, the entire population evolves as a DE with the most
successful setting detected during the learning period. The
working principles of SaEPSDE are illustrated in Algorithm
3.

III. 1 ENSEMBLE OF STRATEGIES DIFFERENTIAL

EvOLUTION

The SaEPSDE scheme, albeit capable to perform very well
on various optimization problems, is clearly complex as it
is composed of several parts, see Algorithm 3. Furthermore,
the design appears mostly empirical while the role of each
component is not fully clear.

We introduce here a simplified version of SaEPSDE with
the aim of not compromising on the performance of the
algorithm. More specifically, starting from SaEPSDE, we focus
on some of its components that in our view could be either
simplified or removed at all. In a way, this work can be
seen as an algorithm deconstruction aiming at highlighting the
components that are effective in the search. The resulting algo-
rithm, here indicated as “j” Ensemble of Strategies Differential
Evolution (JESDE), is described in the following.

At the beginning of the optimization, as usual IV,, solutions
are sampled within the decision space. Along with each solu-
tion x;, a scale factor F; and a crossover rate C'R;, sampled
with a uniform distribution from the continuous intervals
(0,1.2] and (0, 1), respectively, are associated. Furthermore,
a pool of mutation and crossover strategies is also set in the
EPSDE fashion. As for the mutation strategies we used two
straightforward ones, namely the classical DE/rand/1, as per
eq (1), and DE/cur-to-best:

®)

Moreover, the crossover strategies are bin and exp, just like in
EPSDE and SaEPSDE.

Xoft' = Xi + F (Xpest — Xi) + F (xs — X¢) -

Similar to SaEPSDE, the proposed jESDE performs a
learning on the mutation and crossover strategies. The learning
mechanism is the one used in SaEPSDE, and at the end of the
learning period the most successful strategies are detected and
used on all the individuals of the population till the end of
the optimization process. As for F' and CR instead, rather
than learning on two finite pools of values as SaEPSDE does,
JESDE applies throughout the entire evolution the controlled
randomization of parameters used in jDE [13] (hence the
in the algorithm name). More specifically, the scale factor F;
and the crossover rate C'R; associated to each individual are



Algorithm 3 SaEPSDE pseudo-code

initialize a pool of mutation strategies P,,,: and crossover strategies P,;.,ss
initialize a pool of scale factors Pr and crossover probabilities Por
generate IV, individuals of the initial population pseudo-randomly

fori=1:N, do

assign to x; random strategies/parameters from { Pp,u¢, Perosss Prs Por}

compute [ (x;)
end for
while budget condition on N, do
if the splitting period is on ncyq < SP then

. . N, N
calculate the first subpopulation size Np; = round (7" + 7’7%)

if the learning period is on 7., < LP then
for i =1: N, do

generate X, o through mutation strategy/parameter associated to x;
generate Xog through crossover strategy/parameter associated to x;

if f (Xoﬂ‘) < f (Xi) then
update the successful strategy registry

save index ¢ for replacing x; = X (including mutation and crossover strategies as well as parameters) in the

next generation
else

assign to x; new random strategies/parameters from the pools

end if
end for

perform replacements
for i = Nps +1: N, do

apply DE/cur-to-rand/1 mutation and exponential crossover to generate Xoff

if f (Xoﬂ‘) < f (Xi) then
update the successful strategy registry

save index ¢ for replacing x; = Xog (including mutation and crossover strategies as well as parameters) in the

next generation
else

assign to x; new random strategies/parameters from the pools

end if
end for
perform replacements
else
fori=1: N, do

apply DE with the best setting found during the learning period

end for
perform replacements
for i = Nps +1: N, do

apply DE/cur-to-rand/1 mutation with and exponential crossover
compare performance and update the success of F;

end for
perform replacements
end if
else
fori=1:N, do

apply DE with the best setting found during the learning period

end for
perform replacements
end if
end while

updated according to the following rules:

o F, + Fyrandy, if rand, <7
L F; otherwise

_ | randz, if rands <mo
CR; = { CR;, otherwise

©)

(N
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where rand;, j € {1,2,3,4}, are uniform pseudo-random
values between 0 and 1; 7; and 79 are constant values which
represent the probabilities that parameters are updated, F; and
F,, are constant values which represent the minimum value
that £’ could take and the maximum variable contribution to
F, respectively. The newly calculated values of F; and CR;



are then used for generating the offspring with the proper
mutation and crossover strategies chosen from the pools. For
the sake of completeness, we report the pseudo-code of JESDE
in Algorithm 4.

Algorithm 4 jESDE pseudo-code

initialize a pool of mutation strategies P,,,: and crossover
strategies Peross
generate N, individuals of the initial population pseudo-
randomly
for i =1: N, do
assign to x; random strategies from {Prut, Peross}
assign to x; F; and C'R; sampled from continuous inter-
vals
compute f (x;)
end for
while budget condition on N, do
for i =1: N, do
update F; and C'R; as per eq (6) and (7)
end for
if the learning period is on Ny < LP then
for i =1:N, do
generate X, through mutation strategy/parameter
associated to x;
generate Xog through crossover strategy/parameter
associated to x;
if f (Xoff) < f (Xi) then
update the successful strategy registry
save index ¢ for replacing x; = Xog (including
mutation and crossover strategies) in the next
generation
else
assign to x; new random strategies from the pools
end if
end for
perform replacements
else
for i =1:N,, do
apply jDE with the best strategies found during the
learning period
end for
perform replacements
end if
end while

A first thing to note about the proposed jESDE is that it
keeps the learning period structure of SaEPSDE, as it appears
to have a major impact on the performance of the algorithm.
On the contrary, we observed that the splitting period does not
have a dramatic effect on the optimization results.

Another fundamental point has to do with the use of
multiple and diverse mutation operators. As shown by our
experiments (reported below), we conjecture that effective
mutation strategies should be applied for a certain portion of
the computational budget in order to exploit efficiently the
search directions (in a way, mutations require some “learn-
ing”). However, given a fixed budget, the use of too many
(and too complex) mutation strategies might not necessarily
be effective. To our understanding, the employment of two
simple mutation strategies is usually enough to have the
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benefits of multiple operators, as each of them is allocated
a sufficient number of fitness evaluations to produce effective
improvements. Intuitively, the two mutation operators should
be diverse and somehow complementary: as for the use of
multiple local search operators in Memetic Algorithms, see
[25] and [26], the design of mutation strategies in a DE frame-
work should attempt to balance global and local search. In the
specific case of JESDE, we have chosen the DE/rand/1 that is
highly randomized, hence fairly exploratory and with global
properties, and the DE/cur-to-best that is quite exploitative as it
performs a search around the best individual of the population.
It must be remarked that the two mutation strategies selected
are fairly simple since they do not need to rank the solutions
(as instead happens in SaEPSDE). This choice has been done
purposely, in order to simplify the original scheme.

Finally, the jDE controlled randomization of [13] appears
to very often improve upon the performance of a DE scheme.
In this case, a fixed number of possible parameters can still
offer not enough search moves to the DE framework, see [6]
and[27]. On the contrary, this randomization appears to offer a
good balance as it increases the pool of search moves without
making the algorithm be excessively exploratory.

IV. NUMERICAL RESULTS

The proposed jJESDE has been tested with the following
parameters: population size N, = 50, F; = 0.1, F;, = 0.9,
71 = 72 = 0.1 and learning period LP = 20. It should be
noted that no specific parameter tuning was performed, as we
preferred to use the original parameters of jDE and SADE (see
below) in order to obtain a fair comparison.

The jESDE algorithm has been then tested against the
original EPSDE [17] and SaEPSDE [22], the latter being
the algorithmic scheme that has been the starting point for
this algorithmic simplification work. The following parameter
setting, as suggested in the original papers, has been used for
these algorithms:

EPSDE [17]: population size N, = 50, and parameter
pools Pr = {0.5,0.9} and Pcr = {0.1,0.5,0.9};

SaEPSDE [22]: same N,,, Pr and Pcr as for EPSDE,
learning period LP = 20 and splitting period SP =
70% Neval-

Furthermore, the following DE-based state-of-the-art algo-
rithms have been included in this study, using the suggested

parameter setting:
[ ]

MDe-pBX [28]: IV, = 100 and group size q = 15;

JjDE [13]: N, = 50, F; = 0.1, F}, = 0.9, and 7;
75 = 0.1;

SaDE [7]: N, = 50 and learning period LP = 20.

These algorithms have been tested over the CEC2013
testbed [29] in 10, 30, and 50 dimensions and over the
CEC2010 testbed [30] in 1000 dimensions. Each algorithm
has been run for 5000 x n (being n the problem dimension)
fitness evaluations for each problem of the testbeds. Each
single experiment has been repeated for 100 independent runs.
All the pairwise comparisons have been statistically checked
by means of the Wilcoxon test [31], while a statistical ranking



TABLE VI. HOLM-BONFERRONI PROCEDURE (W.R.T. JESDE, RANK =
4.27). RANK IS THE AVERAGE SCORE OF THE ALGORITHM THROUGHOUT
ALL BENCHMARKS (5 IS BEST), 2;, pj AND &/j ARE DEFINED AS IN [32].

“ACCEPTED” INDICATES STATISTICAL EQUIVALENCE, “REJECTED”
INDICATES SUPERIORITY OF JESDE.

7 Optimizer Rank zj P 0/j Hypothesis
1 jDE 4.14 -5.70e-01 2.84e-01 5.00e-02 Accepted
2 SaEPSDE 351 -3.46e+00 | 2.66e-04 | 2.50e-02 Rejected
3 EPSDE 3.03 -5.66e+00 | 7.70e-09 1.67e-02 Rejected
4 SADE 2.90 -6.23¢+00 | 2.38e-10 | 1.25e-02 Rejected
5 | MDE-pBX 2.61 -7.59e+00 | 1.64e-14 | 1.00e-02 Rejected

has been performed by Holm-Bonferroni procedure, see [32].
In all tests we assumed a confidence level of 0.95 (o = 0.05).

Numerical results for CEC2013 are displayed in Tables I,
IL, III, and IV (for brevity we omit the detailed results in 10
dimensions). For each problem and algorithm, we show the
average error and standard deviation w.r.t. the known optimal
fitness value. In the tables, a “+” indicates that jESDE statis-
tically outperforms its competitor, a “-” indicates that JESDE
is outperformed, while “=" ’indicates that the algorithms are
statistically equivalent. The results on CEC2013 throughout the
available dimensionality values clearly show that the proposed
JESDE appears to promisingly tackle most of -if not all- the
benchmark problems considered in the experiments. As for
CEC2010, detailed results of jESDE against MDE-pBX, jDE
and SADE are shown in Table V, with the same notation
used in the previous tables. The other detailed results in 1000
dimensions are omitted for space restrictions.

Finally, the results of the Holm-Bonferroni procedure re-
lated to all the results calculated are reported in Table VI.
It can be observed that the proposed jESDE displays the
best performance with respect to the other five algorithms
over the 104 problems considered in this study. However, as
seen in Table V the performance of JESDE gets deteriorated
in high dimensions while jDE proves to offer a very robust
performance throughout the various dimensionality values.
To our understanding, large-scale problems require a high
exploitation within the given limited budget. It must be re-
marked that while in common optimization practice the budget
grows linearly with the problem dimensionality (5000 x n),
the search space grows exponentially, making de facto large-
scale runs way shorter than low-dimensional runs. Given these
circumstances, we believe that DE implementations that use
only one mutation/crossover strategy and rapidly exploit the
search directions are likely to be more successful in high
dimensions than those that use multiple search operators.

V. CONCLUSION

This paper proposed a novel, self-adaptive implementa-
tion of the EPSDE algorithm, here indicated as jESDE. The
proposed algorithm makes use of two simple mutation and
two crossover strategies. The adaptation of the strategies is
achieved by a learning period and a straightforward imple-
mentation of the ensemble mechanism. Furthermore, jJESDE
uses the controlled randomization of F' and C'R proposed
in the jDE framework. The resulting algorithm displays an
excellent performance in relatively low dimensions and a
moderately good performance in high dimensions. In the latter
case though, the base jDE algorithm shows the best results.
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The de-constructing task performed to obtain jJESDE led
us to draw some conclusions regarding the DE functioning:
1) the learning period, albeit short, supports DE to adapt to
the problem and appears to help to detect better solutions;
2) multiple mutations/crossovers are useful to tackle diverse
problems; 3) the mutation operators must be diverse to work
properly, e.g. one should have exploratory features while the
other should be more exploitative; 4) complex operators do
not necessarily enhance the performance of a DE algorithm,
especially when diverse optimization problems are considered.
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TABLE L. AVERAGE ERROR £ STANDARD DEVIATION AND STATISTIC COMPARISON (REFERENCE: JESDE) FOR JESDE AGAINST EPSDE AND
SAEPSDE oN CEC2013 [29] IN 30 DIMENSIONS. THE BOLD FONT INDICATES THE ALGORITHM WITH THE LOWEST AVERAGE ERROR.

JESDE EPSDE SA-EPSDE
f1 0.00e + 00 + 0.00e + 00 0.00e + 00 + 0.00e + 00 = 0.00e + 00 + 3.78e — 13 +
fa 4.53e + 04 + 2.78e + 04 3.36e 4 06 + 2.02e + 06 + 2.56e + 05 + 1.50e + 05 +
f3 6.70e + 06 + 9.19e + 06 1.24e + 06 + 3.24e + 06 - 7.88e + 07 + 1.54e + 08 +
fa 2.86e + 00 + 3.12e + 00 1.88e + 04 4 4.28e + 03 + 1.22e + 02 4 1.73e + 02 +
fs 0.00e + 00 + 3.41le — 14 0.00e + 00 + 2.54e — 14 = 1.14e — 13+ 2.91e — 13 +
fe 4.91e + 00 £+ 5.03e + 00 1.43e + 01 £ 7.45e + 00 + 1.98e + 01 £ 2.52e + 01 +
Nird 4.27e + 01 £+ 1.51le + 01 3.27e + 01 + 1.02e + 01 - 5.27e + 01 + 1.38e + 01 +
fs 2.09e + 01 + 5.31e — 02 2.10e + 01 £5.51e — 02 + 2.10e + 01 + 5.10e — 02 +
fo 1.90e + 01 + 3.48e + 00 3.19e 4+ 01 + 1.33e + 00 + 2.21e 4+ 01 + 3.18e + 00 +
f1o0 8.50e — 02 + 5.78e¢ — 02 3.27e — 02 + 1.90e — 02 - 9.67e — 02 4+ 8.50e — 02 =
f11 1.99e¢ — 02 + 1.39e — 01 2.22e — 04 +5.16e — 04 + 2.07e 4+ 01 + 1.03e + 01 +
f12 6.85e + 01 + 1.60e + 01 1.07e + 02 £+ 1.22e + 01 + 9.18e + 01 + 2.30e + 01 +
f13 1.27e + 02 + 2.53e + 01 1.29e + 02 4+ 1.42¢ + 01 = 1.55e + 02 + 2.88¢ + 01 +
f1a 1.28¢ + 02 + 3.57e + 01 6.87e + 02 + 1.20e + 02 + 3.13e + 01 + 2.79e + 01 -
f1is 3.54e + 03 + 7.20e + 02 6.25e + 03 + 3.16e + 02 + 3.81le + 03 + 7.58e + 02 +
f1e 1.79e + 00 + 5.24e — 01 2.46e + 00 £+ 3.13e — 01 + 2.03e + 00 +4.02e — 01 +
fi7 3.25e + 01 + 3.45e — 01 3.27e + 01 + 4.74e — 01 + 3.32e + 01+ 9.77e — 01 +
f1s 8.37e + 01 + 1.71le + 01 1.80e + 02 £ 1.34e + 01 + 9.21e 4+ 01 + 2.05e + 01 +
f19 2.14e + 00 + 5.79e — 01 3.23e + 00 £+ 2.58e — 01 + 3.78e¢ + 00 £+ 1.41e + 00 +
f20 1.04e + 01 + 7.06e — 01 1.23e + 01 £2.73e — 01 + 1.06e + 01 +6.31e — 01 +
f21 3.22e + 02 + 7.32e + 01 2.98e + 02 + 8.49e + 01 - 3.28e + 02 + 8.13e + 01 +
foo 2.73e + 02 £ 8.63e + 01 1.05e + 03 & 1.94e + 02 + 1.58e + 02 4 5.32e + 01 -
fas 3.93e + 03 + 7.70e + 02 6.40e + 03 + 3.86e + 02 + 4.28e + 03 £ 7.29e + 02 +
fou 2.31e + 02 + 8.13e 4 00 2.80e 4 02 + 5.22e + 00 + 2.47e 4+ 02 + 1.14e + 01 +
fas 2.73e + 02 + 1.41le + 01 2.91e + 02 &+ 5.85¢ + 00 + 2.87e + 02 & 9.40e + 00 +
fo6 2.00e + 02 + 1.59e¢ — 03 2.15e + 02 + 4.90e + 01 + 2.03e 4+ 02+ 1.94e + 01 +
for 6.82e + 02 + 9.82e + 01 1.10e + 03 + 4.06e + 01 + 7.39e + 02 + 8.51e + 01 +
fas 2.96e + 02 + 2.80e + 01 3.00e + 02+ 4.13e — 13 - 2.88e + 02 + 4.75e + 01 +
TABLE II. AVERAGE ERROR £ STANDARD DEVIATION AND STATISTIC COMPARISON (REFERENCE: JESDE) FOR JESDE AGAINST EPSDE AND

SAEPSDE oN CEC2013 [29] IN 50 DIMENSIONS. THE BOLD FONT INDICATES THE ALGORITHM WITH THE LOWEST AVERAGE ERROR.

JESDE EPSDE SA-EPSDE
71 0.00e + 00 £ 0.00e + 00 | 0.00e } 00 £ 0.00e + 00 | = 2.27¢ — 13 £7.07¢ — 13 ¥
fa 2.77e + 05 + 9.88¢ + 04 1.30e + 07 + 4.30¢ + 06 + 8.42¢ + 05 + 3.25¢ + 05 +
f3 5.45¢ + 07 & 6.17e + 07 1.20e + 07 +2.58¢ + 07 | - 1.79¢ + 08 + 1.61¢ + 08 +
fa 1.27¢ + 01 + 1.24e + 01 5.15e + 04 & 8.60e + 03 + 3.0le 4+ 02 + 2.30e + 02 +
75 1.14e — 13 + 1.14e — 14 1.14e — 13+ 1.14e — 14 = 1.36e — 124+ 1.15¢ — 11 +
fe 4.73e + 01 + 1.76e + 01 4.48e¢ + 01+ 1.27e +00 | + 5.7le 4+ 01 4 2.26¢ + 01 +
fr7 6.63¢ + 01 + 1.22¢ 4 01 8.51e 4+ 01 + 1.63e + 01 + | 5.87e+ 01+ 1.08e+ 01 -
78 2.1le + 01 + 3.81le — 02 2.11e 4 01 + 3.03e — 02 + 2.12e 4 01 + 3.65¢ — 02 +
fo 4.45¢ + 01 + 5.49¢ + 00 6.09¢ 4 01 & 1.83¢ + 00 + | 4.25e 4+ 01+4.93e 4 00 -
f10 9.63¢ — 02 + 5.16e — 02 9.60e — 02 +4.92¢ — 02 = | 6.69e —02+1.19¢e — 01 | -
11 3.58¢ — 01 + 1.89¢ 4 00 2.95¢ — 024+ 1.04e — 01 | + 4.09e + 01 + 1.58¢ + 01 +
f12 1.96e + 02 + 4.28¢ + 01 2.33¢ 4 02 £ 2.35¢ + 01 + | 1.90e+02+2.99e+01 | =
f13 3.16e + 02 + 4.81e 4 01 2.89e + 02 + 2.32e + 01 - 3.05e + 02 + 4.28e + 01 =
f1a 2.42¢ 4 02 + 8.16¢ + 01 9.76e + 02 & 1.50e + 02 + | 7.94e 4+ 01+ 5.46e + 01 -
f1s 7.59e + 03 £ 1.39e 4 03 1.19e + 04 & 5.06e + 02 + 1.02e + 04+ 1.82¢ + 03 +
fi6 2.31e + 00 + 5.52e¢ — 01 3.13¢ + 00 + 2.93¢ — 01 + 3.23¢ + 00 + 3.33¢ — 01 +
fi7 | 5.58e+01 + 6.19¢ — 01 5.68¢ 4 01 & 7.48¢ — 01 + 5.97e + 01 + 2.71e + 00 +
f1s 2.07e + 02 £ 3.94e 4 01 3.43e 4 02 & 1.94e + 01 + 2.69¢ + 02 & 7.43¢ + 01 +
f19 6.46e + 00 + 2.03e + 00 5.85¢ + 00+ 4.79e — 01 | = 7.98e 4 00 + 2.24e + 00 +
20 1.93e + 01 + 8.29e — 01 2.20e 4 01 + 3.30e — 01 + 2.0le + 01 + 9.66¢ — 01 +
f21 8.22e + 02 * 3.61e + 02 6.24e + 02 + 4.33e + 02 - 8.60e + 02 & 3.25¢ + 02 +
fao 3.94e + 02 + 1.87e 4 02 1.29¢ + 03 + 2.85¢ + 02 + | 8.15e 4+ 02+ 2.68e + 02 -
fa3 8.17e¢ 4+ 03 + 1.20e + 03 1.20e + 04 + 6.26¢ + 02 + 1.07e + 04 + 2.04e + 03 +
f2a 2.88e + 02 £ 1.25e 4 01 3.54e + 02 & 7.08e + 00 + 2.96¢ + 02 & 1.30e + 01 +
fas 3.64e + 02 + 1.19e + 01 3.80e 4 02 4 6.12¢ + 00 + 3.67¢ + 02 + 1.26e 4 01 =
fa6 2.73¢ 4+ 02 £ 9.6le + 01 4.14e 4 02 £ 8.91e + 01 + | 2.00e+02+3.49¢ —02 | +
far 1.32e + 03 £ 1.20e 4 02 1.84e + 03+ 5.88¢ + 01 + 1.35¢ + 03+ 1.17¢ + 02 +
fa 5.36e + 02 + 6.69e + 02 7.15e¢ 4+ 02 4 9.44e + 02 - 6.46¢ + 02 + 8.98¢ 4 02 +

TABLE III. AVERAGE ERROR + STANDARD DEVIATION AND STATISTIC COMPARISON (REFERENCE: JEPDE) FOR JEPDE AGAINST MDE-PBX, IDE,

AND SADE oN CEC2013 [29] IN 30 DIMENSIONS. THE BOLD FONT INDICATES THE ALGORITHM WITH THE LOWEST AVERAGE ERROR.

JESDE MDE-pBX iDE SADE
71 0.00e - 00 £ 0.00e + 00 | 2.27¢ — 13 £ 4.86e — 13 | + 0.00e + 00 £ 3.94¢ — 14 = 0.00e + 00 £8.51e — 14 ¥
fa 4.53e 4 04 + 2.78e + 04 2.70e + 05+ 2.62¢ + 05 | + 5.90e + 05 % 3.59¢ + 05 + 7.54e + 05 + 4.40e + 05 +
f3 6.70e 4 06 + 9.19¢ + 06 5.19¢ 4 07+ 1.18¢ + 08 | + | 9.25e + 05+ 1.81e + 06 - 7.93e 4 07 £ 1.28¢ + 08 +
fa 2.86e + 00 + 3.12e + 00 3.49¢ 4 02+ 3.18¢ + 02 | + 5.53e + 02 & 3.13¢ + 02 + 1.32e + 04+ 5.13¢ + 03 +
fs 0.00e + 00 + 3.41e — 14 | 1.09¢ — 10+ 1.00e — 09 | + 1.14e — 13 +2.78e — 14 + 1.14e — 13 £ 1.22¢ — 13 +
76 4.91e 4+ 00 + 5.03e + 00 3.41e 4 01 £ 2.77e + 01 + 9.68¢ + 00 % 5.34¢ + 00 + 2.16¢ + 01 + 1.85¢ 4 01 +
7 4.27e + 01 + 1.51e + 01 5.61e 4 01 & 1.90e + 01 + | 2.56e 4 00+ 2.87e 4 00 - 5.06¢ + 01 + 1.70e + 01 +
78 2.09e + 01 + 5.31e — 02 2.10e + 01+ 5.93¢ — 02 | + 2.10e 4 01 + 4.48¢ — 02 = 2.10e + 01 + 9.43e — 02 +
fo 1.90e + 01 + 3.48e + 00 2.16e 4 01+ 4.36e + 00 | + 3.04e + 01 & 4.00e + 00 + 2.85¢ 4 01 =+ 3.49¢ + 00 +
f10 8.50e — 02 + 5.78e — 02 1.8le — 014 1.10e — 01 | + | 4.12e — 02 + 2.33e — 02 - 1.55¢ — 01 £ 1.23¢ — 01 +
f11 1.99¢ — 02 + 1.39e¢ — 01 4.68¢ 4 01 + 1.54e + 01 + | 0.00e+00+1.14e —14 | = 2.51e + 01 4 1.19¢ + 01 +
fiz 6.85¢ 4+ 01 + 1.60e + 01 6.91e 4 01 & 2.20e + 01 = 8.00e 4 01 & 3.66¢ + 01 + | 3.89e+01+1.31e+ 01 -
13 1.27¢ + 02 £ 2.53e + 01 1.50e + 02 & 3.56e + 01 + 1.1le + 02 4 2.85¢ + 01 - 9.03e + 01 + 2.85e + 01 -
fia 1.28e + 02 + 3.57e + 01 1.20e + 03 4+ 4.25¢ + 02 | + 3.06e 4 02 + 6.43¢ + 01 + 1.47e + 03 + 5.53e + 02 +
15 3.54e + 03 + 7.20e + 02 4.0le 4 03+ 7.00e + 02 | + 6.47¢ + 03 & 3.23¢ + 02 + 3.86e + 03+ 6.71e + 02 +
16 1.79e + 00 £ 5.24e — 01 1.32e + 00 £ 8.61e — 01 - 2.39¢ 4+ 00 + 2.61e — 01 + | 1.02e + 00+ 4.40e — 01 -
fir 3.25e + 01 + 3.45e — 01 6.89¢ 4 01 + 1.24e + 01 + 4.20e 4 01 + 1.50e 4 00 + 5.84e + 01 + 8.44e + 00 +
fis 8.37¢ 4+ 01 + 1.71le + 01 8.31e 4 01 & 1.66¢ + 01 = 1.85¢ + 02 £ 1.12¢ 4 01 + | 6.37e +01+1.08e+ 01 -
19 2.14e + 00 + 5.79e — 01 9.10e 4 00 & 4.94¢ + 00 | + 3.97¢ 4 00 & 4.09¢ — 01 + 3.07e + 00 + 7.81e — 01 +
20 1.04e + 01 + 7.06e — O1 1.09e + 014 7.97e¢ — 01 | + 1.20e + 01 4+ 2.95e — 01 + 1.12e 4+ 01 + 8.91e — 01 +
a1 3.22¢ 4 02 + 7.32¢ + 01 3.09¢ 4 02 £ 7.63¢ + 01 + 3.00e 4 02 & 8.13¢ + 01 - 2.96e + 02 + 6.52¢ + 01 -
fa2 2.73e + 02 £ 8.63e + 01 1.11e + 03 £5.46e + 02 | + 1.12e + 03 4 2.32¢ + 02 + 1.85¢ + 03+ 5.87¢ + 02 +
fa3 3.93e + 03 £ 7.70e + 02 4.47¢ +03+£7.32¢ +02 | + 6.87e + 03 & 3.26e + 02 + 4.47e + 03 + 6.85e + 02 +
e 2.31e 4 02 + 8.13¢ + 00 2.3le 4 02+ 1.11e + 01 = | 2.05e+ 02+ 7.41e + 00 - 2.43¢ + 02 £ 1.23¢ 4 01 +
fa5 2.73¢ + 02 £ 1.4le + 01 2.75¢ 4 02 & 1.55¢ + 01 = | 2.64e +02+1.93e 4 01 - 2.95¢ + 02 + 8.81e + 00 +
fa6 2.00e + 02 + 1.59e — 03 2.16e 4 02 +4.31e + 01 + 2.00e 4 02 + 1.35¢ — 02 + 2.02e + 02 + 1.46e + 01 +
far 6.82¢ 4 02 + 9.82¢ + 01 6.55¢ 4 02+ 1.13¢ + 02 | = | 5.4le + 02+ 1.57e + 02 - 8.74e + 02+ 9.41e + 01 +
fas 2.96e + 02 + 2.80e 4 01 3.1le + 02+ 1.11e + 02 | + 3.00e + 02 4+9.27¢ — 13 - 3.00e 4 02 4 1.29¢ — 12 =

1535



TABLE IV.

TABLE V.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

AVERAGE ERROR & STANDARD DEVIATION AND STATISTIC COMPARISON (REFERENCE: JESDE) FOR JESDE AGAINST MDE-PBX, IDE,

AND SADE oN CEC2013 [29] IN 50 DIMENSIONS. THE BOLD FONT INDICATES THE ALGORITHM WITH THE LOWEST AVERAGE ERROR.

JESDE MDE-pBX iDE SADE
71 0.00e + 00 £ 0.00e + 00 3.34e — 11 £ 2.60e — 10 ¥ 0.00e + 00 £ 2.11e — 13 ¥ 2.27¢ — 13 £ 4.38¢ — 13 ¥
fa 2.77e¢ + 05 + 9.88e + 04 9.06¢ 4 05 & 4.90e + 05 + 1.13¢ + 06 + 3.48¢ + 05 + 2.33¢ 4 06 & 9.86¢ + 05 +
I3 5.45¢ + 07 + 6.17¢ + 07 1.42¢ + 08 + 1.57¢ + 08 + | 6.42e + 06 + 1.26e + 07 - 9.91e + 08 £ 9.15¢ + 08 +
fa 1.27e 4+ 01 + 1.24e + 01 1.09e + 03 =+ 8.33e + 02 + 2.0le 4 03 + 8.70e 4 02 + 1.80e + 04 + 4.64e + 03 +
75 1.14e — 13 4 1.14e — 14 2.54e — 05 + 2.52¢ — 04 + 1.14e — 13 4+ 3.0le — 14 + 1.14e — 13 4+ 5.63¢ — 13 +
76 4.73¢ + 01 + 1.76¢ + 01 5.67e + 01 &= 2.24e + 01 + | 4.35e+01+5.68¢—01 | = 4.49¢ + 01 £ 5.34e + 00 +
fr 6.63¢ 4+ 01 + 1.22e + 01 6.81e 4 01 + 1.22e + 01 = 1.88e + 01 + 9.88e + 00 - 7.95¢ 4 01 + 1.24e + 01 +
78 2.11e 4+ 01 + 3.8le — 02 2.12¢ 4 01 & 4.36e — 02 + | 2.11e + 01+ 3.36e — 02 - 2.12¢ 4 01 4+ 8.76e — 02 +
fo 4.45e¢ + 01 % 5.49¢ + 00 4.27e 4 01 4 6.99e + 00 - 6.08e + 01 & 4.53e + 00 + 5.65e 4+ 01 & 5.07e + 00 +
f10 9.63e — 02 + 5.16e — 02 4.09¢ — 01 £ 5.57e — 01 + 9.68¢ — 02 = 4.03e — 02 = 4.00e — 01+ 9.28e — 01 +
11 3.58¢ — 01 + 1.89¢ 4 00 1.21e + 02 + 2.97¢ + 01 + | 1.99e —02+1.39e — 01 | + 6.00e 4 01 & 2.07e + 01 +
12 1.96e + 02 + 4.28¢ 4 01 1.62¢ + 02 + 3.45¢ + 01 - 1.52¢ + 02 £ 8.51e + 01 - 9.17e + 01 + 2.24e + 01 -
f13 3.16e 4+ 02 + 4.81e + 01 3.22e 4 02 + 5.39¢ + 01 = 2.83¢ 4 02 + 4.39¢ + 01 - 2.11e + 02 + 3.86e + 01 -
f1a 2.42e + 02 + 8.16e + 01 2.79¢ 4 03 & 8.06e + 02 + 1.62¢ + 03 + 2.20¢ + 02 + 3.46¢ + 03 & 7.81e + 02 +
15 7.59e + 03 £ 1.39e + 03 7.58e - 03+8.0le +02 | = 1.27e + 04 £ 5.10e + 02 + 7.75e + 03 & 7.48e + 02 +
f16 2.31e + 00 £ 5.52¢ — 01 1.93e + 00 + 8.76e — 01 - 3.20e + 00 & 2.81e — 01 + | 1.70e 4+ 00+ 8.61e — 01 -
fir 5.58¢ + 01 + 6.19¢ — 01 1.79¢ + 02 + 3.56¢ + 01 + 9.31e 4 01 & 4.03e + 00 + 1.10e + 02 + 1.66¢ + 01 +
18 2.07e 4+ 02 + 3.94¢ + 01 1.86¢ + 02+ 3.17¢ + 01 - 3.73¢ 4+ 02 & 1.43¢ + 01 + | 1.18e +02+1.52e + 01 -
fio 6.46e + 00 + 2.03e + 00 3.94e 4 01 + 2.10e + 01 + 8.95¢ 4 00 + 7.71le — 01 + 7.91e + 00 & 4.00e + 00 +
f20 1.93e + 01 + 8.29e — 01 2.0le 4 01+ 9.17e — 01 + 2.18¢ 4 01 & 3.20e — 01 + 2.07e 4 01 & 1.09¢ + 00 +
fo1 8.22¢ 4+ 02 + 3.61le + 02 8.91e + 02 + 3.44e + 02 + | 7.98¢+02+4.26e+02 | = 8.54e 4 02 & 3.97e + 02 +
Fan 3.94e + 02 + 1.87e + 02 3.22¢ 4 03 + 1.06e + 03 + 2.99¢ 4 03 + 4.23¢ 4 02 + 4.30e 4 03 + 8.32¢ 4 02 +
fa3 8.17e¢ + 03 + 1.20e + 03 9.08¢ 4 03 & 1.05¢ + 03 + 1.34¢ + 04 + 4.84¢ + 02 + 9.04e 4 03+ 1.10e + 03 +
e 2.88¢ 4+ 02 + 1.25¢ + 01 2.88¢ 4 02 £ 1.56¢ + 01 = | 2.38e+ 02+ 1.43e + 01 - 3.06e 4 02 & 1.88¢ + 01 +
fas 3.64e + 02 + 1.19e + 01 3.68¢ 4 02 & 1.48¢ + 01 + 3.68¢ 4 02 + 3.15e + 01 + 3.92¢ 4 02 + 1.09e + 01 +
fa6 2.73¢ + 02 + 9.61c + 01 3.55¢ 4 02 & 7.46¢ + 01 + | 2.00e+02+1.27e +00 | + 3.41e 4 02 & 1.10e + 02 +
far 1.32e + 03 £ 1.20e + 02 1.23e + 03 & 1.49e + 02 - 1.20e + 03 + 3.97e + 02 - 1.62¢ + 03 4 1.34e + 02 +
fa 5.36e + 02 + 6.69¢ + 02 5.05¢ 4 02 + 5.99¢ 4 02 + | 4.00e 4 02+ 2.95e — 13 - 4.00e 4 02 4 1.25¢ — 12 +

AVERAGE ERROR =+ STANDARD DEVIATION AND STATISTIC COMPARISON (REFERENCE: JESDE) FOR JESDE AGAINST MDE-PBX, IDE AND

SADE oN CEC2010 [30] IN 1000 DIMENSIONS. THE BOLD FONT INDICATES THE ALGORITHM WITH THE LOWEST AVERAGE ERROR.

JESDE MDE-pBX JDE SADE
71 7.30e + 07 £ 1.10e + 08 1.05¢ + 09 £6.58¢ + 08 | + | 3.82e — 04 £ 3.15e — 03 | - 2.89¢ 4 07 £ 1.02e + 08 B
fa 7.05¢ 4+ 03 + 1.92¢ + 02 7.02¢ +03+£2.38¢ 402 | = | 2.36e+ 03+ 3.19e + 02 - 5.55¢ 4 03 & 2.99¢ + 02 -
f3 1.42e¢ + 01 + 4.35¢ — 01 1.93¢ + 01+4.76e — 02 | + | 1.34e + 01+ 7.00e — 01 - 1.89¢ + 01 +2.83¢ — 01 | +
fa 1.19¢ + 12 + 4.20e + 11 3.21e 4+ 124+ 9.76e + 11 + | 9.80e+ 11+ 2.80e + 11 - 1.95¢ + 12+ 8.82e¢ + 11 | +
fs 1.66¢ + 08 + 2.85e + 07 1.54e + 08 +2.77¢ + 07 - 7.87e + 07 + 1.45e + 07 1.03¢ + 08 + 1.83¢ + 07 -
fe 2.99¢ 4+ 06 + 9.45¢ + 05 3.65¢ + 06+ 1.75¢ + 06 | + | 1.42e + 01+ 5.94e — 01 - 9.16e + 05+ 1.21e + 06 -
f7 7.70e 4+ 05 + 1.39¢ + 06 6.79¢ + 06 + 1.0le + 07 | + | 3.99e + 01 + 2.31e + 02 - 1.0le + 08 + 2.36e + 08 | +
fs 6.83¢ + 07 + 3.93¢ + 07 2.03¢ + 08+ 1.63¢ + 08 | + | 4.97e + 07 +2.48e + 07 7.08¢ + 07 £3.7le + 07 | =
fo 3.20e + 08 + 2.47e¢ + 08 1.68¢ + 09+ 1.00e +09 | + | 5.09e+ 07+ 4.67e + 06 - 2.11e 4 08 £ 2.93¢ + 08 -
f10 7.51e 4+ 03 £ 2.09¢ + 02 7.33e 4 03 & 2.55¢ + 02 - 4.46e 4 03 + 7.21e + 02 - 6.22¢ + 03 + 3.15¢ + 02 -
11 2.11e 4+ 02 £ 1.42¢ + 00 2.06e 4 02 & 2.40e + 00 - 1.06e + 02 + 1.51e + 01 - 2.05¢ 4 02 + 4.34e + 00 -
fi2 1.16e + 05 + 1.93e + 04 | 2.92¢ +05+6.60e + 04 | + 1.75¢ + 06 + 2.27¢ + 06 + | 3.15¢ 4+ 054 1.36e +05 | +
f13 5.19¢ 4+ 07 + 2.07e + 08 2.88¢ 4+ 09+3.17e + 09 | + | 1.15e + 03 + 2.00e + 02 - 5.67¢ 4 07 + 2.48¢ + 08 -
f1a 4.96e + 08 + 4.22¢ + 07 1.04e + 09+ 1.97¢ +08 | + | 1.69e+ 08+ 1.03e + 07 - 3.77¢ 4+ 08 £+ 1.13¢ + 08 -
fis 7.66e + 03 £ 2.07e + 02 7.44e 4 03 + 2.80e 4 02 - 5.55e + 03 + 2.39e + 02 6.49¢ + 03 + 2.38e + 02 -
fi6 3.89¢ 4 02 + 4.37e + 00 3.84e 4 02 & 1.22¢ + 00 - 3.28e 4 02 + 2.06e + 01 - 3.82e + 02 + 2.00e + 00 -
fi7 2.40e + 05 + 2.46e + 04 | 4.35¢ + 05+8.33¢ +04 | + 3.61e + 06 = 3.71e + 06 = | 6.37¢ 4+ 0542.00e +05 | +
fis 2.76e + 09 + 3.35¢ + 09 3.73¢ + 10+ 1.95¢ + 10 | + | 2.70e + 03 + 5.36e + 02 - 7.60e + 08 £ 1.14e + 09 -
fi9 8.96e + 05 + 6.56e + 04 | 9.22e + 05+ 1.06e + 05 | + 1.89e + 07 + 4.28¢ + 06 + | 2.11e + 06+ 1.61e +05 | +
f20 2.07¢ 4+ 09 + 2.44e¢ + 09 4.18¢ 4+ 104+2.02¢ + 10 | + | 2.3le + 03+ 1.74e + 02 - 2.26¢ 4 09 + 3.42¢ + 09 -
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