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Abstract—In this paper, we consider an online least square
regression problem where the objective function is composed of
a quadratic loss function and an L1 regularization on model
parameter. For each training sample, we propose to approximate
the L1 regularization by a convex function. This results in an
overall convex approximation to the original objective function.
We apply an efficient accelerated stochastic approximation algo-
rithm to solve the approximation. The developed algorithm does
not need to store previous samples, thus can reduce the space
complexity. We further prove that the developed algorithm is
guaranteed to converge to the global optimum with a convergence
rate O(lnn/

√
n) where n is the number of training samples.

The proof is based on a weaker assumption than those applied
in similar research work.

I. INTRODUCTION

In supervised learning settings with many input features,

over-fitting usually occurs when there are no ample training

data. Regularization is a well-known solution to avoid over-

fitting when there is only a small number of training examples,

and/or when there are a large number of parameters to be

learned. The L1 regularization is often used for sparse rep-

resentation, and has been shown to have good generalization

capability (e.g. see [3]). The L1-regularization proposed by

Tibshirani [4] is especially useful because it selects variables

according to the amount of penalization on the L1-norm of

the coefficients, in a manner that is less greedy than forward

selection and backward deletion. Since then, the L1 regularizer

and its variants including SCAD [5], Adaptive Lasso [6],

Elastic net [7], Stage-wise Lasso [8] and Dantzig selector [9],

have become the dominantly-used tools for data analysis.

In the online learning context, some stochastic gradient

methods has been successfully applied with L1 regularization

(e.g., Bottou and LeCunn [11]; Shalev-Shwartz et al. [12],

[13], and Hu et al. [1]) recently. But they have shown that the

classical stochastic gradient descent method cannot produce

sparse solutions. Further, the algorithms become slow because

of the introduction of the regularization. Therefore, it is

appealing to develop fast online stochastic learning algorithms

that can achieve sparsity.

Literature work to address the aforementioned problems

mostly fall into the following two categories. First, Duchi et al.

[16] suggested to projecting the L1 regularization term onto a

simplex, and then use projected sub-gradient method for con-

vex optimization. Second, Langford et al. [17] proposed to use

truncated gradient method, where a less aggressive strategy is

adopted to remove non-zero parameters but with small weights

periodically to prompt sparsity. Recently, Xiao [10] proposed a

regularized dual averaging (RDA) method for stochastic online

learning, which is an extension of the simple dual averaging

scheme of Nesterov [21]. In the RDA, an auxiliary strongly

convex function is introduced in the objective function of the

regularized stochastic learning problem which includes a loss-

function and a regularization term. He claimed that the RDA

can exploit the structure of the regularized online learning

problem more effectively. He further proved that the RDA with

L1 regularization can achieve a convergence rate O(1/
√
n)

where n is the number of samples. However, in the RDA, at

each iteration, previous solutions are to be stored for updating

present solution.

In this paper, we develop a new stochastic online learning

algorithms for regression with L1 regularization, called the

accelerated stochastic gradient descent methods (AC-SGD),

which is able to address the sparsity problem and decrease

the space complexity. The developed algorithm is based on

the so-called accelerated stochastic approximation algorithm.

A short literature reivew can be summarised as follows.

For a class of convex programming (CP) problems, Nes-

terov presented an accelerated gradient (AG) method in his

work [18]. The accelerated gradient method has also been

generalized by Beck and Teboulle [19], Tseng [20], and

Nesterov [21], [22] for an emerging class of composite CP

problems. In 2012, Lan [23] showed that the AG method is

optimal for solving not only the smooth CP problems, but

also general non-smooth and stochastic CP problems. The

accelerated stochastic approximation (AC-SA) algorithm was

proposed by Ghadimi and Lan [24], in which a properly

modified Nesterov’s optimal method for smooth CP is applied.

Recently, they developed a generic accelerated stochastic ap-

proximation algorithmic framework, which can be specialized

to yield optima or nearly optimal methods for strongly convex

stochastic composite optimization problems [24], [25], [26],

[27].

In this paper, we propose to approximate the L1 regulariza-

tion by a convex function. With a convex loss function, this978-1-4799-7560-0/15/$31 c©2015 IEEE
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will result in a convex approximation to the original objective

function of the online regression learning. Thus the considered

problem is also a convex programming problem. We then

propose to apply the accelerated stochastic approximation

algorithm to the considered problem, motivated by those men-

tioned work. Further, we prove, with weaker assumptions than

a similar work in [2], that the developed algorithm guarantees

the convergence to global optimum with a convergence rate

O(lnn/
√
n).

The rest of the paper is organized as follows. In Section II,

we first give a brief introduction of the stochastic accelerated

gradient algorithm, and present the analysis results on the

convergence rate for the online least square regression with

L1 regularization. In Section 3, we present the comparison

between the work with related work in the literature. Section

4 concludes the paper.

II. THE ALGORITHM

In this section, we present the accelerated stochastic gra-

dient algorithm for L1 regularization least square regression.

The objective function we considered in the paper is of the

following form:

f(θ) =
1

2
E[(y − 〈θ, x〉)2] + ‖θ‖1 (1)

where (x, y) is an input-output pair of data drawn from

an (unknown) underlying distribution and θ is the model

parameters, where x ∈ F and y ∈ R. 〈θ, x〉 denotes the inner

product of the parameter θ and the decision variable x.

Before presenting the stochastic accelerated gradient al-

gorithm for the regression problem, we make the following

assumptions:

(a) F is a d−dimension Euclidean space, with d ≥ 1.

(b) Let (X, d) be a compact metric space and let Y = R.

Let ρ be a probability distribution on Z = F × Y and

(X ,Y) be corresponding random variable. Denote by z =
{zi}ki=1 = {(xi, yi)}ki=1 ∈ Z a set of random samples,

which is independently drawn according to ρ.

(c) E‖xk‖2 is finite, i.e., E‖xk‖2 ≤M for any k ≥ 1.

(d) The global minimum of f(θ) is attained at a certain θ∗ ∈
F .

The assumptions (a-d) are standard in stochastic approxi-

mation. In Bach et al. [2], they addressed the same problem

as presented in Eq. (1). In their work, they made assumption

on the covariance operator H = E(xk

⊗
xk) to be invertible

for any k ≥ 1, and that the operator E(xk

⊗
xk) satisfies

E[ξi
⊗

ξi] 	 σ2H and E(‖xi‖2xk

⊗
xk) 	 R2H for a posi-

tive number. We do not require such rather strong assumptions

in the analysis.

A. The accelerated gradient algorithm for regression learning

In the sequel, we let ξk = (yk − 〈θ∗, xk〉)xk denote the

residual. For any k ≥ 1, we have Eξk = 0. We also assume

that Eξ2k ≤ σ2 for every k and ξk =
1
k

∑k
i=1 ξi.

Since ‖θ‖1 is a non-differentiable function, we propose to

approximate it by a smooth function for δ > 0 defined as

follows:

h(θ, δ) =
1

(2δ)d

∫ θ1+δ

θ1−δ

· · ·
∫ θd+δ

θd−δ

‖t‖1dt1 · · · dtd

=
1

2δ

∫ θ1+δ

θ1−δ

|t1|dt1 + · · ·+ 1

2δ

∫ θd+δ

θd−δ

|td|dtd

where t ∈ R
d. It can be proved that Eq. (1) is convex. We

have the following theorem 2.1 (Please see Appendix A for

the proof).

Theorem 2.1: For θ ∈ R
d and any δ > 0, h(θ, δ) is convex.

Moreover, it can be easily proven that

∣∣∣‖θ‖1 − h(θ, δ)
∣∣∣ ≤

∣∣∣∣∣|θ1| −
1

2δ

∫ θ1+δ

θ1−δ

|t1|dt1
∣∣∣∣∣+ · · ·

+

∣∣∣∣∣|θd| −
1

2δ

∫ θd+δ

θd−δ

|td|dtd
∣∣∣∣∣

≤ ω(|θ1|, δ) + · · ·+ ω(|θd|, δ), (2)

where ω(‖θ‖1, δ) denotes smoothness model of ‖θ‖1. Proper-

ties of the smoothness model tell us that

ω(|θi|, δ) ≤ δ, for any i = 1, 2, . . . , d. (3)

From Eqs. (2) and (3), we have

f(θ) ≤ 1

2
E[(yk − 〈θ, xk〉)2] + h(θ, δ) + dδ. (4)

Since h(θ, δ) is a convex function, it is easy to obtain the
gradient of h(θ, δ) with respect to θ:

∇h(θ, δ) =

( |θ1 + δ| − |θ1 − δ|
2δ

, . . . ,
|θd + δ| − |θd − δ|

2δ

)ᵀ

Since ∇h(θ, δ) satisfies

‖∇h(θ, δ)−∇h(ϑ, δ)‖1 ≤
∑

i |θi − ϑi|
δ

=
‖θ − ϑ‖1

δ

This implies that ∇h(θ, δ) is Lipschitz continuous with con-

stant 1
δ . If we let

g(θ) =
1

2
E[(yk − 〈θ, xk〉)2]

then g(θ) is a convex function and its gradient w.r.t. θ is

∇g(θ) = E (〈θ, xk〉xk − ykxk). From Eq. (4), we know that

f(θ) ≤ g(θ) + h(θ, δ) + dδ,

Therefore, it can be seen that both ∇g(θ) and ∇h(θ, δ) are

Lipschitz continuous with constant

1

δ
+ E‖xk‖2 ≤M +

1

δ
= L

In the sequel, we denote G1,1
L the class of convex functions

on convex set X whose gradient is Lipschitz-continuous with
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constant L. It is well known that functions belonging to this

class satisfy for any θ, ϑ ∈ X and δ > 0

g(θ) + h(θ, δ) ≥ g(ϑ) + h(ϑ, δ) +

〈∇g(ϑ) +∇h(ϑ, δ), θ − ϑ〉 (5)

g(θ) + h(θ, δ) ≤ g(ϑ) + h(ϑ) +
Mδ + 1

2δ
‖θ − ϑ‖22 +

〈∇g(ϑ) +∇h(ϑ), θ − ϑ〉 (6)

From Eqs. (2), (3), (5) and (6), we know that

f(θ) ≥ g(ϑ) + h(ϑ) +

〈∇g(ϑ) +∇h(ϑ), θ − ϑ〉 − dδ (7)

f(θ) ≤ f(ϑ) + 〈∇g(ϑ) +∇h(ϑ), θ − ϑ〉
+
Mδ + 1

2δ
‖θ − ϑ‖22 + 2dδ. (8)

In the following, we let θ0 ∈ F , {αk} satisfy α1 = 1 and

{αk > 0} for any k ≥ 2, {βk > 0}, and {λk > 0}. Based on

Eqs. (7)(8), the accelerated gradient algorithm for regression

learning can be summarised in Alg. 1.

Algorithm 1 The accelerated stochastic gradient algorithm.

1: Set the initial θag0 = θ0 and k = 1
2: Update auxiliary variable θmd

k by a convex combination

between θag and θk−1 as

θmd
k = (1− αk)θ

ag
k−1 + αkθk−1. (9)

3: Update θk as

θk = θk−1 − λk

(∇g(θmd
k ) +∇h(θmd

k )
)
, (10)

4: Update the auxlilary variable θag as

θagk = θmd
k − βk

(∇g(θmd
k ) +∇h(θmd

k ) + ξk
)
, (11)

5: Set k ← k + 1 and go to step 2.

In Alg. 1, we introduce an auxiliary value θmd
k at each step,

which is updated as a linear combination between another

auxiliary value θag and previous estimation of the model

parameter denoted as θk−1 in Step 2. The model parameter

is then updated in Step 3 with a parameter λk. In step 4,

another auxiliary value θagk is introduced with the parameter

βk. The settings of the parameters αk, βk and λk are defined

in the following section.

B. The Convergence Rate

To establish the convergence rate of the stochastic acceler-

ated gradient algorithm, we need the following Lemma (see

Lemma 1 in [25]).

Lemma 2.2: Let αk be the step sizes in the accelerated

gradient algorithm and the sequence {ηk} satisfies

ηk = (1− αk)ηk−1 + τk, k = 1, 2, . . . ,

where

Γk =

{
1, k = 1,
(1− αk)Γk−1, k ≥ 2.

(12)

Then we have

ηk ≤ Γk

k∑
i=1

τi
Γi

for any k ≥ 1

Based on lemma 2.2, we present Theorem 2.3 which de-

scribes the convergence property of the accelerated gradient

algorithm for the least-square regression with L1 regulariza-

tion. The proof of the theorem can be found in Appendix B.

Theorem 2.3: Let {θmd
k , θagk } be computed by the ac-

celerated gradient algorithm and Γk be defined in (5) and

assumptions (a-d) hold. If {αk}, {βk} and {λk} are chosen

such that

αkλk ≤ βk ≤ δ

Mδ + 1
, and

α1

λ1Γ1
≥ α2

λ2Γ2
≥ · · · ,

then for any n ≥ 1, we have

E

[
f (θagn )− f(θ∗)

]
≤ Γn

2λ1
‖θ0 − θ∗‖2+

Γnσ
2

n∑
k=1

Mδ + 1

2δΓk
β2
k + 4dΓn

n∑
k=1

δ

Γk
. (13)

In the following, we specialize the results of Theorem 2.3

for some particular selections of {αk}, {βk} and {λk}. Proof

is available in Appendix C.

Corollary 2.4: Suppose that αk, λk and βk in the accelerated

gradient algorithm for regression learning are set to

αk =
3

2(k + 1)
, λk =

1

M(k + 1)Γk
,

βk =
3

2M(k + 1)2Γk
, ∀k ≥ 1, (14)

for any n ≥ 1, we have

E [f (θagn )− f(θ∗)] ≤ e‖θ0 − θ∗‖2
2M

√
n

+

7e2σ2
(
2.5e2 + lnn+ 1

)
+ 64de3 ln(n+ 1)

14M
√
n

. (15)

With such corollary, we can conclude that the developed

algorithm converges to the global optimum with a convergence

rate O(lnn/
√
n).

III. COMPARISONS WITH RELATED WORK

In Section 2, we have discussed the accelerated stochas-

tic approximation algorithms for least-square regression with

L1 regularization. We have derived the convergence rate

O (lnn/
√
n) of accelerated stochastic approximation learning

algorithms by using the convexity of the aim function. This

rate is similar to some related work, but with weaker assump-

tions. For examples, in [10] and [27], the authors considered

similar problems, while they obtained a convergence rate

O(1/
√
n).

Our convergence analysis of accelerate stochastic learning

algorithms with L1 regularization is based on a similar analysis

for stochastic composite optimization by Ghadimi and Lan

in [27]. Beside the convergence analysis results, the other
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difference between our work and that of Ghadimi and Lan is

that at each iteration, the parameters βk, λk of the developed

algorithm in [27] depends on the maximum iteration N . In

our algorithm, we do not need this assumption.

The work that is most closely related to ours is that of

Xiao [10], who consider regularized stochastic learning and

online optimization problems. In their work, the objective

function is considered as the sum of two convex terms: one is

the loss function of the learning task, and the other is a simple

regularization term such as L1-norm for promoting sparsity as

follows:

min {Ezf(ω, z) + ‖ω‖1}
where ω ∈ R

d is the optimization variable, the sample

z = (x, y) is an input-output pair of data drawn from an

(unknown) probability distribution. Both Xiao and we studied

the convergence performance of regularized stochastic learning

problems when the aim function f is strong-convexity func-

tion. The difference is that in the algorithm developed in [10],

the average of previous solutions is used for the update while

we only used the current solution.

APPENDIX

A. Proof of Theorem 2.1

Proof For any θ1, θ2 ∈ X, ι ∈ (0, 1), let ω = ιθ + (1 − ι)ϑ,

we have

h(ω, δ) =
1

2δ

∫ ω+δ

ω−δ

|t1|dt1 + · · ·+ 1

2δ

∫ ω+δ

ω−δ

|td|dtd

=
1

2δ

∫ δ

−δ

|t1 − ω|dt1 + · · ·+ 1

2δ

∫ δ

−δ

|td − ω|dtd

≤ ι

2δ

∫ δ

−δ

|t1 − θ1|dt1 + · · ·+ ι

2δ

∫ δ

−δ

|td − θd|dtd +

1− ι

2δ

∫ δ

−δ

|t1 − ϑ1|dt1 + · · ·+ 1− ι

2δ

∫ δ

−δ

|td − ϑd|dtd

=
ι

2δ

∫ θ1+δ

θ1−δ

|t1|dt1 + · · ·+ ι

2δ

∫ θd+δ

θd−δ

|td|dtd +

1− ι

2δ

∫ ϑ1+δ

ϑ1−δ

|t1|dt1 + · · ·+ 1− ι

2δ

∫ ϑd+δ

ϑd−δ

|td|dtd
= ιh(θ) + (1− ι)h(ϑ).

This completes the proof.

B. Proof of Theorem 2.3

Proof Let F (θ) = f(θ) + g(θ). From Eqs. (7), we have

f (θagk ) ≤ f(θmd
k ) +

〈∇F (θmd
k ), θagk − θmd

k

〉
+

Mδ + 1

2δ
‖θagk − θmd

k ‖22 + 2dδ

= f(θmd
k )− βk‖∇F (θmd

k )‖2 − βk〈∇F (θmd
k ), ξk〉+

Mδ + 1

2δ
β2
k‖∇F (θmd

k ) + ξk‖2 + 2dδ.

From Eqs. (7),(8), we have

f(θmd
k )− [(1− αk)f(θ

ag
k−1) + αkf(θ)]

= αk[f(θ
md
k )− f(θ)] + (1− αk)[f(θ

md
k )− f(θagk−1)]

≤ αk〈∇F (θmd
k ), θmd

k − θ〉+ 2dδ +

(1− αk)〈∇F (θmd
k ), θmd

k − θagk−1〉
= 〈∇F (θmd

k ), αk(θ
md
k − θ) + (1− αk)(θ

md
k − θagk−1)〉+ 2dδ

= αk〈∇F (θmd
k ), θk−1 − θ〉+ 2dδ.

Thus we can obtain

f (θagk ) ≤ (1− αk)f(θ
ag
k−1) + αkf(θ) + 4dδ+

αk〈∇F (θmd
k ), θk−1 − θ〉 − βk‖∇F (θmd

k )‖2

− βk〈∇F (θmd
k ), ξk〉+ Mδ + 1

2δ
β2
k‖∇F (θmd

k ) + ξk‖2.
It follows from Eq. (10) that

‖θk − θ‖2 =
∥∥θk−1 − λk∇F

(
θmd
k

)− θ
∥∥2

= −2λk

〈∇F (θmd
k ), θk−1 − θ

〉
+

‖θk−1 − θ‖2 + λ2
k

∥∥∇F (θmd
k )

∥∥2
.

Then we have

〈∇F (θmd
k ), θk−1 − θ

〉
=

λk

2

∥∥∇F (θmd
k )

∥∥2

+
1

2λk

[
‖θk−1 − θ‖2 − ‖θk − θ‖2

]
.

While

∥∥∇F (θmd
k ) + ξk

∥∥2
=

∥∥∇F (θmd
k )

∥∥2
+ ‖ξk‖2+
2
〈∇F (θmd

k ), ξk
〉
.

Combining the above two inequalities, we obtain

f (θagk ) ≤ (1− αk)f(θ
ag
k−1) + αkf(θ)+

αk

2λk

[‖θk−1 − θ‖2 − ‖θk − θ‖2]

− βk

(
1− λkαk

2βk
− Mδ + 1

2δ
βk

)
‖∇F (θmd

k )‖2+
Mδ + 1

2δ
β2
k ‖ξk‖2 + 4dδ

+

〈
ξk,

(
Mδ + 1

δ
β2
k − βk

)
∇F (θmd

k )

〉
.

The above inequality is equal to

f (θagk )− f(θ) ≤ (1− αk)[f(θ
ag
k−1)− f(θ)]+

αk

2λk

[‖θk−1 − θ‖2 − ‖θk − θ‖2]

− βk

(
1− λkαk

2βk
− Mδ + 1

2δ
βk

)
‖∇F (θmd

k )‖2+
Mδ + 1

2δ
β2
k ‖ξk‖2 + 4dδ

+

〈
ξk,

(
Mδ + 1

δ
β2
k − βk

)
∇F (θmd

k )

〉
.
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Using Lemma 1, we have

f (θagn )− f(θ) ≤ Γn

n∑
k=1

αk

2λkΓk

[
‖θk−1− θ‖2−‖θk− θ‖2

]

− Γn

n∑
k=1

βk

Γk

(
1− λkαk

2βk
− Mδ + 1

2δ
βk

)
‖∇F (θmd

k )‖2

+ Γn

n∑
k=1

Mδ + 1

2δΓk
β2
k ‖ξk‖2 + 4dΓn

n∑
k=1

δ

Γk
+

Γn

n∑
k=1

1

Γk

〈
ξk,

(
Mδ + 1

δ
β2
k − βk

)
∇F (θmd

k )

〉
.

Since
α1

λ1Γ1
=

α2

λ2Γ2
= · · · , α1 = Γ1 = 1

then

n∑
k=1

αk

2λkΓk

[‖θk−1 − θ‖2 − ‖θk − θ‖2] ≤
α1

2λ1Γ1

[
‖θ0 − θ‖2 − ‖θn − θ‖2

]
≤ 1

2λ1
‖θ0 − θ‖2.

So we obtain

f (θagn )− f(θ) ≤ Γn

n∑
k=1

Mδ + 1

2δΓk
β2
k ‖ξk‖2+

Γn

2λ1
‖θ0 − θ‖2 + 4dΓn

n∑
k=1

δ

Γk

+ Γn

n∑
k=1

1

Γk

〈
ξk,

(
Mδ + 1

δ
β2
k − βk

)
∇F (θmd

k )

〉
,

where the inequality follows from the assumption

αkλk ≤ βk ≤ δ

Mδ + 1
≤ δ.

Under the assumption (d), we have Eξk = 0, Eξ2k = σ2.
Taking expectation on both sides of the inequality above with

respect to (xi, yi), we obtain for θ ∈ R
d,

E [f (θagn )− f(θ)] ≤ Γnσ
2

n∑
k=1

Mδ + 1

2δΓk
β2
k+

Γn

2λ1
‖θ0 − θ‖2 + 4dΓn

n∑
k=1

δ

Γk
.

Now, fixing θ = θ∗, we have

E [f (θagn )− f(θ∗)] ≤ Γnσ
2

n∑
k=1

Mδ + 1

2δkΓk
β2
k+

Γn

2λ1
‖θ0 − θ∗‖2 + 4dΓn

n∑
k=1

δ

Γk
.

This completes the proof.

C. Proof of Corollary 2.4

Proof In Eqs. (12) and (14), we have for k ≥ 2

Γk = (1− αk)Γk−1

=
2k + 1

2(k + 1)

2(k − 1) + 1

2k
× · · · × 1

2
Γ1

=
1

2(k + 1)
×

(
1 +

1

2k

)
× · · · ×

(
1 +

1

2

)
.

It is now to estimate(
1 +

1

2k

)
×

(
1 +

1

2(k − 1)

)
× · · · ×

(
1 +

1

2

)

= exp

{
ln

(
1 +

1

2k

)
+ · · ·+ ln

(
1 +

1

2

)}
.

While

∫ k+1

1

ln

(
1 +

1

2x

)
dx =

∫ k+1

k

ln

(
1 +

1

2x

)
dx+ · · ·

∫ 2

1

ln

(
1 +

1

2x

)
dx

≤ ln

(
1 +

1

2k

)
+ · · ·+ ln

(
1 +

1

2

)

≤
∫ k

1

ln

(
1 +

1

2x

)
dx+ ln

(
1 +

1

2

)

≤
∫ k

1

ln

(
1 +

1

2x

)
dx+ 1.

Taylor expansion tells us that

ln(1 + t) = t− t2

2
+

t3

3
+ · · ·+ (−1)n−1 t

n

n
+ · · ·

For any 0 < t ≤ 1, we have

ln(1 + t) = t−
∞∑

n=1

(
t2n

2n
− t2n+1

2n+ 1

)
≤ t

ln(1 + t) = t− t2

2
+

∞∑
n=1

(
t2n+1

2n+ 1
− t2n+2

2n+ 2

)
≥ t− t2

2

Then we have

1

2
ln(k + 1)− 1 ≤ 1

2
ln(k + 1)− 1

4

≤
∫ k+1

1

(
1

2x
− 1

8x2

)
dx

≤
∫ k+1

1

ln

(
1 +

1

2x

)
dx

≤ ln

(
1 +

1

2k

)
+ · · ·+ ln

(
1 +

1

2

)

≤
∫ k

1

ln

(
1 +

1

2x

)
dx+ 1

≤
∫ k

1

1

2x
dx+ 1 =

1

2
ln k + 1.
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So we have

e−1 (k + 1)
1
2 = e

1
2 ln(k+1)−1

≤
(
1 +

1

2k

)
× · · · ×

(
1 +

1

2

)

= exp

{
ln

(
1 +

1

2k

)
+ · · ·+ ln

(
1 +

1

2

)}

≤ e
1
2 ln k+1 = ek

1
2 .

We obtain

1

2e(k + 1)
1
2

≤ Γk ≤ ek
1
2

2(k + 1)
≤ e

2k
1
2

.

It is easy to check

αkλk =
1

2M(k + 1)2Γk
≤ βk ≤ 1

M

and

α1

λ1Γ1
=

α2

λ2Γ2
= · · · = M

2
.

Then we obtain

Γnσ
2

n∑
k=1

Mδk + 1

2δkΓk
β2
k ≤

eσ2

4
√
n

n∑
k=1

Mβ2
k + βk

Γk

≤ eσ2

4
√
n

n∑
k=1

(
8Me3(k + 1)3/2

4M2(k + 1)4
+

4e(k + 1)

2M(k + 1)2

)

≤ e4σ2

2M
√
n

n∑
k=1

1

(k + 1)5/2
+

e2σ2

2M
√
n

n∑
k=1

1

k + 1

≤ e4σ2

2M
√
n

(∫ n

1

1

x5/2
dx+ 1

)
+

e2σ2

2M
√
n

(∫ n

1

1

x
dx+ 1

)

≤ e4σ2

2M
√
n

(
5

2
− 2

3
n−3/2

)
+

e2σ2

2M
√
n
(lnn+ 1)

≤ e2σ2
(
5
2e

2 + lnn+ 1
)

2M
√
n

.

We also obtain

Γn

n∑
k=1

δk
Γk

≤ e

2
√
n

n∑
k=1

2e
√
k + 1βk

1−Mβk

≤ e3

M
√
n

n∑
k=1

1

k + 1
× 1

1− 1
2(k+1)2

≤ 8e3

7M
√
n

n∑
k=1

1

k + 1

≤ 8e3

7M
√
n

∫ n

0

1

x+ 1
dx ≤ 8e3 ln(n+ 1)

7M
√
n

From the result of Theorem 2.3, we have

E [f (θagn )− f(θ∗)] ≤ e‖θ0 − θ∗‖2
2λ1
√
n

+
32de3 ln(n+ 1)

7M
√
n

+
σ2e2(2.5e2 + lnn+ 1)

2M
√
n

=
e‖θ0 − θ∗‖2
2λ1
√
n

+

7e2σ2(2.5e2 + lnn+ 1) + 64de3 ln(n+ 1)

14M
√
n

The proof of Corollary 1 is completed.
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