
Multi-Objective Genetic Programming for Dataset
Similarity Induction

Jakub Šmı́d, Martin Pilát, Klára Pešková
Charles University in Prague

Faculty of Mathematics and Physics

Malostranské nám. 2/25

Prague, Czech Republic

Email: jakub.smid@ktiml.mff.cuni.cz,

martin.pilat@mff.cuni.cz, klara@pisecko.cz

Roman Neruda
Institute of Computer Science

Academy of Sciences of the Czech Republic

Pod Vodárenskou věžı́ 2

Prague, Czech Republic

Email: roman@cs.cas.cz

Abstract—Metalearning – the recommendation of a suitable
machine learning technique for a given dataset – relies on the
concept of similarity between datasets. Traditionally, similarity
measures have been constructed manually, and thus could not
precisely grasp the complex relationship among the different
features of the datasets. Recently, we have used an attribute
alignment technique combined with genetic programming to
obtain more fine-grained and trainable dataset similarity mea-
sure. In this paper, we propose an approach based on multi-
objective genetic programming for evolving an attribute similarity
function. Multi-objective optimization is used to encourage some
of the metric properties, thus contributing to the generalization
abilities of the similarity function being evolved. Experiments are
performed on the data extracted from the OpenML repository
and their results are compared to a baseline algorithm.

I. INTRODUCTION

Metalearning [1], the task of selecting the best machine
learning method for a given dataset, tries to compensate for
the fact that according to the no free lunch theorem [2], there
is not a single machine-learning method that provides the best
results for all possible datasets.

The main idea behind metalearning is that machine learning
methods are supposed to perform similarly on similar datasets,
therefore, the notion of dataset similarity is crucial. In most
cases, the similarity is computed using some kind of data about
the dataset – the metadata. Metalearning techniques use the
metadata and previous experience to predict the performance
of machine-learning methods on new datasets. In essence,
metalearning does not differ much from the traditional machine
learning. The main difference is that metalearning works with
the metadata of given datasets instead of the actual data,
and that the result of metalearning is a recommendation of
a machine learning method to use.

The metadata may contain general information about the
dataset, like the number of instances and attributes, the number
of classes, etc. However, it can also contain information
about the individual attributes, its range, standard deviation,
correlation to the target class, and many more. To distinguish
between these two types of metadata, we call the former
general metadata and the later attribute-specific metadata.

The attribute-specific metadata include more fine-grained
information about the dataset. On the other hand, each dataset
can have a different number of attributes (and consequently,
different amount of attribute-specific metadata), which leads to
a more complicated computation of the similarity. This prob-
lem has been solved in our previous work [3], [4] where the
Hungarian algorithm [5] was used for the metadata alignment.
Later [6], we have used genetic programming (GP) to evolve
similarity measures between datasets. We found out that using
a transformation to ensure three out of four metric axioms of
the evolved similarity function improves the results. In this
work, we use a different approach. Instead of repairing the
function evolved by the genetic programming, we use multi-
objective optimization to change the search in such a way
that functions with metric properties are preferred. We use
two objectives, one of them being the error rate of the model.
The other expresses how well the evolved similarity matches
the properties of metrics. The later objective can be also seen
as a regularization term in the traditional optimization. The
main goal of this paper is to show that such a multi-objective
approach is able to create useful similarity measures.

The structure of this paper is as follows: the next section
presents an overview of related work that has inspired us or
concerns our research area. Section 3 summarizes our work
that we build upon in this paper. Section 4 discusses the
important properties of the distance function and how it is
possible to evolve them. Then the multi-objective GP algorithm
is proposed and its properties are discussed. Section 5 de-
scribes the experiments and compares the results to a baseline
algorithm. The paper concludes with a discussion and future
work.

II. RELATED WORK

Most metalearning approaches deal only with the general
metadata. Brazdil and Soares [7] use various information
theoretic metadata. With this metadata, they use k-Nearest
Neighbors algorithm (k-NN) to detect the most similar datasets
in what they call the zooming phase, followed by the rank-
ing phase, where the methods used on the datasets from
the zooming phase are evaluated and the best of them is
recommended. The evaluation is based both on accuracy and
training time. On the other hand, Kazı́k et al. [8] used metadata
consisting of the number of instances and attributes together

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.222

1576

with some information about the task at hand. They always
recommend the best method on the closest dataset. The metric
between the datasets was a weighted sum of distances between
the individual metadata. Weights used were optimized by an
evolutionary algorithm.

The problem of metalearning has also been stated from the
point of view of collaborative filtering [9]. The main advantage
of this approach is that it does not require any metadata about
the datasets, however, it can still use such metadata if they are
available.

Smith-Miles [10] used PCA to visualize space of optimiza-
tion problem instances. She then employed search algorithms
to find instances that are hard for each solver and provided
a map of search space based on the expected footsteps of
different optimization algorithms.

Šmı́d and Neruda [3], [4] worked on the problem of using
the attribute-specific metadata and were able to express it as
an assignment problem, which can be solved by the Hungarian
algorithm [11] in O(n3). Their approach requires a distance
function between the individual attributes. In case the number
of attributes for each of the datasets is different, dummy
attributes are introduced to make it even before applying the
Hungarian algorithm. Later [6], they used genetic program-
ming and co-evolution to evolve the distance functions between
the individual attributes.

In this work, we extend this approach by using multi-
objective optimization. Even though the problem at hand is
in fact single-objective (we try to minimize the error rate of
the algorithm), it can be also expressed as a problem with more
objectives. Such an approach is called multi-objectivization
and it has been shown that it can improve the performance
of single-objective optimizers, especially in cases where the
optimized function contains plateaus [12]. Pilát and Neruda
[13] used multi-objectivization for the hyper-parameter tuning
of classifiers, they added two objectives to guide the search –
the root mean squared error and the kappa statistic – while they
tried to optimize the hyper-parameters for the best accuracy of
the model. In the field of machine learning, multi-objective
optimization can also be used for regularization [14]. In such
case the regularizing term is added as another objective rather
than summing it with the optimized criterion.

In order to be able to solve multi-objective problems,
we need a multi-objective algorithm. There has been a large
number of such algorithms proposed in the past. In this
work we will use the NSGA-II algorithm [15]. Although this
algorithm is rather old, it is still among the best optimizers for
two-objective problems (which is what we use in this paper).
The main difference between a single-objective and a multi-
objective evolutionary algorithm is in the selection operator.
The selection of NSGA-II is based on Pareto dominance. A
solution is said to dominate another solution if the values of all
the objectives are better for the former one. The solutions in
the population are thus divided into non-dominated fronts. The
first front contains solutions, which are not dominated by any
other solution in the population. The second front contains
individuals dominated only by solutions from the first front
and so on. Individuals from fronts with lower number are
preferred in the evolution. To distinguish among individuals in
the same front a secondary sorting criterion is used. In the case

of NSGA-II this criterion expresses how crowded the region
around each individual is and individuals from less crowded
regions are preferred.

III. RANKING THROUGH ALIGNMENT

Given a new data-mining task (e.g. a classification task),
ranking orders machine-learning methods according to their
predicted performance on the given task. In this section, we
describe our approach to ranking using attribute alignment.

The usual assumption in metalearning is that algorithms
perform similarly on similar datasets. To exploit the idea,
dataset similarity measure is needed along with an algorithm
that can utilize known results on the set of similar datasets.
Often, the similarity measure is almost exclusively based on
general metadata extracted from datasets.

In [4] we proposed a method that goes one step further –
it extracts attribute-specific metadata from the datasets instead
of dataset metadata. Given the attribute similarity measure, it
is possible to find an assignment of attributes of one dataset
to the attributes of the other dataset, such that the attributes
with similar metadata are matched together. Thus, the attributes
can be compared with each other which provides more precise
comparison of datasets than when dealing only with general
metadata.

More formally, if the two datasets we compare have the
same number of attributes, the distance between the attributes
is defined as follows:

Definition 1: Given an attribute similarity measure datt,
two datasets a and b with the same number of attributes and a
bijection f between the attributes of a, b we define the attribute
distance induced by the bijection between the datasets as:

df (a, b) =

n∑
k=1

(datt(ak, f(ak))). (1)

We would like to match the attributes as best as possible, so
optimally we are looking for f ′:

f ′ = argminf (df). (2)

In case that the number of attributes is different, we transform
this problem to the previous one by adding dummy attributes
into the dataset with less attributes and by supplying the
distance between a regular attribute and a dummy one.

Our goal is to find a good datt. It is arguable whether
one should come up with the distance function between
attributes that covers all cases including the distance between
a categorical and numerical attribute. Metafeatures that can be
extracted from categorical and numerical attributes naturally
vary, thus making it difficult to specify a distance. To solve
this problem we have split the distance into two parts: the
distance between numerical attributes and the distance between
categorical attributes. As the total distance we have taken the
sum of the sub-distances:

TotalDistance = Distancecategorical +

+ Distancenumerical (3)

Given datt, the so called Hungarian algorithm [5] running
in O(n3) can be used to find f ′ for the optimal assignments

1577

Algorithm 1 AttributeDistance(datt,atta,attb)

Require: datt � attribute similarity measure
Require: atta � attributes of dataset a
Require: attb � attributes of dataset b

1: Add dummy attributes into the list with less attributes
2: Mi,j ← datt(atta[i], attb[j]) � distance matrix
3: f ′ ← argminf (df). � Hungarian algorithm
4: return df ′

Algorithm 2 DatasetSimilarity(a,b,dcat,dnum)

Require: a, b � datasets
Require: dcat � categorical attribute similarity
Require: dnum � numerical attribute similarity

1: ac ← catAttr(a); bc ← catAttr(b) � categorical attrib.
2: an ← numAttr(a); bn ← numAttr(a) � numerical attrib.
3: distcat ← AttributeDistance(dcat, ac, bc)
4: distnum ← AttributeDistance(dnum, an, bn)
5: return distcat + distnum

of categorical and numerical attributes, allowing to compute
TotalDistance. This calculation of the distance function will
be used by k-NN algorithm to calculate ranking. A boosting al-
gorithm could be used to further improve the results. However,
if we want to asses the quality of distance measure, it would
be counter-productive as we could be accidentally assessing
the quality of the boosting algorithm.

To asses the quality of ranking for one dataset the Spear-
man’s rank correlation coefficient will be used:

rs = 1− 6
∑n

i=1(R
′
i −Ri)

2

n3 − n
, (4)

where n is the number of models, Ri is the actual rank and
R′

i is the predicted rank. The Spearman’s rank correlation
coefficient returns values in the range 〈−1, 1〉, 1 is perfect
match, -1 is perfect mismatch and 0 indicates results as good
as random guessing. To asses the quality for all datasets, we
take average of Spearman’s rank correlation coefficient over
all datasets.

The whole ranking quality assessment is summarized in the
pseudocode of the following three algorithms: 1, 2, and 3. The
algorithm 3 takes algorithm 2 as a dataset similarity measure,
algorithm 2 calls algorithm 1 to calculate TotalDistance.
The only input missing (beside datasets) to provide exact
calculation are the attribute similarity measures.

IV. ATTRIBUTE SIMILARITY MEASURE EVOLUTION

In this section we propose a multi-objective genetic pro-
gramming (GP) based algorithm to evolve categorical and
numerical distance measure.

As we stated before, the goal of this work is to find
a good attribute distance measures that will be used as an
input in algorithm 2. As the desired attribute distance is not
known, the supervised learning cannot be used for this task.
Once we have the measure function, we still need many
evaluations of this function in order to calculate ranking and
assess its quality. In algorithm 3, every dataset is enumerated.

Algorithm 3 QualityAssessment(DB,sim)

Require: DB � sets of all datasets
Require: sim � dataset similarity measure

1: coef ← 0
2: for all data ∈ DB do
3: rest ← DB \ {data}
4: r ← k-NN(data,rest,sim) � predict ranking
5: sp ← Spearman(r, DB)� compare with actual results
6: coef ← coef + sp
7: end for
8: return coef / |DB|

The k-NN then calculates the distance for each dataset to the
currently enumerated dataset. During the distance calculation,
the Hungarian algorithm is used and the distance matrix
is calculated. The size of matrix for a dataset pair is the
square of the number of attributes of the dataset with more
attributes. For each matrix entry, the similarity measure is
invoked. In this sense, we are dealing with reinforcement
learning, where the space searched is the space of functions
mapping Cartesian product of attribute metafeatures space to
real numbers: f : {metafeatures}× {metafeatures} → R.
The genetic programming is a suitable method for this kind
of task as it can search the space based on the ranking quality
assessment and it does not need a model of the environment
like some other reinforcement learning algorithms.

In order to asses fitness of an individual, both numerical
and categorical distances are needed (see algorithm 2). Both
distances were evolved as one individual.

When measuring a distance in general, a metric is typically
used. In our case, it may also be beneficial for the generaliza-
tion abilities of the evolved function, if our attribute similarity
measure had some of the properties of a metrics, which are:

1) d(x, y) ≥ 0 (non-negativity)
2) d(x, y) = 0⇔ x = y (coincidence axiom)
3) d(x, y) = d(y, x) (symmetry)
4) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

To increase the evolution pressure on searching mainly
the metric subspace of the search space, second criterion
was added to the fitness. This criterion measured the evolved
function similarity to metric and consisted of four parts, one
per each metric axioms:

fitnessdistance =
a1 + a2 + a3 + a4

4
, (5)

where ai is the ratio of the cases in data that maintains the
property of the axiom i. It can be seen from the formula that
every part of the distance fitness function has the same weight.

For the multi-objective fitness, we have used the same GP
settings as we have used in [6], these are repeated later in this
section in order to make the paper self-contained.

Multi-objective genetic programming with the tree rep-
resentation is employed to search the space of similarity
measures. The fitness is composed of two objectives, the first
one measures its ability to predict dataset similarity, the latter is
used to enforce metric properties. NSGA-II will be utilized to
drive the evolution towards the optimal Pareto front. We have

1578

used type consistent genetic programming with real numbers
as the only type accepted and returned by all functions. If an
n-ary function was not defined on the whole R

n, we have
proposed its extended definition on the whole R

n. Boolean
terminals were converted to 0/1 real terminals.

The non-terminal set of the genetic programming includes
basic arithmetic functions – addition, subtraction, multiplica-
tion, and division – and also a few more advanced functions
– square root and logarithm. Some of these functions had to
be extended in such a way that they are defined for all real
numbers. The following generalization was chosen:

divide(a1, a2) =

{
a1

a2
; a2
= 0

0; otherwise

The square root and base 2 logarithm functions were general-
ized as follows:

sqrt(a1) =

{√
a1; a1 ≥ 0√|a1|; otherwise

log2(a1) =

⎧⎨
⎩
log2a1; a1 > 0

0; a1 = 0

log2|a1|; otherwise

Apart from the arithmetical functions, we have also used
comparisons of two types – less then, and less then or equal.
For the sake of type consistency they were defined as follows:

less(a1, a2, a3, a4) =

{
a3; a1 < a2
a4; otherwise

lessorequal(a1, a2, a3, a4) =

{
a3; a1 ≤ a2
a4; otherwise

We wanted GP to be able to evolve both the numerical
and categorical similarity function. To achieve this, we used
different terminal set for each type. The terminals contain
several statistic measures [16], and were divided into sets as
follows:

Measures common for both terminal sets (in some cases
categorical attributes were cast to integers for the computation
of some attributes, e.g. for the computation of the correlation
coefficient):

• Whether the attribute contains missing values,

• Whether the attribute is continuous,

• Whether the target is discrete or continuous (this could
change the meaning of some additional metadata),

• Entropy of values of the attribute,

• Pearson Correlation coefficient,

• Spearman’s rank Correlation coefficient.

Numerical terminal set:

• Minimum of the attribute,

• Maximum of the attribute,

• Mean of the attribute,

• Standard deviation of the attribute,

• Variance of the attribute,

• Skewness of the attribute,

• Kurtosis of the attribute,

• Result of the Kolmogorov-Smirnoff test for uniform
distribution,

• Covariance between attribute and target (continuous
target only).

Categorical terminals:

• Result of χ2 test for uniform distribution,

• Ratio of pairs of values of the attribute which lead to
different distribution of the target as indicated by the
following statistical test:

◦ Kolmogorov-Smirnoff test (continuous target
only),

◦ Mann-Whitney U-test (continuous target only),
◦ χ2-test (categorical target only).

Each terminal was generated with a Boolean value, which
determines whether the terminal used the value from the first
dataset or the second dataset (that are being compared by the
evolved similarity measure).

V. EXPERIMENTS

To assess the performance of the above described tech-
nique, we conducted a series of experiments on large amount
of data. In this section, we first describe the data we used, then
we discuss the settings of the GP algorithm and finally we
provide the results of the experiments followed by evaluation
of the results and discussion.

Both datasets and performance results of machine learning
algorithms on those datasets are needed to evaluate a GP
individual. As the source of data, the OpenML [17] machine
learning repository was used. In total, 418 datasets were
retrieved from the repository and used for metadata extraction.
There were 282,885 raw performance records in the form
{dataset, algorithm, parameters, performance results} that were
downloaded from the repository. However, some additional
filtering was applied to these raw records. Firstly, datasets with
more than 50 attributes were omitted as those increased the
time to evaluate one individual significantly. These changed
the number of datasets slightly, but decreased the time needed
to conduct the experiments by orders of magnitude. Secondly,
only the result with the highest performance (and best pa-
rameter settings) was used for each pair {algorithm, dataset}.
To identify these best results the Predictive Accuracy – the
percentage of instances that were classified correctly by the
algorithm – was used as a performance indicator. The reason
for this was that we wanted to asses the best potential of
algorithms. Finally, the results of ensemble algorithms like
bagging, boosting, stacking and rotation forests [18] were
omitted. These ensembles are encompassing different number
of other machine algorithms and can take advantage of such
combined power. Such composite behaviour resulted in heavily

1579

outperforming every other algorithm in the database thus
changing the results significantly. Furthermore, their perfor-
mance relies heavily on the parameters that specify what
algorithms should be used in the ensemble and as such,
every parameter setting should be better treated as a separate
algorithm. More careful examination is thus necessary before
including ensemble algorithms into our experiments. To sum
up, 23962 pre filtered rows of performance records of machine
learning algorithms were used as data source. These rows
contained records of 116 algorithms over 360 datasets. The
data were randomly split into the training and testing sets with
ratio 2:1 in favour of the training set.

The NSGA-II GP algorithm, as described in the previous
section, was used to perform experiments. For each dataset
do: estimate the ranking of algorithms by using k-NN. For the
needs of k-NN, compute distance between every remaining
dataset. The distance computation is n3, n is the number of
attributes. This gives us a rough estimation of the number
of attribute distance function evaluation needed to asses the
fitness of one individual:

nd(nd)
2(natt)

3, (6)

where nd is the number of datasets and natt is the number of
attributes in the dataset. Given amount of data we have, using
the above equation we get an estimation of 125, 000, 000, 000
of evaluation of the evolved function in order to assess its
quality. Indeed, on the single node of our computation cluster
it took tens of minutes to compute a single fitness value. Given
that our computation cluster consisted of 40 nodes and we
wanted to have experiments no longer than few days, we drew
some conclusions regarding the proposed experiment settings:

• small to medium population.

• none or very small parameter tuning.

• higher evolution pressure to empower quicker conver-
gence.

The size of the population was set to 200. This was
a compromise between having bigger and probably more
diverse population and being able to compute the fitness of all
individuals in a reasonable time. The NSGA-II algorithm uses
tournament selection as a selection mechanism. The probability
of better individual winning the tournament was set to 0.7.
Also, the NSGA-II uses elitism, so the best individual are
guaranteed to be copied to the next generation. Tree mutation
and crossover were used as genetic operators. The probabilities
of mutation and crossover were chosen based on our previous
experiments and were set to 0.2 and 0.7 respectively. The
termination criterion was set to 80 generations. This number
was chosen based on our preliminary experiments. We have
noticed that around this generation, the bloating occurs. Also,
the improvement in fitness was not accompanied with the
performance improvement on the testing set and the individuals
tend to overfit. With this GP settings, it took our 40 nodes
cluster two days to conduct a single experiment.

To be able to compare the results of our experiments a
baseline algorithm as proposed in [19] was used. This baseline
algorithm predicts the results based on average rank over all
datasets in the metaknowledge base. The average Spearman’s
rank correlation coefficient of the baseline algorithm was 0.549

Fig. 1. Evolution progress of the best – seventh – experiment. The picture
shows results of the first Pareto front – best and worst values of the first
criterion.

on the training and 0.555 on the testing dataset. Note that the
baseline algorithm does not use any distance function, thus
one can only compare average Spearman’s rank correlation
coefficient of baseline and his own algorithm.

In total, seven runs were executed. The evolution progress
of the best run from the perspective of the first criterion
is depicted in the Fig. 1. The individual with the best first
criterion surpassed the baseline on the training set at the
very beginning of the evolution. The individual from the
Pareto front with the worst first criterion struggled around
baseline level until generation 39. From the generation 40 all
individuals from the first Pareto front surpassed the baseline
algorithm on the training set.

The output of each run was the first Pareto front of the
multi-objective optimization. To be able to compare with the
baseline algorithm, a single representative had to be chosen
from each run. We decided to use the individual with the
best first criterion on the training set. Spearman’s correlation
coefficients of such individuals on testing set are shown in the
table I.

All values are better than the result of the baseline algo-
rithm on the testing set. Based on these results we propose the
null hypothesis that our experiments resulted in statistically
significant improvement of the Spearman’s correlation coeffi-
cients on the testing set. As no information was available about
the probability distributions of the experiments performance,
non-parametric statistical test had to be used to validate our
results. Two tailed Mann-Whitney U Test was used in our case.
The test passed the significance level of 0.05 with the p-value
of 0.011. Based on this fact we accepted the null hypothesis
and concluded that our results are indeed better than the results
of the baseline algorithm.

Further examining the results showed another interesting
property. The first and second criterion values of the first Pareto
front was highly correlated on the testing set. This was most
visible on the results of the second experiment. The values of
both criterions of the second run are shown in the Figs. 2 and

1580

TABLE I. RESULTS OF THE BEST INDIVIDUALS.

run 1 2 3 4 5 6 7

Spearman – training 0.577 0.580 0.582 0.587 0.583 0.585 0.588

Metric – training 0.996 0.996 0.996 0.979 0.995 0.912 0.999

Spearman – testing 0.558 0.555 0.560 0.560 0.564 0.569 0.567

Fig. 2. Results of the first Pareto front of the second run on the training set.

Fig. 3. Results of the first Pareto front of the second run on the testing
set. Note the high correlation between both criteria - the higher values of the
accuracy criterion are associated with higher values of the metric similarity
criterion.

3. On the testing set, the values of the first criterion and the
second criterion are highly correlated. The Spearman’s rank
correlation coefficient between the first and second criterion
of the second run on the testing set is 0.734. This supports
our hypothesis that metric properties are important for the
generalization abilities of the evolved similarity measures and
that the addition of the second criterion evaluating the function
similarity to a metric was meaningful. Both objectives were
also correlated during the other experiment runs, although not
that significantly.

One could easily employ ensemble algorithms to boost
the results of trained algorithms, however, the goal of the
experiments was to prove the applicability of the method.

To summarize, we have performed seven GP runs. The
results of the experiments were significantly better on the
testing set compared to the baseline algorithm. The high
correlation of the metric similarity and prediction accuracy has
been observed, thus supporting the hypothesis that the metric
properties are important for the generalization abilities of the
induced dataset similarity measure.

VI. CONCLUSION

Predicting algorithm accuracy on the new dataset is an im-
portant and challenging problem. The essential part of this pre-
dictive metalearning algorithm is a solid function to compare
the similarity of datasets. We have proposed multi-objective
genetic programming algorithm to evolve such function. The
features encouraged by evolution are the ability to predict
accuracy and the metric properties. Number of experiments
were conducted on the real data from the OpenML machine
learning repository. We have verified that the experiments pro-
vided significantly better results than the baseline algorithm.
The experiment results also suggest, that it is important for the
similarity function to have metrics properties. Currently, the
same weight is assigned to all metric axioms. However, there
has been a long debate in the community, whether all these
properties are equally important for the similarity function in
metalearning. For example, there are arguments against the
triangle inequality [20], a popular example is as follows: “a
man is similar to a centaur, the centaur is similar to a horse, but
the man is completely dissimilar to the horse”. This example
clearly violates the triangle inequality and speaks against using
it. Moreover, it seems the coincidence axiom is also not very
important. One can for example imagine, that some of the
metadata are not important for the similarity, thus returning
zero even in cases where these values are different would still
make sense. Other arguments against using the coincidence
axiom can be found in [21].

In our future work, we would like to use strongly typed
genetic programming [22], [23] to improve the results of the
algorithm. Further parameter tuning of the GP algorithm can be
performed in order to increase the performance of our genetic
algorithm. Furthermore, with the PCA algorithm modified for a
different number of attributes a visualization technique similar
to the one described in [10] can be used to visualize our results.

Acknowledgment

J. Šmı́d and K. Pešková have been supported by the Charles
University Grant Agency project no. 610214, M. Pilát and
R. Neruda have been supported by the National Science Foun-
dation of the Czech Republic project no. P103-15-19877S.

1581

REFERENCES

[1] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-
learning,” Artificial Intelligence Review, vol. 18, pp. 77–95, 2002.

[2] D. H. Wolpert, “The supervised learning no-free-lunch theorems,” in
Proceedings of the 6th Online World Conference on Soft Computing in
Industrial Applications, 2001, pp. 25–42.

[3] J. Šmı́d and R. Neruda, “Using genetic programming to estimate
performance of computational intelligence models,” in Adaptive and
Natural Computing Algorithms, ser. Lecture Notes in Computer
Science, M. Tomassini, A. Antonioni, F. Daolio, and P. Buesser, Eds.
Springer Berlin Heidelberg, 2013, vol. 7824, pp. 169–178. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-37213-1 18

[4] J. Smid and R. Neruda, “Comparing datasets by attribute alignment,”
in Computational Intelligence and Data Mining (CIDM), 2014 IEEE
Symposium on, Dec 2014, pp. 56–62.

[5] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[6] J. Šmı́d, M. Pilát, K. Pešková, and R. Neruda, “Co-evolutionary
genetic programming for dataset similarity induction,” in Evolutionary
Computation (CEC), 2015 IEEE Congress on, 2015, in print.

[7] P. B. Brazdil and C. Soares, “Zoomed ranking: Selection of clas-
sification algorithms based on relevant performance information,” in
Proceedings of Principles of Data Mining and Knowledge Discovery,
4th European Conference (PKDD 2000). Springer, 2000, pp. 126–135.

[8] O. Kazı́k, K. Pešková, M. Pilát, and R. Neruda, “Meta learning in
multi-agent systems for data mining,” in International Conference on
Intelligent Agent Technology (IAT 2011). IEEE Computer Society,
2011, pp. 433–434.

[9] M. Misir and M. Sebag, “Algorithm Selection as a Collaborative
Filtering Problem,” Research Report, Dec. 2013. [Online]. Available:
https://hal.inria.fr/hal-00922840

[10] K. Smith-Miles, D. Baatar, B. Wreford, and R. Lewis, “Towards
objective measures of algorithm performance across instance space,”
Comput. Oper. Res., vol. 45, pp. 12–24, May 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.cor.2013.11.015

[11] J. Edmonds and R. M. Karp, “Theoretical improvements in
algorithmic efficiency for network flow problems,” Journal of the
ACM, vol. 19, no. 2, pp. 248–264, Apr. 1972. [Online]. Available:
http://doi.acm.org/10.1145/321694.321699

[12] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann,
and E. Zitzler, “On the effects of adding objectives to plateau
functions,” Trans. Evol. Comp, vol. 13, no. 3, pp. 591–603, Jun. 2009.
[Online]. Available: http://dx.doi.org/10.1109/TEVC.2008.2009064

[13] M. Pilát and R. Neruda, “Multi-objectivization and surrogate modelling
for neural network hyper-parameters tuning,” in Emerging Intelligent
Computing Technology and Applications. Springer Berlin Heidelberg,
2013, pp. 61–66.

[14] Y. Jin, Multi-objective machine learning. Springer, 2006, vol. 16.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” Evolutionary Computation,
IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 2002.

[16] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 4th ed. Chapman & Hall/CRC, 2007.

[17] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo,
“Openml: Networked science in machine learning,” SIGKDD
Explorations, vol. 15, no. 2, pp. 49–60, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2641190.2641198

[18] J. Rodriguez, L. Kuncheva, and C. Alonso, “Rotation forest: A new
classifier ensemble method,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 28, no. 10, pp. 1619–1630, Oct 2006.

[19] P. Brazdil, C. G. Giraud-Carrier, C. Soares, and R. Vilalta,
Metalearning — Applications to Data Mining., ser. Cognitive
Technologies. Springer, 2009. [Online]. Available: http://dblp.uni-
trier.de/db/series/cogtech/index.html#0022052

[20] E. G. Ashby and N. A. Perrin, “Toward a unified theory of similarity
and recognition,” Psychological Review, vol. 95, pp. 124–150, 1988.

[21] C. L. Krumhansl, “Concerning the applicability of geometric models
to similarity data: The interrelationship between similarity and spatial
density,” 1978.

[22] D. J. Montana, “Strongly typed genetic programming,” Evolutionary
Computation, vol. 3, pp. 199–230, 1994.

[23] T. Křen and R. Neruda, “Generating lambda term individuals in typed
genetic programming using forgetful A*,” in Evolutionary Computation
(CEC), 2014 IEEE Congress on, July 2014, pp. 1847–1854.

1582

