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Abstract—Powerful metric learning algorithms have been
proposed in the last years which do not only greatly enhance
the accuracy of distance-based classifiers and nearest neighbor
database retrieval, but also enable the interpretability of these
operations by assigning explicit relevance weights to the single
data components. Starting with the work [1], it has been noticed,
however, that this procedure has limited validity in the important
case of high data dimensionality or high feature correlations:
the resulting relevance profiles are random to a large extend,
leading to invalid interpretation and fluctuations of its accuracy
for novel data. While the work [1] proposes a first cure by means
of L2-regularization, it only preserves strongly relevant features,
leaving weakly relevant and not necessarily unique features
undetected. In this contribution, we enhance the technique by an
efficient linear programming scheme which enables the unique
identification of a relevance interval for every observed feature,
this way identifying both, strongly and weakly relevant features
for a given metric.

I. INTRODUCTION

Popular machine learning and data retrieval techniques
crucially rely on a distance computation for the given data,
including the k-nearest neighbor classifier, prototype based
classification, unsupervised self-organizing maps, k-means
clustering, or neighborhood-based retrieval. Often, the standard
Euclidean metric is used as a default for these methods, and the
techniques fail provided the chosen distance is not appropriate
for the given task. Due to this fact, metric learning has made
great strides in recent years: the aim of metric learning is
to autonomously adjust the parameters of a given distance
function such that it better suits the intended task. A large
variety of methods covers techniques for k-nearest neighbor
classifiers, metric learning in regression, metric learning in
prototype based classification, metric learning based on side
information, learning methods for unsupervised clustering,
hybrid techniques, etc. see e.g. [2]–[7]. Some approaches can
be accompanied by theoretical guarantees as concerns their
generalization ability, or limit behavior for online learning [8]–
[13]. These techniques greatly enhance the performance of
the methods for applications, since they enable practitioners
to tailor the metric according to the given data and task at
hand. The methods have in common that the by far most
popular distance measure which is used for this purpose is
given by a general quadratic form, corresponding to a linear
transformation of the feature space. Albeit first techniques
consider more general data structures [9], [14], a quadratic
form is used in the majority of the techniques.

Besides an improved performance, a quadratic form has
the benefit that it lends itself to an improved interpretability
of the result: its diagonal corresponds to the relevance of the
feature dimensions for the linear transformation underlying the
quadratic form, such that this relevance profile can give hints
about the importance of the observed features. This fact has
been heavily used in the context of biomedical data analysis,
for example [15]–[17]. It underlines the increasing importance
of the interpretability of machine learning techniques, to enable
not only excellent black-box behavior, but to also allow an
interaction of human experts to benefit from the findings buried
in the models [18]–[23]. When interpreting machine learn-
ing models based on their parametrization, however, certain
minimum conditions have to be fulfilled, a crucial one being
the uniqueness of the observed parameters. This is not guar-
anteed for metric learners provided high data dimensionality
or large feature correlations are present, as first observed in
the contribution [1]: feature correlations cause the fact that
there exist changes in the quadratic form which do not change
the resulting mapping. These effects are widely induced by a
random initialization of the matrix, hence, relevance profiles
which display spurious relevance peaks in large parts result.
The approach [1] also proposed a first cure for this observation,
a L2-regularization of the quadratic form, which is standard if
the linear data transformation underlying the matrix is directly
learned from given data e.g. via Thikonov regularization (also
known as ridge regression), but which is not yet part of most
metric learning algorithms.

Albeit the proposed regularization yields unique results, it
diminishes the interpretability of the relevance profiles in the
following sense: L2-regularization accounts for the fact that all
so-called strongly relevant features (which cannot be replaced
by others without a performance loss) correspond to peaks
in the relevance profile. So-called weakly relevant features,
which contribute to the classification but which could be
substituted by alternatives, share their relevance, hence they are
no longer distinguishable provided a large number of correlated
features is present. Hence interpretability as concerns this
potentially useful feature contributions is lost. The problem of
weakly relevant features constitutes a classical hard problem of
feature selection, which is particularly complex provided sets
of features rather than single features carry certain information
[24]–[26]. One key technique which has been pioneered in the
frame of the popular lasso refers to L1-regularization rather
than L2-regularization [27]: L1-regularization favors sparse
signals, resulting in minimal, but not necessarily unique feature
sets which also include some weakly relevant signals. Based
on this insight, recently, an efficient method has been proposed978-1-4799-7560-0/15/$31 c©2015 IEEE
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which identifies relevance intervals for all given features for a
linear mapping based on L1-optimization [28].

In this contribution, we take the approach published in
[28] as a starting point and we extend this technology towards
the setting of relevance weights for metric learners. The key
observation is that a quadratic form corresponds to an implicit
linear transformation of the data, such that a vectorial extension
of the approach [28] allows us to quantify the relevance of a
feature dimension for a given distance computation. In the
following, we will formally introduce this approach, and we
will investigate its performance for two popular matrix learners
for different data sets including artificial data with known
ground truth as well as a variety of benchmarks.

II. FEATURE RELEVANCE

Assume a mapping f : R
d → Y is given such as a

classifier with Y being the set of possible output classes.
One very important way of interpreting any such mapping is
offered by a judgment of the relevance of the given features
for this mapping, i.e. a question related to feature selection.
Here, a crucial distinction is offered by the notion of strongly
relevant features, i.e. features which are of central relevance
for the mapping f and which cannot be skipped without loss of
information, and weakly relevant features, i.e. features which
are of relevance for the mapping, but could be substituted by
alternatives [26]. Formally, a feature Xi is strongly relevant
provided the output f(x) depends on the feature Xi even if
all other features are known. A feature is weakly relevant if
there exists a subset S of the other features, such that the output
f(x) depends on Xi provided S is known, but the feature is not
strongly relevant. In all other cases, the feature is irrelevant.

While strongly relevant features can be detected e.g. based
on efficient estimates of the mutual information, weakly rel-
evant features are harder to detect since they require the
investigation of all subsets of features. In the context of a
linear or generalized linear mapping f , a popular technology
for feature selection is offered by lasso and variants [29].
Assume f(x) = ωTx. Then lasso relies on a L1-regularized
optimization of the mapping parameters

min
1

2
·

n∑
i=1

(f(xi)− yi)
2 such that

d∑
j=1

|ωj | ≤ s (1)

for a sparsity constant s > 0. The constraint can be integrated
into the objective as a penalty term with a fixed weighting.
Ridge regression penalizes the L2 instead of L1 norm, and
elastic net addresses a mixture of both objectives [29], where,
depending on the weighting of the penalty, different degrees of
sparsity can be enforced. It is possible to infer the relevance
of a given feature Xi from the size of the resulting weight
|ωi|, whereby a varying penalty also can shed some light on
the question whether the feature is weakly / strongly relevant.

Inspired by this observation, we will use L1 regularization
for the valid interpretation of relevance terms of a given
mapping. Thereby, we separate the question of how to train
the mapping and how to interpret the feature relevance. This
strategy, together with a slight reformulation of the regulariza-
tion, enables us to derive intervals for the possible relevance
range of a given feature. The first step is to reduce the problem
of feature relevance determination for a metric learner to the
equivalent question for a linear data transformation.

III. METRIC LEARNING AS LINEAR DATA

TRANSFORMATION

Metric learning has been introduced in distance based
machine learning models as a means to autonomously adjust
the underlying distance measure to the given task at hand [2],
[5]. Here, we focus on two popular metric learning schemes
only. Since the proposed technique for metric interpretation
is separated from the metric learning step itself, the proposed
regularization for feature relevance determination can be used
for every metric adjustment scheme which arrives at a general
quadratic form, as utilized in the following.

We rely on a distance measure which is given by a general
quadratic form

d : Rd × R
d → R, (xi,xj) �→ (xi − xj)TΛ(xi − xj) (2)

with the positive semi-definite matrix Λ = ΩTΩ. Large
margin nearest neighbor (LMNN) [30] adjusts this matrix in
such a way that the k-NN error induced by this distance is
optimized. More precisely, it fixes the k nearest neighbors for
every given data point, and adjusts the matrix Ω such that
points with the same label in this neighborhood are close, while
points with a different label are separated by a distance term
with a margin at least one. Generalized matrix learning vector
quantization (GMLVQ) relies on a prototype-based winner-
takes-all scheme rather than lazy learning [8]. Together with
the prototype locations, the matrix Ω is adjusted such that the
distance of a given data point with correct labeling versus its
distance to a prototype with incorrect labeling is minimized.

By optimizing Ω, both methods do not only increase the
classification accuracy, but they also offer an interpretation of
the feature relevance in terms of its diagonal Λii =

∑
j Ω

2
ji

or related terms, since the metric (2) corresponds to the linear
data transformation

x �→ Ωx. (3)

Hence interpretation of the matrix relevance terms reduces to
the interpretation of this linear mapping.

In the following, we will employ the unique eigendecom-
position of the matrix Λ as the linear data mapping Ω, i.e. the
eigenvectors scaled with the square root of the eigenvalues.

IV. LINEAR BOUNDS

Given the parameters Ω that define a linear mapping Ωx
of a general quadratic form (2), we are interested in the
interpretation of the mapping parameters Ω. First, we decom-
pose the problem into one-dimensional mappings based on the
following observation: Each row ω of Ω constitutes an inde-
pendent mapping of the data into a one-dimensional subspace.
Hence we can interpret each of these rows independently. After
having obtained relevance bounds for the individual mappings
ω, we can sum the absolute values of them in order to obtain
relevance bounds for the whole mapping Ω.

In a particular mapping, the parameter value |ωj | is often
directly interpreted as the relevance of feature Xj , provided
the input features have the same scaling. However, this can
be highly problematic, as pointed out in [1], because features
in high-dimensional data are often correlated, and thus the
absolute value of ωj can be misleading. In [1], the authors

1600



formalize mapping invariances for the given data to underline
this observation, which we will briefly recap here.

For given data vectors xi in a matrix X, the central notion
of invariance is defined as follows: Given a mapping f(x) =
ω�x, we define that the parameters ω are equivalent to ω′ iff

ω�X = (ω′)�X (4)

i.e. the data mapping remains unchanged under a substitution
of ω by ω′. Note that this formulation addresses the behavior
of the mapping for given data, without referring to a predefined
criterion, such as the accuracy. The conditions for which ω is
equivalent to ω′ are exactly described in [1]: two vectors ω and
ω′ are equivalent iff the difference vector ω−ω′ is contained
in the null space of the data covariance matrix XX�. The
covariance matrix has eigenvectors vi with eigenvalues λ1 ≥
. . . ≥ λI > λI+1 = . . . = λd = 0 sorted according to their
size, whereby I denotes the number of non zero eigenvalues.

Therefore, before interpreting the mapping parameters, the
proposal in [1] is to choose one canonic representation ω′ of
the equivalence class induced by a given ω: the vector ω′
results by dividing out the null space, such that ω becomes
ω′ = Ψω where the matrix

Ψ = Id−
d∑

i=I+1

viv
�
i

corresponds to a projection of ω to the eigenvectors with
nonzero eigenvalues only, induced by the eigenvectors vi of
the covariance matrix XX�. Hence, the eigenvectors with
eigenvalue zero are divided out. In [1], the authors show that
choosing a representative in this way corresponds to a vector
in the equivalence class with the smallest L2 norm.

It is therefore no longer possible to ascribe a misleading
high value ωj to an irrelevant feature, e.g. due to unfavorable
effects in the data. Instead, only relevant features are expressed
in the mapping parameters. Although this approach provides
a unique representative of every equivalence class, it is prob-
lematic regarding direct interpretability of the values: Sets of
correlated features share their total relevance, which can lead
to large groups of weakly expressed relevance. This is unde-
sirable, since a single feature may be weighted consistently
low, only because it is highly correlated to a large number of
others, despite the fact that the information provided by this
feature (or any equivalent one) might be of high relevance for
the linear mapping outcome.

Hence, we propose an alternative approach to determine
representatives which are equivalent to a certain parameter
vector ω, while allowing for an intuitive direct interpretation
of the weights as feature relevances. In essence, instead of
choosing the representative with smallest L2 norm, we will
use the L1 norm. Unlike the former, the latter induces a set
of equivalent weights which have minimal L1 norm. This is
beneficial, since we can infer the minimum and maximum
relevance of each feature by looking at the minimum and
maximum weighting of the feature within this set. In the
following, we will formalize this concept.

A. Formalizing the Objective

Given a parameter vector ω of a mapping, we are looking
for equivalent vectors of the form

ω′ = ω +
d∑

i=I+1

αivi (5)

where real-valued parameters αi add the null space of the
mapping to the vector ω. Similar to the approach in [1],
we choose minimum vectors only, in order to avoid arbitrary
scaling effects of the null space. However, we use the L1 norm
instead of the L2 norm:

μ← min
α

∥∥∥∥∥ω +

d∑
i=I+1

αivi

∥∥∥∥∥
1

. (6)

The minimum value μ is unique per definition. However,

uniqueness of the corresponding vector ω +
∑d

i=I+1 αivi is
not guaranteed. To illustrate this fact, we refer to a simple ob-
servation: assume identical features Xi = Xj and a weighting
ωi and ωj . Then any weighting ω′i = t · ωi + (1 − t)ωj and
ω′j = (1−t)ωi+tωj yields an equivalent vector with the same
L1 norm.

Based on this observation, we can formalize a notion of
minimum and maximum feature relevance for a given linear
mapping: the minimum feature relevance of feature Xj is the
smallest value of a weight |ω′j | such that ω′ is equivalent to ω
and |ω′|1 = μ. Analogously, the maximum feature relevance
of feature Xj is the largest value of a weight |ω′j | such that
ω′ is equivalent to ω and |ω′|1 = μ. Thus, we arrive at the
following mathematical optimization problems:

ωj ← min
α

∣∣∣∣∣ωj +

d∑
i=I+1

αi(vi)j

∣∣∣∣∣ (7)

s.t.

∥∥∥∥∥ω +
d∑

i=I+1

αivi

∥∥∥∥∥
1

= μ

and

ωj ← max
α

∣∣∣∣∣ωj +
d∑

i=I+1

αi(vi)j

∣∣∣∣∣ (8)

s.t.

∥∥∥∥∥ω +
d∑

i=I+1

αivi

∥∥∥∥∥
1

= μ.

where (vi)j refers to entry j of vi. As solutions, we obtain a
pair (ωj , ωj) for each feature Xj indicating the minimum and
maximum weight of this feature for all equivalent mappings
that share the same L1 norm. In the special case of linear map-
pings with the objective of mapping invariance, this strongly
resembles the concept of strong and weak feature relevance.

However, this framework does not realize the notion of
strong and weak feature relevance in a strict sense. The reason
is that we aim for scaling terms as observed in the linear
mapping, which are subject to L1 regularization. Consequently,
a set of two features with the same information content as a
single feature are not treated as identical by this formulation.
Instead, our formulation prefers the single feature because of
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the smaller scaling of the respective weight. A qualitative fea-
ture selection objective would treat such variables identically.

Natural relaxations of our optimization problems are pos-
sible, as follows: By incorporating also eigenvectors which
correspond to small eigenvalues in Eq. (5), we can enable an
approximate preservation of mapping equivalence. Further, we
can approximate the equality in Eq. (6) by allowing values
below (1+ε)μ instead of exactly μ, for some small ε > 0. Such
relaxations with small thresholds ε are strongly recommended
for practical applications, where noise in the data has to be
considered. We will refer to these straightforward approxima-
tions in our experiments.

B. Reformalization as Linear Programming Problem

To obtain a solution algorithmically, we reformulate our
optimization problems as linear programming problems (LP).
Problem (7) can be rephrased as the following equivalent LP,
in which we introduce a new variable ω̃k for every k, which

takes the role of |ωk +
∑d

i=I+1 αi(vi)k|:

ωj ← min
ω̃,α

ω̃j , (9)

s.t.
d∑

i=1

ω̃i ≤ μ

ω̃k ≥ ωk +
d∑

i=I+1

αi(vi)k, ∀k

ω̃k ≥ −
(
ωk +

d∑
i=I+1

αi(vi)k

)
, ∀k,

where μ is computed in (6) and the variables ω̃i must be non-
negative due to the constraints. For the optimum solution, we
can assume that equality holds for one of the two constraints
for every k. Otherwise, the solution could be improved due to
the weaker constraints and the minimization of the objective.
To rephrase problem (8), we use the equivalent formulation

max
ω̃,α

∣∣∣∣∣ωj +
d∑

i=I+1

αi(vi)j

∣∣∣∣∣ , (10)

s.t.
d∑

i=1

ω̃i ≤ μ

ω̃k ≥ ωk +

d∑
i=I+1

αi(vi)k, ∀k

ω̃k ≥ −
(
ωk +

d∑
i=I+1

αi(vi)k

)
, ∀k,

where new variables ω̃k are introduced as well. Again, these

serve as the absolute value |ωk +
∑d

i=I+1 αi(vi)k|: any
solution for which equality does not hold for one of the
constraints can be improved due to the weaker constraints
and maximization as the objective. Since an absolute value
is optimized, this is not an LP yet. To obtain its solution, one
can simply solve two LPs, where the positive and negative
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Fig. 1. Two relevant features of the xor data set (left). Average classification
error rates of GMLVQ with regularized metrics for the xor data set (right).

value of the objective is considered, respectively:

ω±j ← max
ω̃,α

±
(
ωj +

d∑
i=I+1

αi(vi)j

)
,

and we add the corresponding non-negativity constraint

±
(
ωj +

d∑
i=I+1

αi(vi)j

)
≥ 0

At least one of these LPs has a feasible solution, and the final
upper bound can be derived thereof as the maximum value

ωj = max{ω+
j , ω

−
j }

For each linear mapping, this formulation requires to solve
3d LP problems containing 2d constraints and d− I variables.
For this purpose, standard solvers can be applied.

V. EXPERIMENTS

In this section we apply our proposed methods to four
data sets from different domains. After describing the data, we
explain the experimental setup and, finally, depict the results.
For the evaluation, we employ the following data sets.

• The xor data set is artificially generated and consists
of 4 clusters belonging to 2 classes constituting the
XOR problem. One dimension is present 3 times with
the addition of noise (features 1-3) and two identical
irrelevant features are included (5-6). An image with
features 1 and 4 is depicted in Fig. 1 (left).

• The wine data set consists of 256 features which are
near-infrared spectra measuring the alcohol content
of 124 wine samples [31]. The set is split into 94
training and 30 test samples, where samples number
34,35 and 84 are discarded as outliers, similar to [32].
Additionally, we switch the role of training and test
set to obtain a more challenging problem in terms
of interpretation. Since this is originally a regression
problem, we transform it into a classification problem
by binning alcohol levels into 3 classes of similar size.

• The tecator data set [33] consists of 100 features that
represent absorbances deduced from a spectometer.
The goal is to predict the fat content of 215 meat
samples. The set is split into 172 samples for training
and 43 samples for evaluation, where we again switch
the role of training and test set. Similarly as for the
wine data, we bin the target variable into three classes
to obtain a classification problem.
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Fig. 2. Spectra of the data sets wine (left) and tecator (right).

• The adrenal data set [15], [34] consists of 147 patients
characterized by 32 steroid markers. The goal is to
predict whether a patient has a benign or a malignant
adrenal tumor. For this purposes, we split the data set
into a training set containing 110 instances for training
and 37 instances for evaluation.

A. Experimental setup

As a pre-processing step, we apply a z-score transformation
to all our data sets, by removing the mean and standard
deviation of the training data from each data set. It is important
that the features in each data set have the same scaling so that
we can interpret the weights of linear mappings.

We train the GMLVQ model always using one prototype
per class, except for the xor data set, where we use two. For the
LMNN model, we use the parameters suggested by a parameter
search procedure provided by the original authors.

A crucial parameter in our framework is the size of the
assumed null space of the data. In order to obtain a sensible
choice for this parameter, we first train a metric learning
algorithm and then utilize the following scheme:

1) Create a set S of candidate values for the size of the
null space. This can simply be all possible values, or
a guess based on the eigenspectrum of the data.

2) For each element in S, apply our proposed interpre-
tation framework to the previously learned metric,
resulting in 2d relevance mappings for each row of
the trained metric.

3) Compute the classification accuracy on the train and
test set for each of these 2d mappings and average
them. Select the size of the null space as the one with
a small test error along with the largest null space.

We also employ the term ’regularized relevance profile’ when
we refer to the resulting relevance bounds of our approach.

Since the null space is often large, we will recall in
the following the size of the effective dimension which is
the number of dimensions minus the size of the null space.
Additionally, due to noise, we soften the minimum norm
conditions in (9) and (10) by allowing solutions smaller then
1.01 · μ, in the following.

As concerns the complexity of the metric learning scheme
for high-dimensional data, the computation of a full rank
matrix Λ ∈ R

d×d can be costly. However, Λ can be forced to
have a low rank [4]. This can be done by defining Λ = ΩTΩ
with Ω ∈ R

l×d, where l ≤ d restricts the rank.
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Fig. 3. Results of our proposed approach for the xor data set. The first row
shows the original linear mappings, the second row depicts the resulting upper
(in black) and lower bounds (in white).

B. Synthetic Data

In order to demonstrate the problem of directly interpreting
linear weights of a trained metric as relevances, we employ the
synthetic data set xor.

We train a GMLVQ method that results in a zero prediction
error on the training and test set. The resulting three mappings
of the metric with the largest scaling are depicted in the first
row of Fig. 3. Basically, only one of these mappings has a high
scaling so that the classification model uses approximately a
one-dimensional subspace to solve the classification task.

A direct interpretation of this linear vector |ω3| would
suggest that feature 4 is the most important one, features 1
and 3 have only half the relevance and features 2,5 and 6 are
not useful for the task. However, for this data set we know that
features 1-3 have the same explanatory power and if considered
alone, each of them is as important as feature 4. It follows that,
for this example, a direct interpretation of the linear weights
is misleading, particularly for the weakly relevant features.

In order to obtain a valid interpretation for the relevance of
the features, we apply our proposed framework. We estimate
the classification accuracy of the regularized mappings for all
possible sizes of the null space as described in subsection
V-A. The resulting curves are depicted in Fig. 1 (right). It is
apparent from the Figure, that the smallest effective dimension
size with a zero test error is 3, although the test error for 2
dimensions is only slightly larger. Nevertheless, we employ 3
for our proposed framework. The resulting relevance bounds
are shown in the second row of Fig. 3, where black bars depict
weakly and white bars strongly relevant features.

The results show that the bounds for the first two one-
dimensional mappings |ω1| and |ω2| have vanished. Formally
speaking, this implies that the same mappings can be obtain
with an almost zero L1 norm, meaning that these two mappings
map the training data to zero. More interestingly are the
resulting bounds for |ω3|: The framework has identified feature
4 as a strongly relevant feature and has found that features 1-3
can be replaced but that each of them can explain as much of
the target variable as feature 4. This explanation is precisely
how we generated the data. Features 5 and 6 have almost 0
upper bounds, merely reflecting noise.

In order to have a comparison to relevance interpretation in
literature, we apply the methods Lasso, Elastic Net and Ridge
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Fig. 4. Employing the xor data set, estimates of the coefficients for different values of the L1 norm (x-axis) are shown. The methods lasso (left), elastic net
(middle) and ridge regression (right) are utilized.

TABLE I. CLASSIFICATION ERROR RATES RANGING BETWEEN 0 AND

1 FOR ALL DATA SETS. IF NOT SPECIFIED DIFFERENTLY, THE

CLASSIFICATION MODEL IS GMLVQ.

xor wine tecator GMLVQ on adrenal LMNN on adrenal

train error 0.00 0.00 0.07 0.04 0.00
test error 0.00 0.29 0.16 0.03 0.05

Regression to our resulting mapping by defining ŷi = ω�xi.
Then, we can apply the formulation in equation (1) for Lasso
and according ones for Elastic Net and Ridge Regression to
obtain an interpretation for the feature weights based on these
methods. The results are depicted in Fig. 4 for the Lasso (left),
Elastic Net (middle) and Ridge Regression (right). We interpret
only |ω3| this way, since, as we saw previously, this mapping
contains the relevant information for discriminating the classes.

The progress of the coefficient weights for all three frame-
works implies that feature 4 is particularly relevant. However,
the results differ for the three weakly relevant features 1-
3: Elastic net and Ridge regression require all three features
equally weighted and hence do not show that each of them
can actually be neglected. The Lasso identifies feature 1 as
particularly important, followed by feature 3 and 2. This order
seems arbitrary and is an artifact of the noise which was added
to all three features. Hence, we argue that these frameworks
cannot provide the same information as our formalization.

C. Near-Infrared spectral data

Spectral data have many correlated features and hence
a large null space. For such data, it can be particularly
misleading to directly interpret the weights of linear mappings.
Hence, our method should be well suited in this case.

First of all we train a GMLVQ model for each of the two
data sets wine and tecator where we restrict the rank of the
matrix Ω to two since GMLVQ tends to utilize only a low
rank matrix in the end, usually. This does not harm the training
accuracy as can be observed in Table I but tends to improve
the generalization. Subsequently, we apply our approach to
compute relevance bounds for the according learned metric.
As previously, we determine a suitable size of the effective
dimension using the scheme described in subsection V-A. The
corresponding images are shown in Fig. 5: left for the wine
and right for the tecator data set.

The smallest test error is obtained with an effective di-
mensionality of 7 for the wine data set and with an effective
dimensionality of 9 for the tecator data set. It is particularly
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Fig. 5. Average classification error rates of GMLVQ with regularized metrics
for the wine (left) and tecator (right) data set, both for set S.
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Fig. 6. Results of our proposed approach for the wine data set. The first row
shows the original linear mapping, while the second row depicts the resulting
upper relevance bounds. The lower bounds are all zero, in this case.

interesting, that for the wine data set the regularized metric
achieves a better performance then the original metric: while
the training error stays the same, the test error drops from 0.29
to 0.14, which is a factor 2. The resulting relevance bounds for
the wine data set are depicted in Fig. 6 and for the tecator data
set in Fig. 7. For the wine data, the training procedure of the
classifier yielded a rank one matrix, hence we use only a one-
dimensional mapping for interpretation, in this case. For the
tecator data set, both mappings are utilized, and the resulting
relevance bounds for both mappings are displayed in Fig. 8.

Interestingly, the relevance bounds for both data sets con-
tain only very few irreplaceable features, while the upper
bounds are peaked, which implies that a few features can
already explain the mapping to a large extent. Particularly
for the wine data set, much noise is removed from the
original mapping, i.e. many features have a low upper bound.
Fig. 9 displays the original mapping (top) and the averaged
mapping over all ω, ω (bottom). Here it is apparent that,
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Fig. 7. Results of our proposed approach for the tecator data set. The first
row shows the original linear mapping, the second row depicts the resulting
upper and lower relevance bounds.
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Fig. 8. Summed lower and upper bounds for the tecator data set.

while the original mapping has many non-zero values, the
averaged regularized profile is extremely sparse. Furthermore,
the classification error with the averaged map accounts to 0 on
the training and to 0.14 on the test set, which is comparable
to the averaged error of the regularized mappings ω, ω.

D. Biomedical data

For the adrenal data set we compare two metric learning
approaches: The GMLVQ and LMNN. Both use the same
functional form for computing distances, hence, we can apply
our approach to both trained relevance matrices. First, we train
both models with the restriction to rank two relevance matrices.
This restriction did not harm the classification performance
in our experiments, as compared to training without this
restriction. The classification errors are depicted in Table I.
Both approaches achieve a comparable performance, where
the LMNN model is better on the training data while GMLVQ
is superior on the test data.

For these models, we compute the classification errors
based on different sizes of the effective dimension. These
results are depicted in Fig. 10. Good performances are achieved
with an effective dimensionality of 15 for the GMLVQ model
and of 20 for the LMNN algorithm. The according relevance
bounds for both relevance matrices are shown in Fig. 11.
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Fig. 9. Absolute values of the original mapping (top row) together with the
absolute value of the averaged regularized mappings (bottom row).
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Fig. 10. Average classification error rates of GMLVQ (left) and LMNN
(right) with regularized metrics for the adrenal data set.

Both trained distance metrics agree on a few features, such
as 19, while they emphasize often different ones. This might
explain the different error curves in Fig. 10 and the different
classification performance on the training and test set.

VI. CONCLUSION

In this contribution, we present an approach to obtain a
valid interpretation of the feature relevance from a trained met-
ric learning model. The results show that this procedure does
not only provide a meaningful interpretation of the learned
data transformation, but it can even improve the classification
performance, in cases of a particular large null space.

In future work we will employ this proposal to obtaining
insights into specific data sets, as well as to provide more
information about weakly relevant features.
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