
What is the Right Context for an Engineering
Problem: Finding Such a Context is NP-Hard

Martine Ceberio and
Vladik Kreinovich

Department of Computer Science

University of Texas at El Paso

El Paso, Texas 79968, USA

Emails: mceberio@utep.edu

vladik@utep.edu

Hung T. Nguyen
Department of Mathematical Sciences

New Mexico State University

Las Cruces, New Mexico 88003, USA

and Faculty of Econmics

Chiang Mai University, Thailand

Email: hunguyen@nmsu.edu

Songsak Sriboonchitta1 and

Rujira Ouncharoen2
1Faculty of Economics

2Department of Mathematcs

Chiang Mai University, Thailand

Emails: songsakecon@gmail.com

rujira.o@cmu.ac.th

Abstract—In the general case, most computational engineering
problems are NP-hard. So, to make the problem feasible, it is
important to restrict this problem. Ideally, we should use the
most general context in which the problem is still feasible. In
this paper, we start with a simple proof that finding such most
general context is itself an NP-hard problem. Since it is not
possible to find the appropriate context by utilizing a general
algorithm, it is therefore necessary to be creative – i.e., in
effect, to use computational intelligence techniques. On three
examples, we show how such techniques can help us come up
with the appropriate context. These examples explain why it is
beneficial to take knowledge about causality into account when
processing data, why sometimes long-term predictions are easier
than short-term ones, and why often for small deviations, a
straightforward application of a seemingly optimal control only
makes the situation worse.

I. IN ENGINEERING, IT IS IMPORTANT TO COME UP WITH

AN APPROPRIATE CONTEXT: AN INFORMAL FORMULATION

OF THE PROBLEM

Formulation of the problem. One of the main objectives of

engineering is to come up with a design and/or control that

satisfies required functionality. It is know that in most general

form, the problem of finding a design (control) that satisfies a

given constraint is NP-hard, i.e., crudely speaking, cannot be

solved by a feasible algorithm.

Thus, to be able to use feasible algorithms, it is necessary

to restrict the formulation, i.e., to formulate the corresponding

problem in an appropriate context.

If this context is too narrow, if the corresponding algorithm

can be extended to a more general context without losing

feasibility, then why not do it? If we use a context which is too

narrow, then in similar situations, instead of using the same

algorithm, we would have to solve the problem again. Thus,

it is desirable to find the most general context in which the

corresponding problem is still feasible. Finding such context

is the problem that we will consider in this paper.

What we do in this paper. In Section 2, we provide exact

definitions and prove the main (simple) theoretical result of

this paper – that finding the optimal context is itself an NP-

hard problem. In a short Section 3, we explain that this

result necessitates the use of computational intelligence. In the

following sections, we give examples of how computational

intelligence can help, examples that cover all the stages of

solving an engineering problem.

II. FINDING THE OPTIMAL CONTEXT IS NP-HARD:

PROOF (BY A SIMPLE REDUCTION)

Brief reminder: what is a feasible algorithm. Some algo-

rithms – e.g., algorithms whose running time grows linearly

or quadratically with the size of the input – are practically

useful (feasible). Other algorithms – e.g., many exhaustive

search algorithms – require computation time that grows

exponentially as the input size. For example, many exhaustive-

search algorithms require that we try all 2n binary (0-1)

sequences of length n.

For such exponential-time algorithms, even when the bit size

of the input is reasonable, e.g., n = 300, the corresponding

number of computational steps 2300 exceeds the lifetime of

the Universe. Thus, such algorithms are not feasible.

This distinction is usually described as follows (see,

e.g., [7]:

• algorithms A whose worst-case running time tA(n) of

inputs of bit size n (a.k.a. computational complexity) is

bounded by a polynomial P (n) of n are called feasible,

while

• all other algorithms are called non-feasible.

Comment. The above definition is not perfect, since it does

not fully capture the intuitive notion of a feasible algorithm:

• an algorithm whose computation time grows, with the

bit size n of the input, as 10100 · n is feasible in the

above sense, but it is not practically feasible, since even

for n = 1, it needed more time than the lifetime of the

Universe;

• on the other hand, an algorithm with an exponentially

increasing running time exp(10−40 · n) – an algorithm

which is not feasible according to the above definition –

runs very fast on all inputs of realistic bit size n, and is,

thus, feasible from the practical viewpoint.978-1-4799-7560-0/15/$31 c©2015 IEEE

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.227

1615

However, in spite of this limitation, no better definition of a

feasible algorithm is known. So, in this paper, we will use this

definition of a feasible algorithm.

NP-hard problems: a brief reminder. In computer science,

we usually consider problems for which, once we have a

candidate for a solution, we can feasibly check whether this

candidate is indeed a solution. The class of all such problems

is known as the class NP.

It is still not known (2015) whether it is possible to solve all

the problems from the class NP in feasible time, i.e., whether

the class NP coincides with the class P of all the problems

that can be feasibly solved. Most computer scientists believe

that this is not possible, i.e., that P�=NP. What is known is

that there are some problems P0 from the class NP such that

solving any other problem from the class NP can be feasibly

reduced to solving this problem. In this sense, these problems

are the hardest in the class NP. Such hardest problems are

called NP-hard [7].

Many important practical problems are NP-hard. Many

important practice-related problem are NP-hard if we consider

them in their most general form; see, e.g., [7].

Crudely speaking, the NP-hardness of a problem P means

that unless P=NP (which, as we have mentioned, most com-

puter scientists believe to impossible), no feasible algorithm is

possible that would solve all particular cases of this problem.

Need for restriction. Since the most general problems are NP-

hard, to make the problem feasible, it is important to restrict

the problem.

It is desirable to consider restrictions which are as general
as possible. Within the limitation of feasibility, it is desirable

to come up with restrictions which are as general as possible.

What we do in this section. In this section, we prove that

finding such most general feasible generalization is itself an

NP-hard problem. In other words, we prove that finding the

optimal context for feasibility is an NP-hard problem.

How to find the most general restriction, under which the
problem remains feasible: analysis of the problem. Our

objective is to restrict the original generic NP-hard problem

so that it becomes feasible – and to find the most general of

such restrictions.

It is known that the more we restrict the original problem,

the more reasonable it is to expect that this restriction will

lead to the possibility of a feasible algorithm for solving thus

restricted problem.

Let m be the number of possible ways of restricting the

problem. For each of these ways i = 1, . . . ,m, let pi denote

the fraction of the problems that satisfy this restriction. It is

reasonable to consider restrictions which are independent from

each other. In this case, if we simultaneously impose two or

more restrictions i, j, etc., then the fraction of problems that

satisfy all these restrictions is equal to the product pi · pj · of

the corresponding fractions.

Under this independence assumption, if from the class

{1, . . . ,m} of all possible restrictions, we select a subclass

I ⊂ {1, . . . ,m}, then the fraction of problems that satisfy all

these restrictions is equal to
∏
i∈I

pi.

The more we restrict the problem, the more probable it is

that the resulting restricted problem can be solved by a feasible

algorithm. Let us denote the largest fraction for which the

problem becomes feasible solvable by p0. In this simplified

description:

• if we have a class of restrictions that forms a fraction p0
(or smaller) of the original class of problems, then it is

possible to have a feasible algorithm for solving all the

problems from this class;

• on the other hand, if some class of problem forms a

fraction of > p0, then no such feasible algorithm is

possible.

We are interested in selecting the restrictions in such a way

that the resulting problems form the feasible subclass of the

largest possible size (p0). Let us formulate this problem in

precise terms.

How to find the most general restriction under which the
problem remains feasible: a formalization of the main
problem. We are given:
• fractions p1, . . . , pm ∈ (0, 1) that describe possible con-

straints, and

• the fraction p0 with the property that:

– subclasses of size ≤ p0 are feasibly solvable, while

– subclasses of size > p0 are not feasible solvable.

The problem is to check whether it is possible to select a set

of constraints I ⊆ {1, . . . ,m} for which the resulting class of

problem is of the largest feasibly solvable size, i.e., for which
∏
i∈I

pi = p0. (1)

The above problem is NP-hard: a proof. Let us prove

that the above problem is, in general, NP-hard, i.e., that it

is NP-hard to find the most general restriction under which

the problem remains feasible.

In precise terms, we need to prove that the problem of

finding a subset I for which the equality (1) is true is NP-hard.

Indeed, it is known that the following subset sum problem is

NP-hard [7]:

• Given: m positive integers s1, . . . , sm and a positive

integer s0,

• to find a subset I ⊆ {1, . . . ,m} for which
∑
i∈I

si = s0. (2)

This problem is also known as the problem of exact change:

if we have coins of denominations s1, . . . , sm, is it possible

to form an amount s0 by using some of these coins?

1616

Let us prove that our problem is NP-hard by reducing it to

the subset problem, i.e., by showing that:

• if we can feasibly solve our problem,

• then we will be able to feasibly solve the subset sum

problem.

Since the subset sum problem is known to be NP-hard, this

will prove that our problem is NP-hard as well.

The desired reduction can be obtained as follows: take pi =
2−si and p0 = 2−s0 . Then, the equality (1) takes the form

∏
i∈I

pi =
∏
i∈I

2−si = 2−s0 = p0.

By taking the binary logarithm of both sides of this equality

(and taking into account that the logarithm of the product is

equal to the sum of the logarithms), we conclude that
∑
i∈I

si =

s0. Vice versa, if this equality holds, then, for pi = 2−si and

p0 = 2−s0 , the equality (2) also holds.

This reduction shows that our problem is indeed NP-hard.

III. THE ABOVE RESULT NECESSITATES THE USE OF

COMPUTATIONAL INTELLIGENCE

The meaning of the above result: (feasible) algorithms are
not enough. The result of the previous section shows that it is

not possible to have an automatic algorithm that would always

solve all the particular cases of the general context-finding

problem. The fact that a general algorithm is not possible

means that to solve this problem, we must use our creativity,

we must use our intelligence.

We need to use computational intelligence. We need to

use intelligence, and we also need to use computers. Thus,

we need to translate intelligent techniques into computer-

understandable form – and this is exactly what computational

intelligence is about.

Let us give examples. In the following sections, we will give

examples of how (computational) intelligence can help find an

appropriate context for an engineering problem.

IV. WE WILL PROVIDE EXAMPLES FROM ALL STAGES OF

SOLVING ENGINEERING PROBLEMS

How engineering problem are solved? We will show that

computational intelligence can be helpful on all the stages of

solving the engineering problem. To show this, let us recall

what are the main stages of solving such problems.

In mathematical terms, the goal of an engineering problem

is to change the values of some quantities: transportation

means changing the spatial coordinates of an objects, heating

means changing the temperature inside a building, etc.

First stage: finding the dependence. Rarely can we directly

change the desired quantity. Usually, this can be achieved

by changing some easier-to-change related quantities. For

example, since we cannot directly drag a load across the

sea, we place it in a container, place such containers into a

specially designed ship, burn oil in a ship’s engine, etc. To

come up an appropriate engineering scheme, we first need

to find the dependence between the desired quantity y and

the corresponding easier-to-change quantities x1, . . . , xn. This

is an importance first stage of the process of solving the

engineering problem.

Second stage: analysis. Once the dependence is found, for

each engineering design, we can predict the future values

of different quantities – and thus, we can check how well

the given design satisfies our requirements. This analysis of

possible solutions forms the second stage of the solving the

engineering problem – engineers (or computers trained by

engineers) come up with possible designs, and then we check

these designs once by one until we find a satisfactory one.

Third stage: optimization. Once we have found a satisfactory

design, a natural next step is optimization: trying to come

up with a perfect design, with optimal control, etc. This

optimization forms the last third stage of engineering design.

What we do in the following sections. In the following

sections, we show that computational intelligence can help to

find the proper context on all these three stages of engineering

design. In each of the three cases, we will illustrate our point

on a simple example of a linear system.

What is known and what is new. All three examples describe

phenomena which are (largely) known in computational in-

telligence. However, to the best of our knowledge, prior to

this paper, these examples have not been brought together

as examples of need for proper context on all the stages of

engineering design.

Besides, while these examples may be known in com-

putational intelligence community, they are not well known

outside this community. For example, many economists still

view the possibility of long-term predictions in situations in

which short-term predictions are not possible as an important

theoretical challenge.

V. FIRST STAGE: PRIOR KNOWLEDGE ABOUT CASUALITY

CAN HELP TO FIND THE DEPENDENCE

What is the first stage: a brief reminder. On the first stage of

solving an engineering problem, we try to find the dependence

between the desired difficult-to-directly-change quantity y and

some easier-to-change quantities xi. This dependence is then

used to come up with an engineering design that helps us

change the values of the desired quantity.

In this paper, we consider the simplest possible example.
As we have mentioned, in this paper, we consider the simplest

possible situations – i.e., linear models – and the simplest pos-

sible solutions – e.g., linear controls. Therefore, in this section,

we consider the approximation in which the dependence of y
on the appropriate easier-to-change quantities is linear, i.e.,

when:

y = a0 + a1 · x1 + . . .+ an · xn (3)

for appropriate coefficients ai.

1617

What does it mean to find the dependence. For a linear

model, finding the dependence means finding the correspond-

ing coefficients ai.

Ideal case, when we know which quantities are relevant
and which are not. Let us first consider the ideal case when

we know the list of quantities x1, . . . , xn which are important

to determine y, then we can use the known observations

(x(k)1, . . . , x
(k), y(k)), 1 ≤ k ≤ E for which we should have

y(k) ≈ a0 + a1 · x(k)
1 + . . .+ an · x(k)

n , (4)

and then use the usual Least Squares technique to find the

values ai for which the mean square error is the smallest

possible:

E∑
k=1

(
y(k) −

(
a0 + a1 · x(k)

1 + . . .+ an · x(k)
n

))2

→

min
a0,...,an

(5)

What happens in real life, when we do not know which
quantities are relevant. In real life, we often do not have

guaranteed information re which quantities xi are relevant

and which are not. In such situations, instead of considering

dependence of y only on relevant quantities x1, . . . , xn, we

have to consider the dependence on all possible easy-to-change

quantities x1, . . . , xN , with N 	 n. In this case, we use a

similar Least Square approach to find the coefficients of a

general linear equation:

y = a0 + a1 · x1 + . . .+ aN · xN , (6)

by findings the values a0, . . . , aN for which

E∑
k=1

(
y(k) −

(
a0 + a1 · x(k)

1 + . . .+ aN · x(k)
N

))2

→

min
a0,...,an

. (7)

In the limit E →∞, the additional coefficients an+1, . . . , aN
tends to 0, but in practice, based on the measurement results,

we get non-zero values for all the coefficients. Yes, we can

eliminate those coefficients which are too small (e.g., smaller

than a certain threshold), but still, when N is large, some of

the unnecessary coefficients turn out of be greater than this

threshold and thus remain.

As a result, instead of the original ideal dependence (4), we

get a dependence (6) with additional terms ai · xi (i > n),

which decrease the accuracy of the resulting model.

This decrease in accuracy may be significant. At first

glance, it may seem that this decrease in accuracy causes by

almost-zero coefficients ai is small, but there may be many

such terms, and, as a result, this decrease in accuracy can

be significant. The possible for a drastic decrease has been

illustrated, e.g., on the example of hydrological analysis in [1].

Natural solution: use (imprecise) intelligence. Since using

all possible easy-to-change quantities xi may lead to a drastic

decrease in accuracy, a natural idea is to restrict ourselves only

to relevant quantities xi.

Since we do not have a guaranteed knowledge of which

variables are relevant and which are not, we have to use

imprecise (“fuzzy”) expert knowledge about relevance. A

natural way to describe such intelligence is by using fuzzy

techniques [2], [5], [11], in which, to each quantity xi, we

assign a degree di to which, according to the expert, this

quantity is relevant.

We then sort the quantities in the decreasing order of their

relevance, and find the smallest value n for which the use

of Least Squares leads to the approximation error below the

expected threshold – e.g., by using the χ2 criterion (see, e.g.,

[8]). This can done, e.g., by increasing n one by one until we

reach the first value with statistical fit.

So what is an appropriate context here. Here, an appropriate

context is ignoring the dependence of the desired quantity y
on the irrelevant easy-to-change quantities xn+1, . . . , xN .

VI. SECOND STAGE: HOW COME LONG-TERM

PREDICTIONS ARE POSSIBLE BUT SHORT-TERM

PREDICTIONS ARE OFTEN NOT?

Second stage: reminder. On the second stage of solving an

engineering problem, we use the relation that we found on the

first stage to predict the future behavior of the system.

A strange phenomenon: often, long-term predictions are
possible but short-term predictions are not possible. In

general, the further we in the future we want to predict,

the more difficult this prediction. It is possible to predict

technological advances for the new few years, but it is next

to impossible to predict technology in the next century. It is

possible to predict tomorrow’s weather, but it is practically

impossible to accurately predict weather in ten years.

However, all these examples are about social and natural

phenomena, where the problem is that we have only a very

crude knowledge of the system’s dynamics. In engineering,

often, we have an exactly opposite phenomenon: we can pre-

dict the long-term consequences really well, but it is difficult

to make short-term predictions.

For example, if we trace a flight going from Cape Town

to London, then we can safely predict that in a few hours,

it will be approaching the English Channel, but where the

plane will be an hour after the flight depends heavily on the

winds, turbulence zones, etc. In this example, the possibility

of long-term vs. short-term predictions sounds reasonable, but

in general, this phenomenon is very counter-intuitive: if we

cannot accurately predict the state of a system short-term,

how come we can reasonably accurately predict its long-term

behavior?

How can we explain this seemingly counterintuitive phe-
nomenon. Let us show, on a very simple example, that,

while this phenomenon may sound counterintuitive, it actually

naturally follows from the corresponding equations.

1618

Let us try to come up with equations which are as simple as

possible. In general, dynamical equations that describe how the

state of system change with time describe the time derivatives

of the parameters describing the system. These derivatives

depend on the current state, on the control applied to the

system, and on the unpredictable (random) processes that also

affect the system.

The simplest case is when the state of the system is

described by a single quantity y; as an example of such

quantity, we can take the distance between the plane and its

destination (London). For simplicity, we also assume that:

• the control is described by a single parameter u, and

• that there is a single random process with 0 mean whose

value at each moment t will be denoted by r(t).

For simplicity, let us assume that the random values corre-

sponding to different moments of time are independent and

identically distributed.

In this simple case, the corresponding differential equation

takes the form
dy

dt
= f(y, u, r). (8)

As we have mentioned earlier, we consider linear systems.

When the function f(y, u, r) is linear, the equation (8) takes

the following form:

dy

dt
= b0 + b1 · y + b2 · u+ b3 · r. (9)

In the engineering system, usually, unless we apply a control

and/or unless there is a random perturbation, the state of the

system does not change. In other words, when u = r = 0, we

should have
du

dt
= 0. This requirement implies that

b0 + b1 · u = 0

for all possible states u. Thus, the equation (9) takes an even

simpler form
dy

dt
= b2 · u+ b3 · r. (10)

As usual, to solve this equation, we discretize time, i.e., select

a time step Δt, and and consider the value

y0 = y(t0), y1 = y(t0+Δt), . . . , yk = y(t0+k ·Δt), . . .

Then, the relation between each value yk = y(t0+k ·Δt) and

the next value yk+1 = y(t0 + (k + 1) ·Δt) can be described

as

yk+1 − yk ≈ Δt · dy
dt

, (11)

thus, as

yk+1 − yk ≈ A · u+B · r(t), (12)

where we denoted A
def
= Δt · b2 and B

def
= Δt · b3.

When we add up the equations (12) corresponding to k =
0, 1, . . . ,K, we conclude that the change yK−y0 in the values

of y between the starting state y0 and the state yK at the K-th

moments is equal to:

yK − y0 ≈ K · (A · u) +B ·
K∑

k=1

r(tk). (13)

The random values are unpredictable, the only effect that we

can predict is the joint effect of controls, i.e., the term K · u.

The error term
K∑

k=1

r(tk) is a sum of K independent iden-

tically distributed random variable with 0 mean. According

to the Central Limit Theorem [8], when K is large, the

distribution of this sum is close to Gaussian (normal), with

the variance equal to the sum of K variances – and thus, with

the standard deviation that grows as
√
K. It is known that

with a very high confidence 99.9%, the value of a normally

distributed random variable with 0 mean is bounded by 3σ
(6σ if require an even higher confidence 1− 10−8). Thus, the

error term grows with K as
√
K, while the main term grows

as K. As a result, the relative error of the estimate K · (A ·u)
for the difference yK − y0 decreases with K as

√
K

K
=

1√
K

.

The farther in the future we want to predict, i.e., the larger

K, the more accurate our prediction. When r 	 u, no accurate

prediction is possible for the next moment of time, but as time

goes by, predictions become more and more accurate.

This explains why in many engineering systems, it is

possible to make long-term predictions but it is not possible

to make short-term ones.

What can we do to avoid inaccurate predictions: use
(computational) intelligence. A natural solution is not to

make short-term predictions – since these predictions are

inaccurate anyway, to only make prediction for a time period

that exceeds a certain threshold.

Ideally, we should know the statistical characteristics of the

random factors and use these characteristics to generate the

value of the corresponding threshold.

In practice, however, we often do not know these prob-

abilities. In this case, when we do not know a guaranteed

knowledge of the random quantity r, a natural idea is to use

imprecise expert knowledge of this quantity to generate the

value of the appropriate threshold.

So what is an appropriate context here. Here, an appro-

priate context is considering predictions only after a certain

moment of time – since accurate short-term predictions are

not possible.

VII. THIRD STAGE: IF IT AIN’T BROKE, DON’T FIX IT

Third stage: reminder. On the third stage of solving an

engineering problem, we use the second-stage analysis to come

up with an optimal control.

At first glance, the situation is straightforward. At first

glance, it seems like a very natural idea: we use the (ap-

proximate) model to find the optimal control, then we apply

this optimal control, and we expect the situation to improve.

Yes, in practice, we expect some deviations from optimality,

since the model is approximate, but overall, we expect some

improvement.

In practice, the results are not always good. Somewhat sur-

prisingly, in practice, an application of the seemingly optimal

control only makes the situation worse.

1619

Our main example – that motivated this section – comes

from medicine, where the medical treatment which is benefi-

cial when the state is very different from the norm becomes

harmful when the difference from the normal state is small [6].

This seemingly counterintuitive result has been motivated by

an analysis of the corresponding mathematical model, but on

the phenomenological level, such phenomena are ubiquitous

in medicine. For example, when a patient has high fever, it

beneficial to give him/her medicine that reduces this fever.

However, in case of a slight fever, such medicine will only

reduce the body’s ability to fight the disease and thus, delay

the patient’s recovery.

Similar phenomena are known for engineering problems as

well. For example, when we control a robot, it makes sense to

promptly correct robot’s deviations from the desired trajectory

– provided that these deviations are large enough. However,

if we apply similar corrections for small deviations, the robot

will start wobbling and its motion will be less efficient; see,

e.g., [3], [4], [9], [10].

How can we explain this seemingly counterintuitive phe-
nomenon. Similar to the second-stage explanation, let us

show, on a very simple example, that, while this phenomenon

may sound counterintuitive, it actually naturally follows from

the corresponding equations.

Indeed, as we mentioned in the previous section, in the

simplest approximation, if we start at a state y0, then at the

next moment of time, we get a new state

y1 = y0 +A · u+B · r. (14)

When we select a control, we do not know the value r of the

random process, we only know that y1 ≈ y0 + A · u. In this

case, it is reasonable to select a control for which the corrected

state y0+A ·u is equal to the desired state Y : y0+A ·u = Y .

For this control, due to the random error B ·r, the actual state

will be, in general, different from Y , namely, it will be equal

to

y1 = Y +B · r. (15)

When y0 is very close to Y , but the standard deviation of r is

large, we may end up much further away from the desired state

Y that we originally were. In this case, indeed, a seemingly

optimal control only makes things worse.

How can we avoid such situation when a seemingly optimal
control only makes situation worse: use (computational)
intelligence. A natural solution is not to apply control when

the deviation from the ideal state is small, and to only apply

control when the deviation from the ideal state exceeds a

certain threshold.

Ideally, we should know the statistical characteristics of the

random factors and use these characteristics to generate the

value of the corresponding threshold.

In practice, however, we often do not know these prob-

abilities – this was exactly the case with the 1996 AAAI-

award-winning robot [3]. In this case, when we do not know

a guaranteed knowledge of the random quantity r, a natural

idea is to use imprecise expert knowledge of this quantity to

generate the value of the appropriate threshold.

So what is an appropriate context here. Here, an appropriate

context is applying control only when the deviation from the

ideal state exceeds a certain threshold value.

VIII. HOW THIS CAN BE USED IN A PRACTICAL

CONTEXT?

Since in general, most engineering problems are computa-

tionally intractable (NP-hard), it is important to find an appro-

priate context that will enable us to make the corresponding

problem feasible.
Due to computational intractability of these problems, it is

not possible to come up with a general method for finding such

context. This context has to come from the expert’s analysis

of the problem.
Our examples – covering all three stages of engineering de-

sign – show that in many practical situations, expert knowledge

indeed helps us find the appropriate context.

ACKNOWLEDGMENT

This work is supported by Chiang Mai University, Thailand.

In particular, we acknowledge the support of the Center of

Excellence in Econometrics, Faculty of Economics, Chiang

Mai University, Thailand.
This work was also supported in part by the National

Science Foundation grants HRD-0734825 and HRD-1242122

(Cyber-ShARE Center of Excellence) and DUE-0926721.
The authors are greatly thankful to the anonymous referees

for valuable suggestions.

REFERENCES

[1] H. V. Gupta and G. S. Nearing, “Debates – the future of hydrological
sciences: a (commn) path forward? Using models and data to learn:
a systems theoretic perspective on the future of hydrological science”,
Water Resources Research, 2014, Vol. 51, pp. 5351–5359.

[2] G. Klir and B. Yuan, “Fuzzy Sets and Fuzzy Logic”, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[3] D. Morales and Tran Cao Son, “Interval methods in robot navigation”,
Reliable Computing, 1998, Vol. 4, No. 1, pp. 55–61.

[4] H. T. Nguyen and V. Kreinovich, “Interval-valued fuzzy control in space
exploration” BUlletin for Studies and Exchanges on Fuzziness and its
AppLications (BUSEFAL), 1997, Vol. 71, pp. 55–64.

[5] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Chapman
and Hall/CRC, Boca Raton, Florida, 2006.

[6] R. Ouncharoen, S. Intawichai, T. Dumrongpokaphan, and Y. Lenbury,
“A mathematical model for HIV apheresis”, International Journal of
Mathematical Models and Methods in Applied Sciences, 2013, Vol. 7,
No. 9, pp. 810–819.

[7] C. H. Papadimitriou, Computational Complexity, Addison Wesley, San
Diego, 1994.

[8] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Chapman & Hall/CRC, Boca Raton, Florida, 2011.

[9] K. C. Wu, “A robot must be better than a human driver: an application
of fuzzy intervals”, In: L. Hall, H. Ying, R. Langari, and J. Yen
(eds.), NAFIPS/IFIS/NASA’94, Proceedings of the First International
Joint Conference of The North American Fuzzy Information Processing
Society Biannual Conference, The Industrial Fuzzy Control and Intelligent
Systems Conference, and The NASA Joint Technology Workshop on Neural
Networks and Fuzzy Logic, San Antonio, December 18–21, 1994 (IEEE
Press, Piscataway, New Jersey), pp. 171–174.

[10] K. C. Wu, “Fuzzy interval control of mobile robots”, Computers and
Electrical Engineering, 1996, Vol. 22, No. 3, pp. 211–219.

[11] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8,
pp. 338–353.

1620

