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Abstract—We present a new approach with respect to spatial
reasoning problems by using logic programs. Because the weak
completion of a logic program admits a least model under the
three-valued Łukasiewicz semantics and this semantics has been
successfully applied to other human reasoning tasks, conditionals
are evaluated under these least Ł-models. We show that the
weak completion semantics can also handle spatial relations in a
way humans do. In particular, we develop a computational logic
approach to spatial reasoning and show that the weak completion
semantics computes preferred mental models.

I. INTRODUCTION

In the last century the classical (propositional) logic has played
an important role as a normative concept for psychologists in-
vestigating human reasoning episodes. Psychological research,
however, showed that humans systematically deviate from the
classical logically correct answers.

Until now there are no widely accepted theories that express
formal representations of human reasoning. Before we can
formalize human behavior we need to understand how humans
draw certain conclusions given some specific information. We
address this issue by exploring current results from the liter-
ature. Conventional formal approaches such as classical logic
are not appropriate for this purpose because they cannot deal
with the elementary aspects that humans permanently need to
reason with, for instance with incomplete information or non-
monotonicity. The probably most well-known psychological
experiment showing this is Byrne’s suppression task [3]. Var-
ious formal alternatives have been proposed. However, most
of them are purely theoretical and have never been applied to
real case studies. Instead, for most of these theories, artificial
examples have been constructed, which only show that this
theory works within this very specific context. But what is the
value of a theory for human reasoning that has never been
tested on how humans actually reason?

Strube [29] claims that just modeling is not satisfying. He
argues that knowledge engineering should also aim at being
cognitively adequate. Accordingly, when evaluating computa-
tional approaches which try to explain human reasoning we
insist on assessing their cognitive adequacy.

Adequacy originally has been defined in a linguistic context to
compare and explain language theories and their properties, for
which there are two different measures: conceptual adequacy
and inferential adequacy [30]. Conceptual adequacy reflects in
how far the language represents the content correctly. Inferen-
tial adequacy is about the procedural part when the language
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is applied on the content. Knauff, Rauh Schneider [19] and
Knauff, Rauh and Renz [18] define cognitive adequacy in the
setting of qualitative spatial reasoning, where they make a
similar distinction: The degrees of conceptual adequacy reflects
to which extent a system corresponds to human conceptual
knowledge. Inferential adequacy focuses on the procedural
part and indicates whether the reasoning process of a system
is structured similarly to the way humans reason. This is
analogous to the proposition made by Stenning and van Lam-
balgen in [27] and [28] to model human reasoning by a two
step process: Firstly, human reasoning should be modeled by
setting up an appropriate representation (conceptual adequacy)
and, secondly, the reasoning process should be modeled with
respect to this representation (inferential adequacy).

In the following we will focus on human spatial reasoning,
where we investigate and formalize how new knowledge is un-
derstood given some information about a certain arrangement
of objects. For instance, given the information, that a ferrari
is left of a porsche and right of the porsche there is a beetle,
we can without difficulty conclude that the ferrari is left of the
beetle. But how exactly do we come to this conclusion? What
happens if we have a set of premises with which more than one
arrangement is possible? Consider the following example taken
from Ragni and Knauff [25] which consists of four premises
above the line and a conclusion below the line.

1. The ferrari is left of the porsche.
2. The beetle is right of the porsche.
3. The porsche is left of the hummer.
4. The hummer is left of the dodge.

C. The porsche is (necessarily)1 left of the dodge.

Would a human immediately notice that the first two premises
are not relevant and that the conclusion follows from the
transitivity given the left relation of the third and the fourth
premise?

The question which we shall be discussing in this paper is
how to automatically construct what humans may have in mind
while reading the premises. Accordingly, the conclusion should
be evaluated in a similar way as humans do. For instance,
the mental model theory [16] assumes that humans construct
one model, verify the conclusion and possibly construct the
next one. On the other hand, the preferred model theory [25]
claims that humans only have exactly one so-called preferred
model in mind. This requires less effort than constructing all
possible models and in most situations of our everyday life this
one model is absolutely enough to reason with. According to
Ragni and Knauff [25], people will only think of alternatives,

1This means that the conclusion follows from all possible solutions.
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if they are asked to search for other models. But even then,
they do not randomly construct them from scratch. Instead of
that, they first start generating models which are most similar
to the preferred one by changing them as little as possible.
This theory seems to be very promising and is empirically sup-
ported. Furthermore, it can give us an explanation about how
people deal with ambiguity when modeling spatial reasoning
problems and that, while evaluating a conclusion, they might
come to conclusions which are wrong according to classical
logic.

We will formalize the preferred model theory in a computa-
tional logic setting based on the weak completion semantics.
This approach has its origin in the work by Stenning and van
Lambalgen [28]. Their work was based on the Kripke’s and
Kleene’s three-valued logic [17] and contained a technical bug
which was corrected in [12] by considering the three-valued
Łukasiewicz logic [21] instead. [12] also showed that each
logic program as well as its weak completion admits a least
model under Łukasiewicz logic, which can be computed by it-
erating Stenning and van Lambalgen’s semantic operator [28].
Consequently, reasoning should be performed with respect to
this least model.

Somewhat surprisingly, under the weak completion semantics
we were able to adequately model the suppression task [5],
[14] as well as the selection task [6], the belief-bias effect [24],
contextual abductive reasoning with side effects [23] and
conditionals [4]. Moreover, the approach can be implemented
within a connectionist setting based on the core method as
described in [1] and [13].

Our goal is to show that human spatial reasoning can also
be adequately modeled under the weak completion semantics.
In order to do so, we first discuss spatial relations in human
reasoning and, in particular, the preferred model theory in
Section II. Thereafter, we introduce the computational logic ap-
proach based on the weak completion semantics in Section III.
Finally, Section IV shows how the preferred model theory can
be implemented under the weak completion semantics.

II. SPATIAL RELATIONS IN HUMAN REASONING

We will first address the spatial reasoning problem following
the introduction of [25]. We assume binary spatial relations
between two objects and restrict ourselves in this paper to the
left and right relations. We use the notation left(X,Y ) and
right(X,Y ) to express that X is left of Y and X is right of Y ,
respectively. Reconsidering the example from the introduction
we obtain:

Example 1: 1. left(ferrari , porsche)
2. right(beetle, porsche)
3. left(porsche, hummer)
4. left(hummer , dodge)

C. left(porsche, dodge)

Formally, a spatial reasoning problem consists of a finite list
of premises and a conclusion, and the question whether the
premises entail the conclusion. We assume that each premise
is a ground atom of the form p(a, b) specifying some spatial
relation p between the objects a and b. The conclusion is also
a ground atom of the form p(a, b), where the objects a and b
must occur in the premises.

A. Inference Rule Approach

The inference rule approach, as presented by Byrne and
Johnson-Laird [2], is based on following assumptions:

1) Humans know a set of inference rules, which they can
apply on the premises of the spatial reasoning problem in
order to derive new knowledge.

2) In case they encounter the conclusion, it is proven. Only
when all possibilities of applying the rules are exploited
without proving the conclusion, the conclusion is refuted.

3) The order of the premises is not important.

In [2], a system with nine inference rules for spatial reasoning
problems is specified, which does not only consider the left
and right relations, but also the frontOf relation. As in this
paper we will restrict ourselves to the left and the right
relation, we will only consider a simplified version of the rule
system. The relevant inference rules are the following:

(1) ∀X,Y, Z(left(X,Z) ← left(X,Y ) ∧ left(Y, Z))
(2) ∀X,Y (left(X,Y ) ↔ right(Y,X))

Rule (1) represents the transitivity of the left relation and
rule (2) the symmetry between the left and right relation. In
this system, Example 1 can be solved by considering premises
3 and 4 together with rule (1) specifying the transitivity of left ,
which allows one to conclude the conclusion. These rules seem
appropriate and are necessary to identify the relations between
the objects. However, the major drawback of this approach is
that it does not consider the order in which premises are read.

B. Mental Model Theory

The mental model theory [16] does not assume that humans
apply inference rules but that they construct so-called mental
models. In spatial reasoning, a mental model is understood as
the presentation of the spatial arrangements between objects
that correspond to the premises. Consider the following ex-
ample, again taken from [25], which is similar to Example 1
except from the third premise:

Example 2: 1. left(ferrari , porsche)
2. right(beetle, porsche)
3. left(beetle, hummer)
4. left(hummer , dodge)

C. left(porsche, dodge)

A mental model corresponding to the premises is constructed
by writing the objects next to each other exactly how one
would imagine the arrangement in the mind. In this case, there
exists only one possible mental model:

ferrari porsche beetle hummer dodge

A spatial reasoning problem which has exactly one mental
model is called a deterministic problem. On the other hand,
Example 1 is a non-deterministic problem, for which we have
three mental models:

ferrari porsche beetle hummer dodge
ferrari porsche hummer beetle dodge
ferrari porsche hummer dodge beetle

The mental model theory assumes that when solving a spatial
reasoning problem, humans behave as follows:
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1) Any of the mental models is constructed.
2) If the conclusion does not hold in this model, then it is

refuted.
3) If the conclusion holds in this model, then, one mental

model after another is constructed and verified. If the
conclusion holds in all these models, then it is proven.

In this approach, deterministic problems are easier to solve
than non-deterministic ones as then Step 3. can be omitted.

In the original version of the mental model theory as well
as in the inference rule approach it is assumed that the order
of the premises is irrelevant. However, [26] already refers to
the studies made by [22] which show that the order actually
influences the construction of mental models and, in particular,
the construction of the first mental model in Step 1.

C. Preferred Model Theory

The preferred model theory [25] is based on the mental model
theory. The major difference is the assumption that humans do
not consider all but only certain mental models. These certain
ones in turn depend on the order in which the premises are
presented. In this section we will discuss this theory together
with the computational system PRISM, developed by Ragni
and Knauff [25] as well.

One should note that left(a, b) or right(a, b) denote that
object a is left or right of object b, respectively. However,
this does not mean that a is a neighbor of b. There might be
other objects between a and b. In case a is a neighbor of b,
i.e., there is no other object between them, then we will refer
to this relation as left neighbor of or right neighbor of and
denote this as ln(a, b) and ln(b, a), respectively.

The preferred model theory assumes that the phases in which
humans solve spatial reasoning problems, can be divided into a
model construction, a model inspection and a model variation
phase. The authors in [25] also present an implementation of
the preferred model theory, PRISM. It only allows the follow-
ing four types of premises for a spatial reasoning problem:

Type 1 Exactly the first premise.
Type 2 Premises containing exactly one new object and one

which occurs already in the model so far.
Type 3 Premises, which contain two new objects, but which

are not from type 1.
Type 4 Premises, which relate two objects occurring in two

different submodels to each other, where submodels are
already arrangements of objects which are not yet in
relation to each other.

Based on a valid list of premises, PRISM constructs the
preferred mental model by stepwise adding new objects to
an initially empty arrangement. For this purpose, one premise
after another is read and, depending on its type, is processed
as follows:

1) If the premise is of type 1 then the two objects will be
placed directly next to each other.

2) If the premise is of type 2 then the new object will be
inserted directly next to the already existing one provided
that the space next to the existing one is free. If this space is
already occupied then the new object is placed in the next
available space; This is called first free fit or 3f-strategy.

3) If the premise is of type 3 then a new arrangement – i.e.,
a new submodel – is constructed in which both objects are
arranged directly next to each other.

4) If the premise is of type 4, the first arrangement will be
placed directly next to the second arrangement; the object
within these arrangements do not change their places.

We will illustrate PRISM by reconsidering Example 1. Read-
ing the premises one by one, the preferred mental model
is constructed as follows: After reading the first premise,
left(ferrari , porsche), which is of type 1, the ferrari and the
porsche are placed next to each other as follows:

ferrari porsche

After reading the second premise, right(beetle, porsche),
which is of type 2, the beetle is added next to the porsche
as its right neighbor:

ferrari porsche beetle

After reading the third premise, left(porsche, hummer),
which is again of type 2, we notice that the hummer cannot
be placed directly right of the porsche because this space is
already occupied. Therefore, the hummer will be placed on the
first free space right of the porsche:

ferrari porsche beetle hummer

Finally, after reading the forth premise, left(hummer , dodge),
the dodge is placed as right neighbor of the hummer and we
obtain the preferred mental model:

ferrari porsche beetle hummer dodge

In the second phase, we check whether the conclusion holds.
As porsche is left of dodge in the above model, humans
normally respond ‘yes’. Only if they are explicitly pointed
to consider other models, the third phase starts and they try
to change the model with the least possible operations. For
Example 1, the models

ferrari porsche hummer beetle dodge
ferrari porsche hummer dodge beetle

are generated subsequently. The conclusion holds for all three
models and, thus, indeed the classical logically correct answer
is ‘yes’. However, most humans appear to infer their answer
immediately after generating the preferred mental model.

Let us consider yet another example.

Example 3: 1. left(ferrari , porsche)
2. right(beetle, hummer)
3. left(ferrari , beetle)

C. left(porsche, beetle)

After reading the first premise, the ferrari and the porsche are
placed next to each other:

ferrari porsche

The second premise is of type 3, that means, both objects are
placed next to each other in a new empty arrangement:

hummer beetle
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Only after reading the third premise which is of type 4, both
submodels are put in relation to each other and we obtain the
preferred mental model:

ferrari porsche hummer beetle

Accordingly, the conclusion is true in the preferred mental
model. Only in exceptional cases, humans try to do some
model variation, and figure out that there is also another model
which agrees with the premises:

ferrari hummer beetle porsche

In this model, the conclusion does not hold anymore. However,
the preferred model theory assumes that the majority of the
people believes that the conclusion does hold. As we aim at
modeling human reasoning, the first model corresponds to the
conclusion, which we intend to model.

III. THE WEAK COMPLETION SEMANTICS

We assume the reader to be familiar with logic and logic
programming, but we repeat basic notions and notations, which
are based on [20] and [11]. A (logic) program is a finite set of
(program) clauses of the form A← B1 ∧ . . .∧Bn where A is
an atom and Bi, 1 ≤ i ≤ n, are literals or of the form � and
⊥, denoting truth- and falsehood, respectively. A is called head
and B1∧. . .∧Bn is called body of the clause. We restrict terms
to be constants and variables only, i.e., we consider so-called
data logic programs. Clauses of the form A← � and A← ⊥
are called positive and negative facts, respectively.

Let us clarify the notation defined until now by Example 1
from the previous section. The program, which contains all
four premises is denoted as a set of positive facts about the
left or right relation between the objects:

Pex = { left(ferrari , porsche) ← �,
left(porsche, beetle) ← �, 2

left(porsche, hummer) ← �,
left(hummer , dodge) ← �,
right(X,Y ) ← left(Y,X) }3

where the last clause is not a fact but simply a clause represent-
ing the symmetry between the left and right relations. Assume
that the ferrari would actually not be left of the porsche. We
could represent this as a negative fact:

left(ferrari , porsche)← ⊥.
In this paper we assume for each program that the alphabet
consists precisely of the symbols mentioned in the program.
When writing sets of literals we will omit curly brackets if the
set has only one element.

Let P be a program. gP denotes the set of all ground instances
of clauses occurring in P . As the set of constants, predicate
symbols and variables is finite, P is finite, and thus gP is
finite as well. If P is a program, then con(P) denotes the set
of all constants occurring in P . Consider again Pex:

con(Pex) = {ferrari , porsche, beetle, hummer , dodge}.
2Strictly speaking, we should write right(beetle, porsche) ← � instead.

However, for a simplified representation of the programs in the following, we
will only allow left relations as facts in the programs. Note that, because of
the last clause, we can still conclude the corresponding right relation.

3This program is preliminary and does not contain all necessary clauses yet.

A ground atom A is defined in gP if and only if (in the
following abbreviated with iff) gP contains a clause whose
head is A; otherwise A is said to be undefined. Let S be a set
of ground literals.

def (S,P) = {A← body ∈ gP | A ∈ S ∨ ¬A ∈ S}
is called definition of S. For instance

def (left(ferrari , porsche),Pex)
= {left(ferrari , porsche)← �}

On the other hand, def (left(porsche, porsche),Pex) is empty.

Let P be a program and consider the following transformation:

1) For each defined atom A, replace all clauses of the
form A ← body1, . . . , A ← bodym occurring in gP
by A← body1 ∨ . . . ∨ bodym.

2) If a ground atom A is undefined in gP , then add A← ⊥.
3) Replace all occurrences of ← by ↔.

The ground set of formulas obtained by this transformation is
called completion of P , whereas the ground set of formulas
obtained by applying only the steps 1. and 3. is called weak
completion of P or wcP . The weak completion of Pex is:

{ left(ferrari , porsche)↔ �, left(porsche, beetle)↔ �,
left(porsche, hummer)↔ �, left(hummer , dodge)↔ �}
∪{right(o1, o2)↔ left(o2, o1) | o1, o2 ∈ con(Pex)}

We consider the three-valued Łukasiewicz (or Ł-) logic [21]
(see Table I) and represent each interpretation I , i.e., each
mapping from the set of formulas to the set of truth values, by
a pair 〈I�, I⊥〉 of ground atoms, where I� = {A | I(A) =
true}, I⊥ = {A | I(A) = false}, I� ∩ I⊥ = ∅ . Atoms
occurring neither in I� nor in I⊥ are mapped to unknown.
Let I = 〈I�, I⊥〉 and J = 〈J�, J⊥〉 be two interpretations:

I ⊆ J iff I� ⊆ J� and I⊥ ⊆ J⊥.

A model of P is an interpretation which maps each clause
occurring in P to true. I is the least model of P iff for any
other model J of P it holds that I ⊆ J .

Under Ł-logic we find F∧� ≡ F∨⊥ ≡ F for each formula F ,
where ≡ denotes semantic equivalence. Hence, occurrences of
the symbols � and ⊥ in the bodies of clauses can be restricted
to those occurring in facts.

One should observe that in contrast to two-valued logic,
A ← B and A ∨ ¬B are not semantically equivalent under
Ł-logic. Consider, for instance, an interpretation I such that
I(A) = I(B) = unknown. Then, I(A ∨ ¬B) = unknown
whereas I(A ← B) = true. It has been shown in [12] that
logic programs as well as their weak completions admit a least
model under Ł-logic. Moreover, the least Ł-model of wcP
can be obtained as least fixed point of the following semantic
operator, which is due to Stenning and van Lambalgen [28]:
ΦP(〈I�, I⊥〉) = 〈J�, J⊥〉, where

J� = {A |A← body ∈ def (A,P) and I(body) = true},
J⊥ = {A |def (A,P) �= ∅ and

I(body) = false for all A← body ∈ def (A,P)}.
The weak completion semantics (WCS) is the approach to
consider weakly completed logic programs and to reason with
respect to the least Ł-models of these programs. We write
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F ¬F
� ⊥
⊥ �
U U

∧ � U ⊥
� � U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ � U ⊥
� � � �
U � U U
⊥ � U ⊥

← � U ⊥
� � � �
U U � �
⊥ ⊥ U �

↔ � U ⊥
� � U ⊥
U U � U
⊥ ⊥ U �

TABLE I. TRUTH TABLES FOR THE Ł-SEMANTICS, WHERE WE HAVE USED �, ⊥ AND U INSTEAD OF true, false AND unknown, RESPECTIVELY.

P |=wcs F iff formula F holds in the least Ł-model of wcP .
As least Ł-model of wcPex we obtain 〈I�, ∅〉, where

I� = { left(ferrari , porsche), left(porsche, beetle),
left(porsche, hummer), left(hummer , dodge),
right(porsche, ferrari), right(beetle, porsche),
right(hummer , porsche), right(dodge, hummer)}.

The Φ operator differs from the semantic operator defined by
Fitting [8] in the additional condition def (A,P) �= ∅ required
in the definition of J⊥. This condition states that A must
be defined in order to be mapped to false, whereas in the
Kripke-Kleene-semantics considered by Fitting an atom may
be mapped to false even if it is undefined in the underlying
program. This reflects precisely the difference between the
weak completion and the completion semantics, namely in
Step 2. of the program transformation. The Kripke-Kleene-
semantics was also applied in [28]. However, as shown in [12]
this semantics is not only the cause for a technical bug in one
theorem of [28], but it also leads to a non-adequate model of
some human reasoning episodes. Both, the technical bug as
well as the non-adequate modeling, is avoided by using WCS.

As shown in [7], WCS is related to the well-founded semantics
(WFS) as follows: Let P be a program which does not contain
a positive loop and let

P+ = P \ {A← ⊥ | A← ⊥ ∈ P}.
Let u be a new nullary relation symbol not occurring in P and
B be a ground atom in

P∗ = P+ ∪ {B ← u | def (B,P) = ∅} ∪ {u← ¬u}.
Then, the least Ł-model of wcP and the well-founded model
for P∗ coincide. The programs specified in [5] and in [6]
to model the suppression and the selection task, respectively
are acyclic and, thus, tight. Therefore, our results hold for
both, WCS and WFS. The programs presented in the sequel
of this paper are not tight. However, the positive cycles in our
programs do not have any effect on the results as has been
shown by Höps [15] and therefore they also hold for WFS.

IV. HUMAN SPATIAL REASONING UNDER WCS

Following the preferred model theory, we show how the
preferred mental model of a spatial reasoning problem can
be computed by logic programs under WCS. This approach
covers the model construction and the model inspection phase.

A. Preferred Mental Models in Logic Programs

The running example in Section III shows us that relations
between objects can be easily represented in logic programs.
However, there is no straightforward way in which we can
express the order in which the premises are read. But exactly
this information is crucial if we want to formalize the preferred
model theory. For this purpose, in the approach we will

propose now, we explicitly express phases, where each premise
is read at one particular phase. This allows us to define the
order in which the premises are processed. In contrast to
PRISM, we do not distinguish between the model construction
and model inspection phase but process them at the same time.

Let S be a spatial reasoning problem. The program PS
represents the premises of S and the necessary background
knowledge in order to construct the preferred mental model.
PS is called a PMM-program with respect to the problem S .
Within PS we will use the following notation with informal
meaning as follows:

l(X,Y, i) in phase i, X is placed to the left of Y ,
ln(X,Y, i) in phase i, X is the left neighbor of Y ,
ol(X, i) in phase i, directly left of X is occupied,
or(X, i) in phase i, directly right of X is occupied,

where i starts with 1. In the following, n indicates the number
of premises processed so far. Given a spatial reasoning problem
S, the corresponding program PS is constructed as follows.

1) We start by reading the premises. For each premise do: If
the ith premise is of the form left(o1, o2) or right(o1, o2),
then add

l(o1, o2, i)← � or l(o2, o1, i)← �,
respectively, to the (initially empty) program PS , where o1
and o2 are assumed to be different objects.

2) We make a closed world assumption for the l relation in
phase 1 as initially nothing is known about the spatial
relation of objects.

{l(o1, o2, 1)← ⊥ | o1, o2 ∈ con(PS), diff (o1, o2)},
where diff specifies that its arguments are different objects.
One should observe that programs are weakly completed,
e.g., if the first premise of a spatial reasoning problem is
of the form left(porsche, hummer) then the ground facts

l(porsche, hummer , 1) ← �
l(porsche, hummer , 1) ← ⊥

are generated in the first two steps, respectively. Their weak
completion is

l(porsche, hummer , 1)↔ �∨⊥
≡ l(porsche, hummer , 1)↔ �.

Under WCS, positive information overwrites negative in-
formation. In other words, there is no obligation to place
o1 to the left of o2 in phase i unless explicitly stated in the
ith premise.

3) As at the beginning no objects have been placed, the space
to the left and to the right of each object is initially empty:

{ol(o, 1)← ⊥ | o ∈ con(PS)}
∪ {or(o, 1)← ⊥ | o ∈ con(PS)}
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This corresponds to the closed world assumption with
respect to the ol relation, which needs to be explicitly made
under WCS. In the running example, we find that the space
to the left and to the right of both cars, the porsche and the
hummer, are empty in phase 1:

{ ol(porsche, 1)← ⊥, or(porsche, 1)← ⊥,
ol(hummer , 1)← ⊥, or(hummer , 1)← ⊥ }

4) We start to place objects. If in phase i object o1 should be
placed to the left of object o2 and the space to the left of
o1 as well as the space to the right of o1 are empty, then
o1 is placed as the left neighbor of o2:

{ln(o1, o2, i)← l(o1, o2, i) ∧ ¬ol(o2, i) ∧ ¬or(o1, i)
| o1, o2 ∈ con(PS), diff (o1, o2), i ∈ [1, n]}

In the running example we obtain for phase 1:

ln(porsche, hummer , 1)← l(porsche, hummer , 1)
∧ ¬ol(hummer , 1) ∧ ¬or(porsche, 1)

among others. Given 1., 2. and 3., the body of this clause
will be true and, consequently, the porsche will be placed
as the left neighbor of the hummer in phase 1.

5) Once an object o1 has become the left neighbor of another
object o2 in phase i, this relation holds until the preferred
mental model is constructed:

{ln( o1, o2, i+ 1)← ln(o1, o2, i)
| o1, o2 ∈ con(PS), diff (o1, o2), i ∈ [1, n− 1]}

6) If o1 has become the left neighbor of o2 in phase i, then
the space to the left of o2 as well as the space to the right
of o1 are occupied in phase i+ 1:

{ol(o2, i+ 1)← ln(o1, o2, i)
| o1, o2 ∈ con(PS), diff (o1, o2), i ∈ [1, n− 1]}

∪ {or( o1, i+ 1)← ln(o1, o2, i)
| o1, o2 ∈ con(PS), diff (o1, o2), i ∈ [1, n− 1]}

In combination with 5. the space to the left of o2 and the
space to the right of o1 are occupied in all future phases. For
example, after the porsche has been placed as left neighbor
of the hummer in phase 1, the clauses

ol(hummer , 2)← ln(porsche, hummer , 1)
or(porsche, 2)← ln(porsche, hummer , 1)

determine that there is no space anymore immediately to
the left of the hummer and immediately to the right of the
porsche at phase 2.

7) If o1 should be placed to the left of o2 but there is already
a left neighbor o3 of o2, then o1 is placed to the left of o3:

{l (o1, o3, i+ 1)← l(o1, o2, i+ 1) ∧ ln(o3, o2, i)
| o1, o2, o3 ∈ con(PS), diff (o1, o2, o3), i ∈ [1, n− 1]}

One should observe that this can only happen from phase 2
onwards, as in the first phase none of the objects has a left
neighbor. This is the reason for writing i + 1 in the atom
l(o1, o2, i+ 1) occurring in the bodies of the clauses.

8) Likewise, if o1 should be placed to the left of o2 but o1 is
already the left neighbor of some other object o3, then o3
should be placed to the left of o2:

{l (o3, o2, i+ 1)← l(o1, o2, i+ 1) ∧ ln(o1, o3, i)
| o1, o2, o3 ∈ con(PS), diff (o1, o2, o3), i ∈ [1, n− 1]}

9) Finally, in order to determine whether the conclusion is
true, we add the following clauses to PS . If o1 is the left
neighbor of o2 after processing all premises, then o1 is to
the left of o2 in the preferred mental model:

{left(o1, o2)← ln(o1, o2, n)
| o1, o2 ∈ con(PS), diff (o1, o2)}

10) The left relation is transitive:

{left(o1, o3)← left(o1, o2) ∧ left(o2, o3)
| o1, o2, o3 ∈ con(PS), diff (o1, o2, o3)}

11) The right relation is the inverse of the left relation:

{right(o1, o2)← left(o2, o1)
| o1, o2 ∈ con(PS), diff (o1, o2)}

In each phase, one premise is read and understood as a request
to place the mentioned objects in the required order. Objects
are placed in the first available space like in the PRISM
approach, where again in each phase exactly one request to
place objects is processed and the objects in the request are
placed. Once the least fixed point of ΦPS has been reached we
can identify the preferred mental model: Given a problem S ,
o1 is the left neighbor of o2 iff ln(o1, o2, n) holds in the least
fixed point. Additionally, queries involving the left and right
relation can now be answered with respect to the preferred
mental model of S. This will be illustrated by two examples
in the next subsection.

B. Examples

We consider the following spatial reasoning problem:

Example 4: 1. left(porsche, hummer)
2. left(dodge, hummer)

C. left(dodge, porsche)

Let P4 be the logic program corresponding to Example 4
and ΦP4 the corresponding semantic operator. To save space
we abbreviate the constants representing cars by their first
letter, i.e., d, h and p are abbreviations for dodge, hummer and
porsche, respectively. In Table II we illustrate the computation
of the least fixed point of ΦP4

step by step, where ΦP4
↑ n

denotes I after the nth iteration of ΦP4
, Φ ↑ 0 = 〈∅, ∅〉 and

Φ↑(i+ 1) = Φ(Φ↑ i) for all i > 0. Focusing on atoms which
are mapped to true, i.e., on I�, we find:

• In the first iteration of the ΦP4 operator the requests to place
the porsche to the left of the hummer in phase 1 and the
dodge to the left of the hummer in phase 2 are recorded.
• In the second iteration of ΦP4

the porsche becomes the left
neighbor of the hummer in phase 1.
• In the third iteration of ΦP4

we learn that the space to the left
of the hummer as well as the space to the right of the porsche
are occupied in phase 2. As the porsche is the left neighbor
of the hummer in phase 1, this relationship is preserved in
phase 2 and the dodge must be placed to the left of the
porsche in phase 2.
• In the forth iteration of ΦP4 the dodge becomes the left

neighbor of the porsche in phase 2 and we find that the
porsche and the hummer are in the left relation.
• In the fifth iteration of ΦP4

we find that the dodge and the
porsche are in the left relation, whereas the hummer and
the porsche are in the right relation.
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iteration I� I⊥ #

ΦP4
↑0 ∅ ∅

ΦP4
↑1 l(p, h, 1) 1.

l(d, h, 2) 1.
l(d, h, 1), l(d, p, 1), l(h, d, 1) 2.

l(h, p, 1), l(p, d, 1) 2.
ol(d, 1), ol(h, 1), ol(p, 1) 3.
or(d, 1), or(h, 1), or(p, 1) 3.

ΦP4↑2 ln(p, h, 1) ln(d, h, 1), ln(d, p, 1), ln(h, d, 1) 4.
ln(h, p, 1), ln(p, d, 1) 4.

ΦP4
↑3 ln(p, h, 2) 5.

ol(h, 2) ol(d, 2), ol(p, 2) 6.
or(p, 2) or(d, 2), or(h, 2) 6.
l(d, p, 2) l(h, p, 2), l(p, d, 2), l(p, h, 2) 7.,8.

ΦP4↑4 ln(d, p, 2) ln(d, h, 2), ln(h, p, 2), ln(p, d, 2) 4.
l(h, d, 2) 7.,8.

left(p, h) 9.

ΦP4
↑5 ln(h, d, 2) 4.

left(d, p) 9.
right(h, p) 11.

ΦP4
↑6 left(d, h) 10.

right(p, d) 11.

ΦP4
↑7 right(h, d) 11.

TABLE II. THE COMPUTATION OF THE LEAST FIXED POINT OF ΦP4
,

WHERE IN EACH ITERATION ONLY ATOMS ARE LISTED WHICH APPEAR IN

I� AND I⊥ FOR THE FIRST TIME. # LISTS THE CLAUSES RESPONSIBLE

FOR ADDING AN ATOM TO I� OR I⊥ .

• In the sixth iteration of ΦP4
we find by transitivity that the

dodge and the hummer are in the left relation, whereas the
porsche and the dodge are in the right relation.
• Finally, in the seventh iteration of ΦP4 we find that the

hummer and the dodge are in the right relation.

C holds in the preferred model; the dodge is to the left of the
porsche.

We return to Example 3 from Section II-C which contains
premises from type 3 and 4, i.e., premises that generate
submodels. Let P3 be the logic program corresponding to
Example 3 and ΦP3

be the corresponding semantic operator.
Again to save space, we abbreviate the constants representing
beetle , hummer , ferrari and porsche, by their first letter,
i.e., b, h, f and p, respectively. In Table III we depict the
computation of the least fixed point of ΦP3 . For I� we find:

• In the first iteration the three requests to place objects are
recorded.
• In the second and the forth iteration, the ferrari becomes the

left neighbor of the porsche and the hummer becomes the
left neighbor of the beetle, respectively, thus generating two
submodels which are not connected at this step.
• In the fifth and the sixth iteration the request to place the

ferrari to the left of the beetle (l(f, b, 3)) is processed. This
generates l(f, h, 3) and, thereafter, to l(p, h, 3).
• The porsche becomes the left neighbor of the hummer in

the seventh iteration leading to the preferred mental model.

C holds in the preferred model; the porsche is to the left of
the beetle.

iteration I� I⊥ #

ΦP3
↑0 ∅ ∅

ΦP3
↑1 l(f, p, 1) 1.

l(h, b, 2) 1.
l(f, b, 3) 1.

l(b, f, 1), l(b, h, 1), l(b, p, 1), l(f, b, 1), 2.
l(f, h, 1), l(h, b, 1)l(h, f, 1), l(h, p, 1), 2.

l(p, b, 1), l(p, f, 1), l(p, h, 1) 2.
ol(b, 1), ol(f, 1), ol(h, 1), ol(p, 1) 3.
or(b, 1), or(f, 1), or(h, 1), or(p, 1) 3.

ΦP3
↑2 ln(f, p, 1) ln(b, f, 1), ln(b, h, 1), ln(b, p, 1), ln(f, b, 1) 4.

ln(f, h, 1), ln(h, b, 1), ln(h, f, 1)ln(h, p, 1) 4.
ln(p, b, 1), ln(p, f, 1), ln(p, h, 1) 4.

ΦP3
↑3 ln(f, p, 2) 5.

ol(p, 2) ol(b, 2), ol(f, 2), ol(h, 2) 6.
or(f, 2) or(b, 2), or(h, 2), or(p, 2) 6.

l(b, h, 2), l(b, p, 2), l(f, b, 2), l(f, h, 2) 7.,8.
l(f, p, 2), l(h, p, 2), l(p, b, 2) 7.,8.

ΦP3
↑4 ln(b, h, 2), ln(b, p, 2), ln(f, b, 2), ln(f, h, 2) 4.

ln(h, b, 2) ln(h, p, 2), ln(p, b, 2), ln(p, f, 2) 4.
ln(f, p, 3) 5.
ol(p, 3) 6.
or(f, 3) 6.

l(b, f, 2), l(h, f, 2), l(p, h, 2) 7.,8.

ΦP3
↑5 ln(h, b, 3) ln(b, p, 3), ln(f, b, 3), ln(f, h, 3) 5.

ln(h, d, 2), ln(b, f, 2), ln(h, f, 2), 5.
ln(h, p, 3), ln(p, h, 2) 5.

ol(b, 3) 6.
or(h, 3) 6.
l(f, h, 3) l(h, p, 3), l(p, f, 3) 7.,8.
left(f, p) 9.

ΦP3
↑6 ln(p, b, 3), ln(p, f, 3) 5.

ol(f, 3), ol(h, 3), or(b, 3), or(p, 3) 6.
l(p, h, 3) l(b, h, 3), l(b, p, 3), l(f, p, 3), 7,8.

l(h, b, 3), l(h, f, 3), l(p, b, 3), ln(h, f, 3) 7.,8.
left(h, b) 9.
right(p, f) 11.

ΦP3↑7 ln(p, h, 3) ln(b, h, 3) 4.
l(b, f, 3) 7.,8.

right(b, h) 11.

ΦP3
↑8 ln(b, f, 3) 5.

left(p, h) 9.

ΦP3
↑9 left(f, h) 10.

left(p, b) 10.
right(h, p) 11.

ΦP3
↑10 left(f, b) 10.

right(b, p) 11.
right(h, f) 11.

ΦP3↑11 right(b, f) 11.

TABLE III. THE COMPUTATION OF THE LEAST FIXED POINT OF ΦP3 ,
WHERE IN EACH ITERATION ONLY ATOMS ARE LISTED WHICH APPEAR IN

I� AND I⊥ FOR THE FIRST TIME. # LISTS THE CLAUSES RESPONSIBLE

FOR ADDING AN ATOM TO I� OR I⊥ .

V. CONCLUSION

We have shown that our computational logic approach based
on the weak completion semantics can compute preferred men-
tal models for spatial reasoning problems. We have restricted
our presentation to the left and right relation, but the formal-
ization can be extended to include additional ones like the front
or the back relations. Likewise, we should be able to handle
the four cardinal directions. Different than other approaches
such as described in [10], the preferred model theory explains
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how a model is constructed and seems to be able to predict
conclusions humans make given a spatial reasoning problem.
This allows us to understand how they influence the model
construction, as we have shown by Example 3 and 4.

Höps has shown in [15] that although the logic programs in
this paper are not tight anymore, the relationship between the
weak completion and the well-founded semantics mentioned
in Section III can be preserved and, hence, preferred mental
models can also be computed within state-of-the-art reasoning
systems based on answer set programming like CLINGO [9].
Thus, large scale applications seem to be feasible.

As shown in [13] the least fixed point of the Φ operator
can be computed in a connectionist setting based on the core
method [1]. In other words, the core method allows one to
compute and to reason with respect to preferred mental models
within a purely connectionist network.

It appears that the weak completion semantics can cover a wide
range of human reasoning episodes. As already mentioned
in the introduction, it can handle the suppression as well as
the selection task, the belief-bias effect, contextual abductive
reasoning with side effects and indicative conditionals. With
the results presented in this paper, these tasks can now be
combined with reasoning over spatial relationships. We are
unaware of any other logic based approach which covers such
a wide range of human reasoning episodes.
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[15] R. Höps. Menschliches räumliches Schließen und Ansätze aus der
Computational Logic. Bachelor’s thesis, TU Dresden, Germany, 2014.

[16] P. N. Johnson-Laird. Mental models: towards a cognitive science of
language, inference, and consciousness. Harvard University Press,
Cambridge, MA, 1983.

[17] S. C. Kleene. Introduction to Metamathematics. North-Holland,
Amsterdam, 1952.

[18] M. Knauff, R. Rauh, and J. Renz. A cognitive assessment of topological
spatial relations: Results from an empirical investigation. In Proceed-
ings of the 3rd International Conference on Spatial Information Theory,
COSIT’97, volume 1329 of Lecture Notes in Computer Science, pages
193–206, Heidelberg, 1997. Springer.

[19] M. Knauff, R. Rauh, and C. Schlieder. Preferred mental models in
qualitative spatial reasoning: A cognitive assessment of Allen’s calculus.
In Proceedings of the Seventeenth Annual Conference of the Cognitive
Science Society, CogSci 1995, pages 200–205, Hillsdale, NJ, 1995.
Lawrence Erlbaum.

[20] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag New
York, Inc., New York, NY, USA, 1984.
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