
Risk-Aware Project Scheduling
for Projects with Varied Risk Levels

Karol Walȩdzik∗
k.waledzik@mini.pw.edu.pl

Jacek Mańdziuk∗†
j.mandziuk@mini.pw.edu.pl

Sławomir Zadrożny‡
slawomir.zadrozny@ibspan.waw.pl

∗Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
†School of Computer Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798

‡Systems Research Institute, Polish Academy of Science, Newelska 6, 01-447 Warsaw, Poland

Abstract—In this paper we continue research into Risk-
Aware Project Scheduling Problem (RAPSP), a new class of
project scheduling problems defined in [16], that includes risk
management issues typical for real-life scenarios.

We introduce a new RAPSP solver inspired by GRASP algo-
rithm used for solving traditional stochastic project scheduling
problems and compare it with previously defined methods. We
also define a new set of benchmark problems, including a class
of projects that may fail completely, and verify the efficacy of all
our proactive and reactive approaches (both new and existing)
for problems of varying complexity and characteristics.

I. INTRODUCTION

The Resource-Constrained Project Scheduling Problem
(RCPSP) is one of relatively popular NP-complete [12] op-
timization problems that are especially interesting due to their
almost direct applicability to real-life scenarios. Yet, it does
introduce a significant level of simplification that may actually
hinder its usefulness in at least some cases.

Therefore, we have defined in [16] a new class of problems,
namely Risk Aware Project Scheduling Problems (RAPSP).
This new model introduces, in addition to standard elements
of RCPSP, non-determinism of activity durations, external risks
that may influence the project and risk responses, that may be
undertaken by the project team, e.g. to mitigate or avoid some
of the risks. We feel that especially this last addition makes
the problem interesting, and for multiple reasons. Firstly,
inclusion of risk management processes makes the problem
even closer to actual real-life scenarios. Secondly, the dynamic
characteristics of the task make it an especially good testbed
for various AI- and CI-based approaches.

In prior work [16] we have proposed several human-
intelligence-inspired algorithms for solving RAPSP, both reac-
tive and proactive, making use of multiple approaches typical
for humans such as usage of simple ’rules of thumbs’, compar-
ison with similar situations from the past, virtual simulations
of possible future scenarios etc. In this paper we continue our
research into those methods. We test them on new problem
instances of varying characteristics and try to compare their ef-
ficacy in more varied scenarios than before. We also introduce
a new method inspired by the GRASP algorithm for solving
stochastic RCPSP [3].

The remainder of this document is structured into three

main parts. We start by defining Risk-Aware Project Schedul-
ing Problem (RAPSP) and then continue (in section IV) to
describe our RAPSP solvers – both introduced earlier and
a new GRASP-based one. We finish the paper with the
description of a number of experiments we have performed
to verify the algorithms quality by comparing their efficacy on
problems of varied size, complexity and characteristics.

II. RESOURCE-CONSTRAINED PROJECT SCHEDULING

As mentioned before, Resource-Constrained Project
Scheduling Problem (RCPSP) is a relatively popular NP-
complete optimization problem. For brevity, we will not define
it formally herein and only describe it informally - numerous
publications can be consulted for more formal definition, e.g.
[12].

Each deterministic single-mode RCPSP instance defines a
number of activities as well as renewable resources and their
capacities.

All activities must be performed for the project to be
finished. Each of them requires a certain amount of time and
resources - it cannot be started unless sufficient amounts of
resources of each required type are available. Additionally,
activities may have predecessors, i.e. activities that must be
performed before their successor may be started. Typically,
activities are not preemptive - once started they cannot be
stopped until they are finished, which effectively means that it
is illegal to split one activity into several smaller ones.

RCPSP’s goal is finding a legal schedule that minimizes
the makespan of the project.

III. RISK-AWARE PROJECT SCHEDULING PROBLEM

Risk-Aware Project Scheduling Problem (RAPSP) is a
generalization of RCPSP that is both more interesting and
more complex to solve, and, at the same time, closer to real-
world problems. It is a direct representation of problems and
decisions faced daily by project managers, forced to work in
largely unpredictable environments in which projects may be
influenced by a multitude of external factors and risks that
need to be effectively managed.

RAPSP, building on top of RCPSP, adds several new
concepts:

1) non-deterministic activity durations taking into
account unavoidable mistakes in estimations;

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.231

1642

2) non-renewable resources - as in multi-mode
RCPSP;

3) risks - unpredictable external events that may in-
fluence the project characteristics and definition in
various ways;

4) risk responses - special activities that do not have
to be completed but have effects influencing project
parameters (analogically to risks).

A. Non-deterministic Activities

RAPSP activities’ durations are not defined as constant
values like in RCPSP, but rather as random variables with
known probability distributions. In our model, actual values
(variable realizations) become known as soon as the activities
are started (they cannot, however, be stopped anymore due to
non-preemptivenes condition).

B. Risks

Risks model unpredictable external events that may influ-
ence the project. As such, they are non-deterministic in their
nature. While each risk may be different, they are always
defined by their realization conditions, occurrence probabilities
and effects. Actual risks employed in our experiments are
described in section V.

It may happen that due to a risk effect becoming active,
one of the activities in progress may become illegal - e.g. the
amount of available renewable resources may drop to below
its requirement. There are several ways to deal with this kind
of situation, e.g. activity may be canceled or split into two. In
our current model, however, for simplicity reason, we simply
allow the activity to be finished - in other words: risks do not
affect activities already in progress. Nevertheless, none of our
solvers rely on this behavior.

C. Risk Responses

Risk responses represent various actions that may be taken
by the Project Manager to manage or handle project risks.
These would typically be aimed at either reducing the probabil-
ity of risk occurrence or mitigating its effects. Risk responses
may, however, be performed both reactively and proactively,
and their effects will take place whether or not any risks have
occurred. Risk responses are, in this sense, totally independent
of risks themselves.

Risk responses are defined as special kinds of activities,
that do not have to be performed (in general) for the project
to be successfully finished. Just like any activity, risk responses
may have positive duration and may require resources. Once
a risk response is finished, its effect will occur and influence
the project characteristics.

IV. RAPSP SOLVERS

Project Managers (PMs) employ numerous techniques to
deal with real-life RAPSP-style problems. They rely on their
intuition and previous experiences, they employ a number of
’rules of thumb’, they try to compare current situation with
those previously encountered and imagine possible outcomes
of their decisions and the way events may unfold. They

generally try to act proactively, but are also often forced to
react to various unexpected situations.

In [16] we have defined three RAPSP solvers based on
those concepts, acting both proactively and reactively. In this
paper, we recall their definitions and introduce yet another
approach to the task: GRASP-based solver.

It should be noted that, due to non-deterministic nature
of RAPSP, it is impossible to solve it by simply generating
a schedule for the realization of the project. Instead, it is
necessary to make a series of decisions, choosing activities and
risk responses to perform depending on current conditions and
random variables realizations. In other words, a strategy needs
to be devised. RAPSP solvers represent such strategies.

A. Heuristic Solver

Heuristic Solver (HS) is based on a popular and relatively
simple RCPSP solver, which employs a prioritization rule and
Parallel Schedule Generation Scheme (PSGS) to generate a
schedule. In each time step, it starts legal activities in the order
defined by the prioritization rule. Only when there are no more
eligible activities does the algorithm move to the next time
step.

Employing this approach in RAPSP obviously requires
some modifications. Basically, simulating typical human be-
havior, HS realizes the project by devising a baseline schedule,
trying to follow it as long as possible and regenerating it in
case of major deviations.

Therefore, we define decision points as time units in which
at least one of the following conditions is true:

1) new risk or risk response effect has just become
effective;

2) the first activity in the current baseline schedule
should have been started more than two time units
ago;

3) a new risk response has become eligible for the first
time in the project.

new baseline schedule is generated at every decision point.
A valid baseline schedule is available and should be followed
in all other time units. Non-deterministic nature of the project
(most notably unpredictable durations of activities) makes it,
however, impossible to follow it directly as minor deviations
are expected to occur almost immediately. Therefore we apply
a simple algorithm to make actual decisions based on the
current baseline schedule:

1) start the first pending activity in the schedule, if legal;
2) start all other pending legal activities in the schedule,

planned for starting no more that 2 time units from
now.

Finally, in each decision point we need to come up with a
new baseline schedule. To achieve that, our Heuristic Solver
(HS) starts by creating a number of randomly chosen legal
combinations of risk responses that can be started immediately
and a priority rule. For each such combination a simulation
is performed. It starts with execution of the selected risk
responses. Afterwards, the project is converted to a simplified
deterministic version, by replacing all activity duration values

1643

Fig. 1. Conceptual overview of a single simulation in UCT algorithm [6]

with expected values of their distributions and removal of
non-realized risks. A schedule for this deterministic project
is than generated according to PSGS with the selected priority
rule. This schedule, together with its subset of risk responses,
becomes a baseline schedule candidate. The candidate with the
shortest makespan is then selected as the baseline schedule to
be used for the RAPSP project till the next decision point.

Currently our system considers five popular and relatively
successful (especially considering their simplicity) rules:

1) Duration - prioritizing activities with greatest dura-
tion;

2) LateFinish - choosing activities with earlier LF first;
3) LateStart - choosing activities with earlier LS first;
4) Slack - preferring activities with low Slack;
5) DurationWithSuccessors - considering summed dura-

tion of the activity and its direct successors;
6) SuccessorsCount - based on the total number of direct

and indirect successors of the activity.

Late Finish, Late Start and Slack values mentioned in the above
description are activities characteristics calculated by a simple
technique called Critical Path Analysis [8].

B. UCT

Following our earlier research into applications of the UCT
method ([15], [13]), the next two RAPSP solvers developed
by us make use of this algorithm. UCT stands for Upper
Confidence bounds applied to Trees and is a simulation-based
method of solving problems based on tree representation.

While it is nowadays known mainly for its popularity in
the domain of game-playing, most notably Go, it can actually
be quite successful also in other problem areas. In practice, it
can act as a decision-maker for many finite Markov processes,
or problems that can be expected to remain relatively similar
to them.

UCT is based on the UCB1 [2] algorithm developed to
handle K-armed bandit problem. K-armed bandit problem is
defined as a game in which a player faces the problem of
repeatedly choosing among a number of gambling machines
(one-armed bandits) or, alternatively, multiple playing modes
(arms) of one machine, so as to maximize their long-term gain.
Each arm’s payoff distribution it expected to be stable (not
change in time) and independent of other arms. This kind of
environment forces the decision-maker in each turn to solve
the exploration-exploitation dilemma of choosing between the
arm with the highest rewards so far and trying one of the other
arms, of which less is yet known.

The UCT algorithm is a generalization of the problem to
a reinforcement learning scenario, i.e. a situation in which
the agent performs actions that change state of the environ-
ment and generate payoffs. While action effects may be non-
deterministic, their probability distributions are again expected
to remain stable in time. Based on this assumption, the task
of choosing an action to perform in a given environment state
becomes analogous to choosing an arm in a K-armed bandit
problem. This becomes the basis for the UCT method.

UCT algorithm consists in repeatedly simulating possible
future scenarios in order to find the most promising one. The
rollouts are not fully random, however. Visited states informa-
tion is stored and reused in subsequent simulations. Whenever
the same state is encountered again, a simple algorithm is used
to decide which action to take. Firstly, if some of the actions in
this state have never been performed, one of them is selected to
execute. Once all actions have been tried at least once, actions
in subsequent simulations are chosen according to a formula
taking into consideration previous results of performing the
action, e.g.

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
, (1)

where s is the current state, A(s) denotes the set of all
legal actions in state s, Q(s, a) – averaged payoff of playing
action a in state s so far, N(s) – number of visits to state
s so far and N(s, a) – number of times action a has been
sampled in this state. C is a constant that defines the balance
between exploration (trying action with the fewest visits)
and exploitation (choosing actions with the highest expected
reward).

This procedure requires, however, storing data about each
and every environment state encountered, which is, of course,
not feasible in all but the most trivial cases. Therefore, each
simulation is actually divided into two phases: strict UCT
simulation (as described above) and a fully random Monte-
Carlo rollout (figure 1). Each simulation is allowed to add only
one (or sometimes several) new state to the in-memory-built
UCT tree. After that, the simulation is continued as a simple
rollout, without storing any further information - except for
the total payoff, which is recorded for each node-action pair
in the path traversed in the existing in-memory UCT tree.

Once the simulations are over, the agent is supposed to
choose either the action with the highest expected payoff
(Q(s, a) value) or the most visited one (highest N(s, a)).
With sufficient number of iterations those two criteria should
converge.

1644

C. Basic UCT

BasicUCT is a simple simulation-based approach to solving
RAPSP problem, that employs the UCT algorithm in a very
straightforward way.

Each BasicUCT simulation involves full realization of the
project from its current state till its successful completion (or
detection it can no longer be completed). In each state (node
in the UCT tree) three types of actions are possible: starting a
legal activity, starting a legal risk response and waiting till
next time unit. Please notice that first two actions do not
move the project in time, i.e. resulting project states share the
same position in time. This makes it possible to start multiple
activities and/or risk responses at the same time (in the same
time unit).

Highly dynamic nature of RAPSP means that an explosion
in the number of possible project states can be expected due
to different realizations of a significant number of random
variables. It can, however, be safely assumed that minute dif-
ferences in current situation as well as most of the information
about the project’s history can be safely ignored while making
the next decisions. Therefore, it is enough to associate UCT
statistics not with the exact states but their simplified forms,
representing clusters of actual project states. Those simplified
project states in our model include only:

1) identifiers of realized risks (with no information about
their time, strength etc.);

2) identifiers of performed risk responses;
3) identifiers of finished activities;
4) identifiers and remaining durations of risk responses

in progress;
5) identifiers and remaining durations of activities in

progress;
6) simplified information about all effects in progress;
7) amounts of available renewable and non-renewable

resources.

The UCT equations are then modified to use this simplified
project state representation (denoted as s∗ below):

Q(s, a) := Q(s∗, a)
N(s, a) := N(s∗, a)
N(s) :=

∑
a∈A(s)(N(s∗, a))

(2)

Finally, one can easily realize that a Monte-Carlo rollouts
policy fully randomly choosing among all legal actions would
not be optimal, as, for instance, it never makes sense to wait till
the next time unit when there are no activities, risk responses
or effects in progress. Therefore, we have developed a very
simple, rule-of-thumb-based random rollouts policy of three
steps:

1) if there are any legal activities then with probability
0.9 start a random legal activity;

2) otherwise, if there are any legal risk responses then
with probability 0.5 start a random legal risk re-
sponse;

3) otherwise wait for one time unit.

D. Proactive UCT

Proactive UCT (ProUCT) is a more sophisticated solver
that combines the mostly reactive behavior of HS with proac-
tive capabilities of BasicUCT. Its behavior is inspired by a
multitude of approaches typical for humans: usage of rule of
thumbs, reliance on intuition and past experience, visualization
of possible future course of actions, what-if scenarios analysis
etc.

It is based on the approach employed by the BasicUCT
solver, but this time supported by the HS algorithm. During the
simulations only two kinds of actions are available: starting a
legal risk response or letting the HS algorithm create a baseline
schedule and follow it for a number of time units. The HS
algorithm used herein is obviously modified not to include any
risk responses (these are handled by the UCT-based part of the
solver) and run only till the next decision points. As soon as
a decision point is reached (or a predefined maximum number
of time units passes) control is transferred back to the UCT
algorithm. In other words, a single UCT action encompasses
the whole process of using HS algorithm for several time units.

Additionally, ProUCT algorithm gathers task duration
statistics for all simulations performed. They can be calculated
both for each UCT tree node (simplified project state) and for
the whole project. These statistics include not only the effects
of known duration variables distributions, but also the results of
all the risks, risk responses and, in a sense, contingency plans
devised by the solver. Expected activity durations are computed
based on those values and passed on to the HS module as the
deterministic plan activity durations, to improve its accuracy.

Finally, Monte Carlo rollouts policy needs also to be
redefined for this algorithm. Since there are only two kinds of
actions, it remains relatively straightfoward: whenever there
exists at least one eligible risk response, a random one is
started with probability of 0.8. Otherwise, HS module is
invoked.

E. GRASP

GRASP stands for Greedy Randomized Adaptive Search
Procedure and is an iterative process for solving combina-
torial problems, first described in [4] and applied to solving
Stochastic Resource-Constrained Project Scheduling Problem
(SRCPSP) in [3]. Readers interested in more details in this
area should refer to the above mentioned publications as well
as a survey [5]. In this section we will provide only a brief
description of the GRASP algorithm as implemented in our
solution.

The overall process is similar to the one employed by the
HS algorithm. In each decision point, each legal combination
of possible risk responses is tried (or a random subset of those
combinations if their number exceeds a predefined threshold).
For each such combination GRASP algorithm is used to
generate a candidate strategy for a non-deterministic project
with no further risk responses. Expected makespans of projects
realized according to those strategies are calculated as a side-
product and this allows to easily choose the best risk responses-
strategy combination. This combined strategy is followed till
the next decision point.

1645

Unlike HS, GRASP generates strategies instead of baseline
schedules. Strategies are simply represented as permutations
of activities to perform, effectively defining priority rules for
activities. One of the consequences of this fact is that the
criteria for detecting decision points may be simplified as there
are no baseline schedule deviations to detect. In effect, a time
unit is considered a decision point simply if one the following
conditions is true:

1) no strategy exists;
2) a new risk effect has just become active;
3) a new, never before considered, risk response has just

become eligible.

The GRASP algorithm itself is an iterative process in which
candidate strategies are defined, optimized and evaluated. It
can be stopped anytime and best strategy so far can be
considered its final result.

Each iteration starts with generation of a new schedule for
a deterministic project obtained by replacing activity duration
random variables with their expected values. During the first
iterations these strategies are built using heuristic priority rules,
as described in section IV. Unlike in HS, these priority rules
can be mixed within one schedule, each one being used for
up to 10 subsequent time units, before a new one is selected
at random. Additionally, with low probability (0.05) the next
activity may always be chosen at random.

This schedule is then optimized locally via double justifi-
cation [14] and converted to a strategy simply by ordering all
activities by their start times. This strategy is then evaluated by
performing several simulations in which the actual (stochastic)
project is realized according to it.

Additionally, an elite set of the best strategies so far is
maintained over the iterations. Since this set starts empty,
initially each and every strategy is added to it. Once it reaches
its full capacity, the candidate schedule generation policy
changes. Heuristic-based rules are now used with only small
probability (5% in our case), and instead strategies from the
elite set are randomly chosen as prioritization rules for the
next part of the schedule. This way strategies generated in
subsequent iterations can be expected to become on average
better, thanks to the use of knowledge gathered during previous
iterations.

V. EXPERIMENT SETUP

A. Problem instances

Obviously, there exists no standard set of RAPSP problem
instances. Therefore, we decided to generate our test projects
by modifying RCPSP instances provided by the standard and
popular PSPLIB Library [11], [10]. To that extent we have
developed a procedure for transforming RCPSP samples into
RAPSP instances. Please notice, that while the transforma-
tion itself is deterministic (given the same input project and
settings, it will yield the same result), the resulting RAPSP
instances are not - i.e. multiple realizations of the same project
may have different duration even with the same strategy due
to different realizations of random variables describing project
risks.

Transformation process itself consisted of two phases.
Firstly, it would replace activity duration values with random

variables with known distributions – thus converting RCPSP
into SRCPSP. We decided to use Beta distribution - the de
facto standard in project management area. We would set its
parameters so that its mean would be equal to the original
duration value and the probability of the variable falling within
the interval of 75% of original value to 150% of it was
approximately equal 0.9.

Additionally, 10% of the activities with the highest duration
values would be selected as resource-intensive. These would
be modified so that each of them would require 1 unit of
a dedicated non-renewable resource. Exactly 1 unit of each
resource would also be added to the project.

Second transformation phase involved adding risks and
risk responses. Three types of risks and corresponding risk
responses were added.

A single risk was added for each renewable resource type,
with realization probability of 2% per time unit. The effect of
the risk would be a temporary (lasting 10 to 30 time units)
decrease in the capacity of this resource by 1 or 2 units.

A corresponding risk response would require 8 time units
and a certain amount of a dedicated non-renewable resource
(budget) to temporarily (for the next 40 time units) increase
the amount of the resource by 1 unit.

For each of the non-renewable resources added to the
project (required by the resource-intensive activities), a new
risk of the resource disappearance would also be introduced.
Corresponding risk response would again require 8 time units
and a certain amount of a dedicated non-renewable resource
(budget) to increase the amount of the resource.

Finally, the transformation would add serious underesti-
mation risks and corresponding risk responses of performing
activities with capital-intensive approach. To that end approx-
imately 33% of activities would be selected as risky and
for each of them a risk would be added (with occurrence
probability of 15%) causing the activity duration to be doubled.
Each of those risks could only occur immediately after starting
its related activity. As usual, for each risk a corresponding risk
response would be added. Those risk responses could only
be performed before starting their corresponding activities and
would reduce the activity duration by 1/3 at the expense of
an amount of a dedicated non-renewable resource (budget)
proportional to the expected gain in duration.

As can easily be noticed, compared to our previous work
in [16], we have added a new risk and risk response type.
Additionally, in order to test the solvers for projects of varying
characteristics we introduced 3 transformation modes.

1) Temporary Effects with Separate Budgets (TSep): In this
mode non-renewable resource risks and risk responses would
have temporary effects, lasting, respectively, 10 to 30 and
40 time units. This meant that no combination of risks and
risk responses could render the project a failure by making it
impossible to finish all activities.

Each of the three categories of risk responses would
also require its own kind of dedicated budget non-renewable
resource. The amounts of those resources would be configured
so that about 1/3 of all risk responses could be performed.

1646

Fig. 2. TSep: relative project durations

Fig. 3. TSep: solvers win rates

2) Temporary Effects with Shared Budget (TSh): TSh dif-
fered from TSep in that only one type of budget was introduced
and required by all risk responses. Again, the amount of the
resource was set so that only part of the risk responses could
be performed. Risk response costs were configured so that
temporary renting an additional resource unit required as much
resources as expected reduction of activity duration by 5 units.

Projects generated by this transformer allowed for more
flexibility when deciding about risk responses, providing more
legal risk responses combinations, thus making the task even
more complex and dynamic than in TSep case.

3) Permanent effects with separate budgets (PSep): In
this mode risk response budgets were again separate, but
non-renewable resource risk and risk-response effects were
permanent. This meant that certain combinations of risks could
lead to a project failure and this threat could be multiplied by
poor risk response budget management.

B. Testing procedure

We tested the solvers on several thousand problem in-
stances in total. Highly non-deterministic nature of the task
introduced obvious need for a higher number of tests to reach
meaningful results. To make the comparison as fair as possible
each tested problem instance would always be solved by each
and every algorithm. Additionally, to minimize the randomness
of the results we would set up our random number generators
so as to minimize differences within each set of tests, i.e.
should all the solvers make the same decisions for a given
problem instance, they would all yield the same result (because
same risks would occur at the same time). However, since mid-
project decisions may influence risk occurrence conditions, this
does not necessarily mean that exactly the same risks would
always occur for each solver, so some level of ambiguity of
comparison would always remain.

We performed the experiments on projects with 30, 60
and 120 activities, using, respectively, 480, 480 and 100
problem instances for each project size and transformation
mode (therefore doing 3180 test runs in total).

Fig. 5. TSh: relative project durations

Fig. 6. TSh: solvers win rates

As in our previous work, we calculated two statistics:
average relative project duration and win rate. Since project
makespans could differ significantly and we had no way of
finding meaningful minimal makespan values for our projects,
for each problem instance we measured the solvers results
in relation to the best makespan achieved. That meant that
for each project at least one method would be assigned a
result of 100%, and the others would be proportionally higher.
The latter statistic (win rate) was simply the number of
experiments in which given solver achieved the best result
(relative project duration of 100%) in relation to the total
number of experiments. Since multiple solver could achieve
the same result for any given problem instance, win rates did
not have to sum up to 100%.

Before starting the experiments, we performed a limited
number of tests in order to set up the solvers’ control parame-
ters. For each of them we set the iteration limits at a level
after which no significant improvement was observed with
further increase of computation time. This meant, however,
that more complex algorithms (such as ProUCT) were much
more time consuming than the simpler ones (like HS). Still,
in case of decisions that need to be made at most once per
day, a computation time of one minute for the most complex
projects and solvers cannot be considered prohibitive.

We used Wilcoxon signed-rank test to verify statistical
significance of the differences in the results obtained for
specific solver pairs [17].

VI. EXPERIMENT RESULTS

A. TSep

TSep experiment is a direct extension of the tests presented
in [16], with the addition of new risk and risk-response
types (non-renewable resource related) and newly introduced
GRASP solver.

Results are presented in figures 2 and 3. It can be seen
that average relative project duration and win rate statistics
remain in direct corelation, without any surprises. As expected,

1647

Fig. 4. TSep: relative project durations for different project sizes

Fig. 7. TSh: relative project durations for different project sizes

BasicUCT fared significantly worse than any other methods,
and ProUCT achieved slighty (but statistically significantly)
better results than HS. The new GRASP solver, was even
more successful - its advantage over ProUCT was, however,
statistically not significant.

A quick glance at figure 4 analyzing the results across
varying project sizes proves that the relations between solvers
remained relatively stable and their ranks did not change for
any of the tested project sizes.

B. Tsh

TSh experiment involved one shared non-renewable re-
source acting as a risk-response budget. This added more
complexity to the problem, as more risk-management strategies
were possible and more risk response related decisions could
be made. In other words: problem search space was visibly
widened.

Figures 5 and 6 show that this change had a clear impact
on the solvers performance. This time HS and GRASP solver
performed almost exactly on par, and ProUCT achieved a def-
inite victory over both of them (with p-value below 0.00001).
This can be explained by the proactive nature of the ProUCT
algorithm and it being definitely best-suited for dealing with
risk responses via the use of UCT algorithm. GRASP’s and
HS’es simplified handling of risk responses turned out to be a
significant burden.

Comparing the results for each tested project size (figure 7)

Fig. 8. PSep: relative project durations

Fig. 9. PSep: solvers win rates

further confirms the success of the ProUCT algorithm, which
clearly dominates in each category. Differences between HS
and GRASP method might become a subject of further analy-
sis, as GRASP loses to HS for smaller project, only to win for
120-activities ones. Still, those differences are not statistically
significant for any project size.

1648

Fig. 10. PSep: solvers failure rates

C. PSep

PSep problem instances introduced one crucial change:
those projects could fail, i.e. reach a state in which it was
impossible to finish the project due to lacking non-renewable
resources. Dealing with this kind of risk requires more careful
risk-management strategies and not using risk response budgets
too early.

To analyze the results of this experiment we also needed
to slightly redefine statistics for measuring performance of
the solvers. Firstly, when calculating average relative project
duration for each solver, we would consider only successful
projects. Secondly, we would calculate another statistic: failure
rate, measuring the ratio of failed projects for each algorithm.

Results, as presented in figures 8, 9 and 10, are interesting.
BasicUCT remains, as always, the poorest possible algorithm
choice. While differences between HS and GRASP remain
not very significant, ProUCT’s results beg for some further
analysis. While its average relative duration is higher and win
rate lower than its competition, it, at the same time, has the
lowest failure rate. This can be explained by high penalty for
project failure, which biased the UCT algorithm towards safer
strategies, instead of trying to aggressively reduce the expected
makespan of the project. This kind of approach can be expected
to be, in most cases, preferable in real-life projects.

Still, we feel that this area requires more analysis and at-
tention when designing algorithms. Additionally, our problem
instances were constructed in a way that caused the failure
risk to grow with project size. In effect, more than half of the
biggest projects would end up a total failure, which, arguably,
is not the best model of typical real-life projects (which,
while still often over time and over budget, are nowadays
nevertheless usually finished).

VII. CONCLUSIONS

In this paper we have presented our progress in the area
of Risk-Aware Project Scheduling Problem, as defined in [16].
We introduced a new solver, based on GRASP algorithm and
tested all solvers defined so far against a number of new
problem instances of varying characteristics.

Newly designed GRASP solver proved to be on par with
the best solvers, albeit in none of the tests did it manage to
unarguably overpass them by a statistically significant margin.
We have also shown that differences in problem instances
characteristics have noticeable effect on relative efficiency of
the solvers.

Still, ProUCT, our so far strongest algorithm, cannot be re-
sponsibly considered a loser in any of the comparisons, which

proves its flexibility. We believe that its strength stems from
the UCT algorithm, its proactive approach, and combination of
a number of human-like behaviors, including rule-of-thumbs
(heuristic) usage, what-if scenarios simulations and experience
gathering.

In our future research we plan to further analyze and opti-
mize the way our solvers handle failure-endangered projects.
We also believe that it is possible to develop a powerful solver
that would combine the power of UCT algorithm with GRASP.

ACKNOWLEDGMENT

The research was financed by the National Science Centre
in Poland, grant number DEC-2012/07/B/ST6/01527.

REFERENCES

[1] A Guide to the Project Management Body of Knowledge (PMBOK
Guide), Newtown Square, Pa, Project Management Institute, 2004

[2] P. Auer, N. Cesa-Bianchi, P. Fischer: Finite-time analysis of the multi-
armed bandit problem. Machine Learning 47(2/3), pp. 235–256, 2002

[3] F. Ballestn, R. Leus, Resource-Constrained Project Scheduling for Timely
Project Completion with Stochastic Activity Durations, Production and
Operations Management, Vol. 18, Issue 4, pp. 459–474, Blackwell
Publishing Inc, 2009

[4] T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search proce-
dures, Journal of Global Optimization 6, pp. 109–133, 1995.

[5] P. Festa, M.G.C. Resende. GRASP: an annotated bibliography, Technical
Report, AT&T Labs Research, Florham Park, NJ 07733, 2000.

[6] H. Finnsson, Y. Björnsson: Simulation-based approach to General Game
Playing. In Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence (AAAI-08), pp. 259–264, 2008

[7] W. Herroelen, R. Leus, Project scheduling under uncertainty: Survey and
research potentials, European Journal of Operational Research, vol. 165,
Issue 2, pp. 289.-306, 2005

[8] J. E. Kelley, Jr, M. R. Walker, Critical-path planning and scheduling,
IRE-AIEE-ACM ’59 (Eastern), pp. 160–173, ACM, 1959

[9] L. Kocsis, C. Szepesvári: Bandit Based Monte-Carlo Planning. In
Proceedings of the 17th European conference on Machine Learning
(ECML06), 282-293, Berlin, Heidelberg, Springer-Verlag, 2006

[10] R. Kolisch, A. Sprecher, PSPLIB - A project scheduling library,
European Journal of Operational Research, vol. 96, pp. 205–216, 1996

[11] Project Scheduling Problem Library - PSPLIB, http://www.om-
db.wi.tum.de/psplib/main.html

[12] R. Słowiński, J. Wȩglarz, Advances in Project Scheduling, Elsevier
Science Ltd, 1989

[13] M. Świechowski, J. Mańdziuk, Self-Adaptation of Playing Strategies in
General Game Playing, IEEE Transactions on Computational Intelligence
and AI in Games, vol. 6, issue 4, pp. 367–381, IEEE Press, 2014

[14] V. Valls, F. Ballestin, S. Quintanilla. Justification and RCPSP: a tech-
nique that pays, European Journal of Operational Research, 165(2), pp.
375–386, 2005

[15] K. Walȩdzik, J. Mańdziuk, An Automatically-Generated Evaluation
Function in General Game Playing, IEEE Transactions on Computational
Intelligence and AI in Games, vol. 6, Issue 3, pp. 258-270, IEEE Press,
2014

[16] K. Walȩdzik, J. Mańdziuk, S. Zadrozny, Proactive and Reactive Risk-
Aware Project Scheduling, 2nd IEEE Symposium on Computational
Intelligence for Human-Like Intelligence (CIHLI2014), Orlando, FL, pp.
94–101, IEEE Press, 2014

[17] F. Wilcoxon, Individual Comparisons by Ranking Methods, Biometrics
Bulletin, Vol. 1, No. 6, pp. 80–83, International Biometric Society, 1945

1649

