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Abstract—One of important methods designed to classify
objects with missing feature values are rough neuro–fuzzy
classifiers (RNFC). Similarly to neuro–fuzzy systems, they are
specific network structures, which can be trained by optimization
methods based on gradient descent. However, to the best of our
knowledge, there are no publications concerning such way of
RNFC designing. In the paper, problems with gradient learning
of RNFC are identified and suitable solutions are proposed. The
influence of missing values level on the learning process and
classification quality is examined. The RNFC is compared with
the k-NN classifier adapted to missing values problem by a ”wide
imputation” method. All experiments use 10-fold cross validation.

I. INTRODUCTION

The problem of missing data is inherent in practical ap-
plications of classifiers, controllers and approximators. Hence,
many methods solving this issue have been proposed. More-
over, the causes of information inaccessibility have been anal-
ysed and classified, thus specific methods are proper for partic-
ular cases. Generally, there are two approaches to process data
with missing values. In the first one, input data with missing
values must be subjected to preprocessing. Then, any of known
methods devoted to tasks with complete input information,
such as neural networks, fuzzy systems, k-nn classifiers etc.
can be applied. Most common types of preliminary conversions
are:

• Marginalisation — importance of data that do not
contain values are reduced, usually by simply deletion.
The most common methods of reduction are:

◦ List-wise deletion — samples with a missing
values are removed.

◦ Attribute deletion — attributes that have lost
values are deleted.

◦ Pair-wise deletion — samples that have miss-
ing values in examined attributes for chosen
analysis are ignored. A set of not ignored
samples may be different for every analysis,
because everyone can work on different at-
tributes.

• Imputation — places with no data are filled by ap-
proximated ones. A variety of methods is wide, e.g.

◦ Average, median — missing values of the
attribute are filled by average or median of
known values of the same attribute from all
available samples.

◦ Random — missing values of the attribute are
filled by random values from the domain of
the attribute. The specific distribution can be
applied if it is known. The range of the domain
can be obtain form the remaining samples.

◦ Expectation Maximization (EM) [2] - a sophis-
ticated algorithm with many implementations.

◦ k-nn — the unknown value is filled using k
the most similar samples.

◦ nn, fuzzy, etc. — the missing value is filled
by a neural network or a fuzzy system where
attributes with missing values are treated as
the output attributes and the neural network or
fuzzy system is learnt using other samples as
the learning set.

◦ multiple imputation — particular incomplete
samples are replaced by a collection (cloud)
of samples. Known values are copied and the
missing values are many times randomly filled
using assumed distribution [3].

• Hybrid methods, such as EM-SPCA [4], which fill
missing places and reduce dimensionality.

Undoubtedly, the most important advantage of some forms
of data preprocessing (marginalisation, imputation or hybrid
methods etc.) is the freedom of choice of any classification
method. However, this approach has also several disadvan-
tages. As a result of deletion, some crucial information may be
lost. Pair-wise deletion can lead to mentioned above situation
where particular analysis based on different attributes lead
to incoherent results. During imputation, a quality of the
filled data is very important. This process may sometimes
generate unreal samples. New, filled data is based on current
samples, thus there is a risk of generating biased results [5].
Imputation methods require additional resources. The k-nn
method has probably the largest memory demands, while EM-
based algorithms may require a lot of computation time. The
answer to mentioned problems are systems, that can directly
work with missing values, such as the rough neuro-fuzzy
classifiers (RNFC) [6], [7], [8].
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The RNFCs are representatives of the second approach
to process data with missing values, i.e. methods designed
especially to work with missing values and general methods
adapted to missing values. They can work without prepro-
cessing when part of data is missing. Other examples of this
approach are the C4.5 algorithm [9], the rough k-nn algorithm
[10] and their ensembles [11], [12].

The RNFCs are specific neuro-fuzzy classifiers which,
due to applying the rough set theory [13], are adapted to
classify objects or states described by a vectors containing the
interval values as well as the lacks. The neuro-fuzzy classifiers
(generally the neuro-fuzzy systems) are the implementation
of fuzzy classifiers in a network form. The first neuro-fuzzy
system was proposed by Wang and Mendel [14]. They applied
the conjunction type of reasoning, which is known now as
Mamdani–type reasoning, and centre average (CA) defuzzi-
fication. Then, other type of such system was considered.
Czogała and Łȩski [15] studied neuro-fuzzy systems (also
classifiers) using modified indexed centre of gravity (MICOG)
defuzzification and various type of reasoning. Rutkowska and
Nowicki [16] developed the family of such systems applying
discrete centre of gravity (DCOG) defuzzification and also
various types of reasoning. The rough neuro-fuzzy classifiers
[6], [7], [8] are built as a couple of the neuro-fuzzy classifiers
combined in a specific way. The considerations presented in the
paper are focused on RNFC realising the CA defuzzification
and Mamdani-type of reasoning, as in [6]. However, the
presented results concern also other RNFCs, such as the ones
presented in [7] realising MICOG defuzzification together with
the logical reasoning, and [8] realising DCOG defuzzification
with Mamdani and logical reasoning.

The incomplete data can be used in a knowledge extraction
process in several ways. The simplest one is to apply any of
the aforementioned imputation methods as a preprocessing of
any rule generating or gradient learning algorithms. The more
sophisticated algorithms, such as subsequent versions of LEM
[17], [18], [19] and LBR [20], or specific gradient methods
[21], [22] are able to process incomplete samples directly. They
can by applied to various rule base systems. Some algorithms
are dedicated to specific systems, e.g. to Bayesian networks
[23].

In all previous papers referred to RNFCs, it has been
assumed that the knowledge applied in the considered classifier
comes from the correctly working neuro-fuzzy classifier which
realises the same methods of fuzzification, reasoning and
defuzzification. Learning of RNFC ”from scratch” using the
incomplete data has not been presented. The rough neuro-
fuzzy system (RNFS) designed for regression modelling has
been considered in [24] as well as a method of calculating rule
elements in the case of missing values. Learning of RNFS was
also considered in [25].

In this paper a gradient learning of the rough neuro-fuzzy
classifier (RNFC) parameters using a set of samples with
missing values is proposed. It is worth mentioning that gradient
methods applied to rule based systems are generally criticised
because they produce uninterpretable sets of rules. Despite
that, they are widely used, mainly in the final phase of system
design, but not only.

The main contribution of the paper is the mentioned above
gradient learning adapted to the rough neuro-fuzzy classifiers.
Moreover, the paper contains other original solutions related
to the main topic. The former architecture of RNFCs has been
extended with two new methods of the rough fuzzy answer
reduction which gives final crisp decision (see eq. (9) and
(10)). As the element of the new learning procedure, a method
of error calculation (see (20)) was proposed. They relate to
the methods of answer reduction. Some important aspects of
an error propagation is disputed, e.g. propagation through the
nondifferentiable elements, such as inf and sup (see eq. (7),
(8) and (20)). The initialisation of RNFC parameters is realised
based on Partial Data Strategy Fuzzy c-Means Clustering [26].
The method of RNFC evaluation has been also changed to be
suited for other elements of the system. The proposed methods
takes into account a problem of non-equinumerous classes in
a training or validating sets. The specific organisation of the
learning process has been proposed (Section III). The accuracy
of learnt RNFC is compared with the results obtained for k–
nn, which has been also adapted to the case of missing values.
The overall learning and evaluating scheme is as follows

• Dataset preparation with constant or changing level of
missing values,

• RNFC initialization by PDSFcMC,

• Novel gradient learning method for RNFC,

• Evaluation of RNFC with WTA method.

The paper is organised as follows. Section II presents the
basic architecture of RNFC. It is used in further parts of
the article. The details of the gradient learning designed for
RNFCs are presented in the section III and Section IV contains
some aspects and results of experiments. The contributions and
conclusions are summarised in Section V.

II. ROUGH NEURO-FUZZY CLASSIFIER

Rough neuro-fuzzy classifiers are a solution to classifica-
tion based on incomplete input information. They are a special
form of neuro–fuzzy systems adapted to the rough set theory.
There are many versions of such systems as they can use
various methods of fuzzification, reasoning and defuzzification.
The simplest one, described in [6], applies singleton fuzzi-
fication, Mamdani–type reasoning and centre average (CA)
defuzzification method. The considered system classifies object
x described by n attributes v = [v1, . . . , vn] with values
v = [v1, . . . , vn]. Some of the values can be missing. The
goal is to determine the membership of the object to m classes
ωj , j = 1, . . . ,m. Similarly to other fuzzy and neuro-fuzzy
systems, the rough neuro-fuzzy classifiers use knowledge in
the form of N fuzzy rules

Rr : IF v1 is Ar
1 AND . . .AND vn is Ar

n
THEN x ∈ ω1(z

r
1), x ∈ ω2(z

r
2)...x ∈ ωm(zrm),

(1)

where r = 1, . . . , N is the rule number, Ar
i are the fuzzy sets

used in antecedent of r–th rule and refers to input attribute vi,
zrj determine the membership of object x to class ωj according
to r–th rule. In the case of classification it is assumed that
zrj ∈ {0, 1}, i.e. x /∈ ωj or x ∈ ωj , when the conditions
specified in the antecedent of r–th rule are met. When all,
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provided in the classifier, input values are known the fuzzy
output of the appropriate neuro–fuzzy classifier is given by

μωj
(x) = zj =

∑N
r=1 z

r
jμAr (v̄)∑N

r=1 μAr (v̄)
, (2)

where Ar = Ar
1 × Ar

2 × . . . × Ar
n is a Cartesian product of

fuzzy sets from the antecedent of r–th rule.

In the case of rough neuro-fuzzy classifier, in contrast to
neuro-fuzzy and fuzzy classifiers, not all values vi must be
known. Thus, the set of all n input attributes, denoted by Q,
is divided into two subsets — the set of attributes with known
values and the set of attributes with missing values — denoted
by P and G, respectively. Obviously, P ∪G = Q and P ∩G =
∅. The answer of the rough neuro-fuzzy classifier takes the

form of m intervals
[
zj , zj

]
, determined for all sets ωj . The

beginning and the end of the interval are specified as follows

zj =

∑N
r=1 z

r
jμ ˜PAr (v̄)∑N

r=1

(
zrjμ ˜PAr (v̄) + ¬zrjμ

˜PAr
(v̄)

) (3)

and

zj =

∑N
r=1 z

r
jμ

˜PAr
(v̄)∑N

r=1

(
zrjμ

˜PAr
(v̄) + ¬zrjμ ˜PAr (v̄)

) , (4)

according to [6]. The negation operator ¬ is defined as ¬zrj =
1− zrj . A crucial role in calculating the values zj and zj play

the P̃–lower and P̃–upper approximations of antecedent fuzzy

sets Ar
i denoted as P̃Ar and P̃Ar, respectively. They designate

the rough fuzzy sets [27] which approximate sets Ar
i . The

corresponding membership functions are defined following the
Dubois and Prade [28], i.e.

μ
˜PAr (v) = inf

vG∈VG

μr
A(vP ,vG) (5)

and
μ

˜PAr
(v) = sup

vG∈VG

μr
A(vP ,vG), (6)

where vP and vG are the subvectors containing known and
missing values, respectively. VG is the domain of unknown
input values. Functions (5) and (6) can be also defined using
any t–norm in definition of Cartesian product [7]

μ
˜PAr (v) = T

(
T

i:vi∈P
(μAr

i
(vi)), T

i:vi∈G
inf

vi∈Vi

μAr
i
(vi)

)
(7)

and

μ
˜PAr

(v) = T

(
T

i:vi∈P
(μAr

i
(vi)), T

i:vi∈G
sup
vi∈Vi

μAr
i
(vi)

)
, (8)

where Vi is the domains of feature vi.

When values of all input attributes are known (P = Q
and G = ∅), the rough neuro-fuzzy classifier is reduced to
the suitable neuro-fuzzy classifier (see eq. (2)) and the output
interval is reduced to single values, i.e. zj = zj = zj . When

some input values are missing then zj ≤ zj ≤ zj occurs,
where zj is the value corresponding to the case of all known
values. When none value is known (P = ∅ and G = Q), the
answer becomes intervals which contain all acceptable output

Fig. 1. Scheme of rough neuro–fuzzy architecture.

values, i.e.
[
zj , zj

]
= [0, 1]. Fig. 1 presents the architecture

of such rough neuro–fuzzy classifier. The antecedent part is
common for all output classes, the consequent part should be
duplicated for each class.

Finally, the fuzzy interval output obtained from rough
neuro–fuzzy classifier should be reduced to a crisp decision.
The methods of the reduction can be complex, but the simple
one is following [7]⎧⎪⎨⎪⎩

x ∈ ωj if zj ≥ 1
2 and zj >

1
2

x /∈ ωj if zj <
1
2 and zj ≤ 1

2

not known in other cases.

(9)

The last case (”not known”) indicates that the input informa-
tion is too poor and some missing values must be obtained
and entered into the classifier. This case does not occur when
all input values are known.

In the paper, new methods of reduction are applied. The
first one is similar to the proposed in definition (9), but more
restrictive. It is defined as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

x ∈ ωj if zj ≥ 1
2 and zj >

1
2 and

∀j′ 
= j, zj′ <
1
2 and zj′ ≤ 1

2

x /∈ ωj if zj <
1
2 and zj ≤ 1

2

not known in other cases.

(10)
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It protects against the indication by the classifier more than one
class. We use also a WTA method which is less restrictive. It
is defined as follows⎧⎪⎨⎪⎩

x ∈ ωj if ∀j′ 
= j, zj + zj > zj′ + zj′

x /∈ ωj if ∃j′ 
= j, zj + zj < zj′ + zj′

not known in other cases.

(11)

The last case in definition (11) occurs only when the highest
value of medium of interval is indicated for more than one
set ωj . The number of indicated sets can be limited to one by
some restrictions in the rule base as well as using the reduction
depicted in definition (9).

III. GRADIENT LEARNING OF RNFCS

In the case of feedforward neural networks the gradi-
ent learning is implemented as the backpropagation method.
The network is trained mapping the input vectors v̄ =
[v̄1, v̄2, . . . , v̄n] into the vectors of desired outputs d =
[d1, d2, . . . , dm]. Both are elements of samples which are
contained in training (learning) set. As a result of assumed
optimization criterion, usually

Q =
1

2

m∑
j=1

(dj − yj)
2

, (12)

the errors
εj = dj − yj (13)

are calculated on the outputs of the last layer of the network
and then they are propagated back to the weights, which are
then corrected. The same method has been applied for the
neuro-fuzzy systems [29]. The methodology is now commonly
used when samples {v,d} are complete or incomplete, but
preprocessed using any imputation or marginalisation, with all
consequences of using such methods mentioned in Section I.

In the paper the gradient learning is adapted to train the
rough neuro-fuzzy classifiers using the incomplete samples —
the vector v has constant length, but some of its elements
could be missing. Due to consideration the classification case
it is assumed that each learning sample belongs to exactly one
class, so dj ∈ {0, 1} and

∑m
j=1 dj = 1.

In the case of the rough neuro–fuzzy system, the imputation
and marginalisation is not needed. However, the error on the
output layer is redefined due to the interval nature of the system
answer.

A. Error calculation

The answer of the rough neuro-fuzzy classifier has the form

of intervals
[
zj , zj

]
obtained for all output classes ωj . Thus,

the error can be also intervals, i.e.
[
εj , εj

]
. Below, a new way

of calculating the error is proposed. In contrary to [25], only
one optimization criterion is used. It is the general criterion
(12), but taking into account both the lower and upper output
value for each class, with changed definition of distance and
desiring value d. Thus, the criterion is defined as follows

Q =
1

2

m∑
j=1

(
ρ2

(
zj , Dj

)
+ ρ2

(
zj , Dj

))
(14)

where ρ is a distance between value z and non-empty set D

ρ (v,D) = infd∈D |v − d| . (15)

The single value d can be treat as a singleton set D = {d}.
We can define a desired interval with additional parameter p ∈
[0, 1] allowing to adjust the width of the interval

Dj =

{{0} if x /∈ ωj

[1− p, 1] if x ∈ ωj ,
(16)

Dj =

{
[0, p] if x /∈ ωj

{1} if x ∈ ωj .
(17)

We further extended definition of interval (16) by a heuristic
element taking into account the width of output interval
[zj , zj ]. It is also a form of a feedback. Now the interval is
defined

Dj =

{{0} if x /∈ ωj[
max

{
1− p, 1−

(
zj − zj

)}
, 1

]
if x ∈ ωj

(18)

Dj =

{[
0,min

{
p, zj − zj

}]
if x /∈ ωj

{1} if x ∈ ωj .
(19)

Thus, the error is calculated as follows

εj =

{
0− zj if x /∈ ωj

max
{
1− p, 1−

(
zj − zj

)}
− zj if x ∈ ωj

(20)

εj =

{
min

{
p, zj − zj

}
− zj if x /∈ ωj

1− zj if x ∈ ωj .
(21)

B. Learning procedure

There are three sets of parameters inside the architecture
of the rough neuro-fuzzy classifier (Section II) which can be
adjusted during learning. In the case of Gaussian antecedent
fuzzy sets

μAr
i
(vi) = exp

(
−

(
vi − v̂ri
σr
i

)2
)
, (22)

the parameters are positions of their centres — v̂ri , and
their spreads — σr

i . Moreover, the consequents of rules are
represented by parameters zrj .

According to the gradient learning (the steepest descent
method) principle, all the parameters are adjusted by following
value [29]

Δw = −η ∂Q
∂w

, (23)

where Q is the criterion defined in eq. (14), η is a learning
coefficient (could be stable or unstable during the process),
and w represents each of the mentioned above, parameters
(v̂ri , σr

i , and zrj ). From a formal point of view, the adjustment
defined in eq. (23) cannot be derived. This is due to non-
differentiable functions, i.e inf , sup, min, and max present in
the RNFC architecture and the error definitions (see e.g. eq.
(7), (8), and (20)). For purpose of the error propagation, the
specific substitutions were proposed. For example, for the inf
function they are defined as follows

∂ inf
i
vi

∂vk
:=

{
0 if inf

i
vi 
= vk

1 if inf
i
vi = vk.

(24)
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C. The initializing of rough neuro-fuzzy classifier

A common procedure is to initialize learning systems by
random values. A family of c-means clustering algorithms
is often used for this purpose. In the the paper the RNFC
is initialized using the Partial Data Strategy Fuzzy c-Means
Clustering (PDSFcMC) [26]. This method works separately for
each class and derives parameters of the clusters in the class.
Thus, computed clusters are converted into fuzzy sets linked
with rules, with appropriate class pointed in the antecedent.
In general, the rules (1) and the antecedent fuzzy sets can
be arbitrarily complex. However, in the paper it is assumed
that each rule corresponds to a single cluster. So, the number
of clusters is equal to the number of rules in each class.
The second consequence of such procedure is that the rules
in the network indicate exactly one class. Before clustering
procedure, dataset is normalised and then a reversal process is
executed on the clusters.

D. Evaluation of RNFC efficiency

As the result of assumed methods of reducing the fuzzy
output to crisp decision, i.e. (10) and (11), RNFC classifies
the object x to single class. It is also assumed that the
samples in learning and testing sets belongs to single class
as well. The evaluation of the classifier is based on single
samples classification correctness. The binary indicator g cs
is proposed. It is set to 1 only if the sample xs is classified to
the proper class, i.e.

g cs =

⎧⎪⎪⎨⎪⎪⎩
1 if ∀j = 1, ..,m

⎛⎝ dj,s = 1⇒ xs ∈ ωj

∧
dj,s = 0⇒ xs /∈ ωj

⎞⎠
0 otherwise

(25)
where dj,s is the desired membership (0 or 1) of sample xs

to class ωj while xs ∈ ωj and xs /∈ ωj are the final decisions
of the classifier under evaluation. An efficiency of the network
is measured as a mean of accuracy of classification for each
class,

efficiency =
1

m

m∑
j=1

1

‖ ωj ‖
∑

s:xs∈ωj

g cs, (26)

where ‖ ωj ‖ is a number of samples in a class ωj and g cs
determines if sample xs is correctly classified.

IV. EXPERIMENTS AND RESULTS

The proposed classifier designing method was tested using
the Breast Cancer Wisconsin dataset from UCI repository [30],
which has 0.25% missing values. Full 10-fold cross-validation
was repeated five times for each experiment. Every time the
simulated missing data were different. For the experiments
purposes, single values were removed in a pseudo random
style, taking into account the level of missing values. The
algorithm enforced the same level of missing data in every
class. Thanks to this procedure, fluctuation of results caused
by various distribution of missing values is minimised and the
MCAR case is simulated. A modified k-nn classifier was used
as the reference system in evaluation of RNFC. It was exam-
ined in the same way as RNFC, i.e. 5 times in 10-fold cross-
validation procedure. This experiment has been performed for

Fig. 2. Efficiency of k-nn algorithm for the Breast Cancer Wisconsin dataset
versus missing values level in a training set.

several small values of neighbours number. In such range of
parameter k, its value had rather small impact on the efficiency
of classification. Despite its simplicity, this system showed
quite good performance, even when the level of missing values
was high (Fig. 2). However, the level of missing features
has decidedly negative influence to classification efficiency.
It concerns both learning and testing sets and have been
confirmed in all tests.

RNFC was tested using WTA reduction method (11) and
appropriate method of evaluation (25). The system was learnt
default with constant parameter p, number of epochs, amount
of rules per class, but the level of missing values was variable.
In all the cases, the 10-fold CV procedure was repeated 5
times. RNFC was initialised by PDSFcMC [26] what yielded
good initial system parameter values for further learning pro-
cess. Experiments showed that in a wide range of missing
feature level, even up to 45%, missing data used during system
initialisation has little negative effect to the in the further work
of the classifier. Moreover, we observed that the efficiency of
classification of the data with missing features is improved
when a classifier is prepared using data with missing features
as well. It holds when level of missing features applied to built
the classifier does not exceed some value. In the case of the
applied data set, it is about 45%.

A. Learning RNFC with fixed level of missing values

This part of the experiments was performed with the
fixed level of missing values, both in the learning and testing
datasets. It allowed to examine the impact of the error com-
puting method and parameter p used in the proposed learning
method (Section III). The level of missing values was fixed to
10%. Moreover, the learning coefficient η was empirically set
to 0.1.

An influence of the learning parameter p is shown in Fig. 3.
The network was tested with 50% missing data in the learning
set and 7.5% in the testing set.

B. Learning RNFC with changing level of missing values

The system was learned on datasets with various level of
missing values, with 10-fold cross validation repeated five
times for two rules per class. By default the WTA (11)
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Fig. 3. Impact of p on the classification efficiency for the Breast Cancer
Wisconsin dataset with 50% missing data in the training sets and 7.5% in the
testing sets and two rules per class.

Fig. 4. Classification efficiency of RNFC for the Breast Cancer Wisconsin
dataset and two rules per class.

reduction method is used as the efficiency reached using the
WTA method was almost always better than using the method
described by (10). The results are shown in Fig. 4. An influence
of the number of rules and the level of missing values on the
effectiveness is shown in Table I. The results show that increase
in the number of rules per class above two has small impact on
the efficiency. Thus, the next tests are prepared using 2 rules
per class. The efficiency for a wide range of missing feature
level is shown in Fig. 5.

The relationship between the level of missing values in the
test set and reached efficiency is an interesting phenomenon.
It is particularly evident when the level of missing vales in
training set is significant. In most cases the relationship can
be divided into following three parts (illustrated as ”phases”
in Fig. 6):

1) The efficiency increases with increasing level of
missing values. This phase is more visible with a
higher level of lacks in a test set and not visible when
the level is marginal.

2) The efficiency fluctuates or decreases slowly.
3) The efficiency falls rapidly for high level of missing

values.

TABLE I. EFFICIENCY OF RNFC ON THE BREAST CANCER

WISCONSIN DATASET CLASSIFICATION

missing rate in the training sets
missing
rate in 0.25% 5% 10% 20%

test sets
2 rules for every class

0.25% 0.97 0.96 0.95 0.95
5% 0.94 0.95 0.94 0.93

10% 0.89 0.92 0.94 0.90
20% 0.78 0.85 0.89 0.84

3 rules for every class
0.25% 0.97 0.97 0.96 0.96

5% 0.93 0.94 0.94 0.92
10% 0.89 0.91 0.91 0.89
20% 0.78 0.81 0.83 0.80

4 rules for every class
0.25% 0.96 0.97 0.96 0.95

5% 0.92 0.94 0.94 0.94
10% 0.88 0.92 0.93 0.93
20% 0.77 0.85 0.87 0.88

Fig. 5. Efficiency of RNFC after learning on the Breast Cancer Wisconsin
dataset with two rules per class and various level of missing data.

Fig. 6. Example of the relationship between the level of missing values in
the test set and classification efficiency of RNFC.
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V. CONCLUSION

The paper presents a complete procedure of data-driven
rough-neuro-fuzzy classifier design. It starts from initialising
the network structure and finishes on the gradient learning and
testing.

The original element of this process is the gradient learning
adapted to a specific architecture of the RNFC which works
with incomplete learning data. The proposed method consists
of several elements. The model of the rough-neuro-fuzzy
decision system has been extended by two new methods
of crisp decision determination. A specific error calculation
method have been defined. In the proposed method of learning
it is assumed that in the case of incomplete input data (missing
values) the primary answer of the system is the interval
with non-zero width. The single value (zero width interval)
is desired only in the case of complete input data and it is
forced by the architecture of the system. Such solution reflects
the main feature of RNFC which manifests the lack of input
information by the width of output interval. This is a unique
feature of the proposed procedure.

The experiments which have been performed confirmed
correctness of the concept and an expected behaviour of
the classifier during the learning. Moreover, it shown the
interesting properties of the learning process mentioned in
Section IV. It could be valuable advice for decision system
designers. Considerable influence on the learning process has
also the applied method of treatment a non-equinumerous
classes in learning and testing sets. It equalizes impact of
classes represented by various number of samples on the global
error value and the learning process.

The comparison between the proposed RNFC and the k–
nn classifier adapted to process incomplete data confirms that
the k–nn method is a strong algorithm and it is difficult to vie
with it in relation to the classification efficiency level. Thus,
the results obtained by the k–nn algorithm have been used to
check the correctness of RNFC creating process. Of course,
the k-nn method is much more computationally demanding.

The methodology proposed in the paper can be also applied
together with other concepts of decision systems. The ensem-
bles of classifiers [31], [32] seems to be particularly inter-
esting. Such systems can be learnt using the backpropagation
algorithm [33]. It can be expected that also other neuro–fuzzy
systems, e.g. relational [32], [34], [35], flexible [36], [37] and
type 2 [38], [39], can be adapted to work with incomplete data
and can be learnt or tuned by the proposed methodology.

ACKNOWLEDGMENT

This work was supported by the Polish National
Science Centre (NCN) within project number DEC-
2011/01/D/ST6/06957.

REFERENCES

[1] R. Little and D. Rubin, Statistical Analysis with Missing Data. John
Wiley and Sons, 1987.

[2] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from in-
complete data via the em algorithm,” in Journal of the Royal Statistical
Society. Series B, vol. 39, 1977, pp. 1–38.

[3] N. Sartori, A. Salvan, and K. Thomaseth, “Multiple imputation of
missing values in a cancer mortality analysis with estimated exposure
dose,” Computational Statistics and Data Analysis, vol. 49, no. 3, pp.
937–953, 2005.

[4] I. Stanimirova, M. Daszykowski, and B. Walczak, “Dealing with
missing values and outliers in principal component analysis,” Talanta,
vol. 72, no. 1, pp. 172–178, 2007.

[5] D. A.R., van der Heijden G.J., S. T., and M. K.G., “Review: A
gentle introduction to imputation of missing values,” Journal of Clinical
Epidemiology, vol. 59, pp. 1087–1091, 2006.

[6] R. Nowicki, “Rough–neuro–fuzzy structures for classification with
missing data,” IEEE Trans. on Systems, Man, and Cybernetics—Part
B: Cybernetics, vol. 39, no. 6, pp. 1334–1347, 2009.

[7] ——, “On combining neuro–fuzzy architectures with the rough set
theory to solve classification problems with incomplete data,” IEEE
Trans. on Knowledge and Data Engineering, vol. 20, no. 9, pp. 1239–
1253, Sep. 2008.

[8] ——, “On classification with missing data using rough-neuro-fuzzy
systems,” International Journal of Applied Mathematics and Computer
Science, vol. 20, no. 1, pp. 55–67, 2010.

[9] J. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[10] R. K. Nowicki, B. A. Nowak, and M. Wozniak, “Rough k nearest neigh-
bours for classification in the case of missing input data,” in Proceedings
of the 9th International Conference on Knowledge, Information and
Creativity Support Systems, Limassol, Cyprus, Nov. 2014, pp. 196–207.

[11] M. Korytkowski, R. Nowicki, R. Scherer, and L. Rutkowski, “Ensemble
of rough–neuro–fuzzy systems for classification with missing features,”
in Proceedings of World Congress on Computational Intelligence 2008,
2008, pp. 1745–1750.

[12] M. Korytkowski, R. Nowicki, L. Rutkowski, and R. Scherer, “Adaboost
ensemble of dcog rough-neuro-fuzzy systems,” Lectures Notes in Com-
puter Systems, vol. 6922, pp. 62–71, 2011.

[13] Z. Pawlak, “Rough sets,” International Journal of Computer and
Information Sciences, vol. 11, no. 5, pp. 341–356, 1982.

[14] J. Wang, L.-X.; Mendel, “Back-propagation fuzzy system as nonlinear
dynamic system identifiers,” in IEEE International Conference of Fuzzy
System, 1992, pp. 1409–1418.
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