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Abstract—This paper investigates various strategies for the
management of heuristic space diversity within the context of
a meta-hyper-heuristic algorithm. In contrast to all previously
developed heuristic space diversity management strategies, this
paper makes use of a heuristic space diversity metric to monitor
heuristic space diversity throughout the optimization run and
trigger the need for increased or decreased heuristic space
diversity. Three different heuristic space diversity management
strategies are evaluated. Maintaining a high level of heuristic
space diversity throughout the optimization run is shown to
be the best performing strategy. Good performance is also
demonstrated with respect to a state-of-the-art multi-method
algorithm, another successful diversity controlling meta-hyper-
heuristic and the best-performing constituent algorithm.

I. INTRODUCTION

Effective management of diversity has been repeatedly

shown to have a significant impact on the quality of so-

lutions found by an optimization algorithm. Traditionally,

management of the diversity of the solution or decision

space prevents algorithms from converging too quickly to

suboptimal solutions and also ensures effective exploration of

a large part of the search space. However, with the increase in

popularity of multi-method algorithms, the idea of diversity

management has changed. Multi-method algorithms also have

a heuristic space which needs to be searched effectively to

ensure effective combinations of constituent algorithms at

different stages of the optimization process. Recently, the

concept of heuristic space diversity (HSD) was defined and it

was shown that managing the diversity of the heuristic space

through managing the set of available constituent algorithms,

can have a significant effect on the performance of multi-

method algorithms.

In this paper an adaptive HSD management strategy is

proposed based on the HSD metric defined by Grobler et
al. [1]. Three variations of the strategy are investigated

and performance was evaluated on a set of varied floating-

point benchmark problems. The most promising results were

obtained by the HSD(1) strategy which attempts to maintain

a pre-defined high level of HSD throughout the optimization

run. In this strategy, HSD is increased by randomly selecting

an entity and re-allocating the entity to a randomly selected

constituent algorithm. Good performance was also obtained

when the HSD(1) strategy was compared to a meta-hyper-

heuristic algorithm which manages HSD through modifica-

tion of the set of constituent algorithms (EIHH2) and the

population based algorithm portfolio algorithm [2], which is

a well known multi-method algorithm.

Effective control of the diversity of the heuristic space

has already been considered in the past. However, to the

best of the authors knowledge, all of these studies focus on

the characteristics and modification of the set of available

constituent algorithms. This algorithm is the first algorithm to

make use of a HSD metric to self-adaptively determine when

to adjust the allocation of entities-to-algorithms to control the

HSD.

The rest of the paper is organized as follows: Section II

provides an overview of existing literature. Section III pro-

vides a brief overview of the HMHH algorithm used as

basis for the investigation, while Section IV describes the

HSD control strategies which were evaluated. The results are

documented in Section V before the paper is concluded in

Section VI.

II. DIVERSITY MANAGEMENT

The relationship between heuristic space and solution

space was considered in detail for the first time in [3]. Since

then, further efforts to analyze the heuristic space by means of

landscape analysis were also conducted [4], [5]. From these

studies it became evident that additional effort in managing

the diversity of the solution space could result in important

hyper-heuristic performance benefits.

Various examples of algorithms which attempt to either

further exploit the solution space around good performing

solutions [19], [21], [31], or improve the overall exploration

ability of the hyper-heuristic by applying diversity manage-

ment mechanisms directly to the solution space can be found

in the hyper-heuristic literature [6]–[10].

Solution space diversity management is also an important

consideration in a field closely related to hyper-heuristics,

namely memetic computing [11]. Crepinsek et al. [12] pro-

vide a detailed review of diversity management in memetic

computing and other fields. Notable examples of using so-

lution space diversity to control the exploration-exploitation

trade-off of memetic algorithms are the fitness-diversity adap-

tive local search algorithms [24].
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More closely related to heuristic space diversity is the

issue of selecting the set of low level heuristics. Montazeri et
al. [14] ensured that their set of low level heuristics contains

both exploiter heuristics, designed for intensification, and

explorer heuristics, aimed at diversification. Yao et al. [2]

proposed a pairwise metric which can be used to determine

the risk associated with an algorithm failing to solve the

problem in question. Engelbrecht [15] selected complemen-

tary swarm behaviours in a heterogeneous particle swarm

optimization (PSO) algorithm by analyzing the exploration-

exploitation finger prints of the different PSO updates.

Recently, researchers have started to dynamically update

the set of low level heuristics during the optimization run.

Sim et al. [16] made use of a self-organizing network of

low level heuristics to ensure that different heuristics were

available to cover different areas of the search space. Random

heuristics were added at fixed time intervals and an affinity

measure related to the difference in performance between

the different low level heuristics was used to determine

when an under-performing heuristic should be removed. The

evolutionary selection hyper-heuristic of Misir et al. [17]

makes use of an adaptive dynamic heuristic set strategy, a

move acceptance strategy, and a re-initialisation mechanism

to manage the exploration-exploitation trade-off. The first

explicit metric focused on measuring and monitoring HSD,

was defined by Grobler et al. [1]. Various strategies for

increasing and decreasing the size of the set of available

constituent algorithms at predefined time intervals were also

developed and showed promising results.

It is clear that a number of researchers have considered

techniques to improve the exploration-exploitation trade off

in a hyper-heuristics context. The selection of low level

heuristics with regards to diversity management and the

effective management of the set of low level heuristics over

time have also been studied. However, to the best of the

authors’ knowledge, this paper is the first to attempt to

manage HSD based on the performance of a specific HSD

metric.

III. THE HETEROGENEOUS META-HYPER-HEURISTIC

ALGORITHM

Due to its excellent performance against other popular

multi-method algorithms, the tabu-search based HMHH al-

gorithm of [22], illustrated in Figure 1, was used as a basis

for investigating the management of HSD in this paper. The

HMHH algorithm divides a population of entities into a

number of subpopulations which are evolved in parallel by

a set of constituent algorithms. Each entity is able to access

the genetic material of other subpopulations, as if part of

a common population of entities. The allocation of entities

to constituent algorithms is updated on a dynamic basis

throughout the optimization run. The idea is that an intelligent

algorithm can be evolved which selects the appropriate con-

stituent algorithm at each kth iteration to be applied to each

entity within the context of the common parent population,

to ensure that the population of entities converges to a

high quality solution. The constituent algorithm allocation

Fig. 1: The heterogeneous meta-hyper-heuristic (HMHH).

is maintained for k iterations, while the common parent

population is continuously updated with new information

and better solutions. Throughout this process, the various

constituent algorithms are ranked based on their previous

performance as defined by Qδm(t) in Algorithm 1. More

specifically,

Qδm(t) =

|IIIm(t)|∑
i=1

(f(xxxi(t))− f(xxxi(t+ k)))

∀i ∈ IIIm(t) (1)

where f(xxxi(t)) denotes the fitness function value of entity

i at iteration t and IIIm(t) is the set of entities allocated to

algorithm m at iteration t. A tabu list is used to prevent the

algorithm from repeatedly using the same poorly performing

constituent algorithms. The highest ranking non-tabu operator

is then selected for each entity during re-allocation of entities

to algorithms as described in [13].

The HMHH uses four common meta-heuristic algorithms

as the set of constituent algorithms:

• A genetic algorithm (GA) with a floating-point represen-

tation, tournament selection, blend crossover [23], [27],

and self-adaptive Gaussian mutation [18].

• The guaranteed convergence particle swarm optimiza-

tion algorithm (GCPSO) [28].

• The self-adaptive differential evolution algorithm with

neighborhood search (SaNSDE) [29].

• The covariance matrix adapting evolutionary strategy

algorithm (CMAES) [30].

IV. INVESTIGATING ALTERNATIVE HEURISTIC SPACE

DIVERSITY MANAGEMENT STRATEGIES

In this paper three HSD control strategies based on the

diversity metric of Grobler et al. were evaluated. For all

three strategies, certain predetermined bounds within which

the HSD should remain, are defined.

HSD(1) attempts to maintain a high HSD throughout the

optimization run. As soon as HSD falls below a pre-defined
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Algorithm 1: The heterogeneous meta-hyper-heuristic.

1 Initialize the parent population XXX
2 MMM(t) denotes the set of constituent algorithms available

at iteration t
3 Ai(t) denotes the algorithm applied to entity i at

iteration t
4 k denotes the number of iterations between

entity-to-algorithm allocation

5 Initialize MMM(t)
6 t = 0
7 for All entities i ∈XXX(0) do
8 Randomly select an initial algorithm Ai(0) from

MMM(t) to apply to entity i
9 end

10 while A stopping condition is not met do
11 for All entities i ∈XXX(t) do
12 Apply constituent algorithm Ai(t) to entity i for

k iterations
13 end
14 t = t+ k
15 Calculate Qδm(t), the total improvement in fitness

function value of all entities assigned to algorithm

m from iteration t− k to iteration t using

Equation (1).

16 for All entities i ∈XXX(t) do
17 Use Qδm(t) as input to select constituent

algorithm Ai(t) according to the rank based

tabu search mechanism described in [13]
18 end
19 if HSD falls outside of predefined bounds then
20 Update AAA(t) according to the selected HSD

strategy.
21 end
22 end

threshold, β, an entity is randomly selected and re-allocated

to another randomly selected available constituent algorithm

to increase the HSD above the threshold. An example is

provided in Figure 2.

HSD(2) is based on the assumption that a desirable

heuristic space is diverse at the start of the optimization

process and converges towards the end of the optimization

run to a less diverse heuristic space where most entities are

allocated to a single good performing constituent algorithm

taking into account the learning process of the hyper-heuristic

algorithm and specific characteristics of the problem being

solved. In other words, the HSD(2) strategy attempts to

obtain a decreasing HSD throughout the optimization run.

This objective is achieved by defining two bounds, similar to

the bounds defined in [31] to control solution space diversity.

A linearly decreasing upper, UBDh
, and a lower bound,

LBDh
, was defined as follows:

Time

HSD HSD = beta

Intervention applied 
to increase HSD to 

above allowable 
bound

Fig. 2: A conceptual example of the operation of HSD(1).

UBDh
(1) =Dh(1) + γDh(1) (2)

UBDh
(Imax) =γDh(1) (3)

LBDh
(1) =Dh(1)− γDh(1) (4)

LBDh
(Imax) =0 (5)

where γ is a positive constant between 0 and 1, Imax is the

maximum number of iterations allowed, and HSD, HSD(t),
at time t is defined as:

Dh(t) =MaxDh(t)

(
1−

∑I
i=1 |T − ni(t)|

1.5ns

)
(6)

with

T =
ns

na
, (7)

where na is the number of algorithms available for selection

by the hyper-heuristic, ns is the number of entities in the

population, ni(t) is the number of entities allocated to

algorithm i at iteration t, and UBDh(t) is the upper bound of

the HSD measure. For the purposes of this paper, MaxDh(t)

was set to 100 so that Dh(t) ∈ [0, 100].

As soon as the HSD exceeds the upper bound, a HSD

decreasing mechanism is applied to a randomly selected

individual to decrease the overall HSD of the algorithm.

The decreasing mechanism identifies the best performing

constituent algorithm and randomly selects an entity which

is not currently assigned to this best performing constituent

algorithm and assigns it to the best performing algorithm to

reduce the overall HSD of the population. When the HSD

decreases to below the lower diversity bound, then the HSD

increasing mechanism of HSD(1) is applied to increase HSD

to fall within the defined bounds. An example is provided in

Figure 3.

HSD(3) is similar to HSD(2) apart from the fact that

an increasing HSD profile is desirable. The motivation for

this strategy was the excellent performance of the EIHH2

algorithm where the best performing constituent algorithm

was first allowed to work on the problem until minimal
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Time

HSD

Upper HSD 
bound

Lower HSD
bound

Intervention applied 
to increase HSD to 
fall within allowable 

bounds

Fig. 3: A conceptual example of the operation of HSD(2).

improvement was obtained and other constituent algorithms

could be added. A linearly increasing upper, UBDh
, and a

lower bound, LBDh
, was defined for heuristic space diversity

as follows:

UBDh
(1) =γDh(1) (8)

UBDh
(Imax) =Dh(1) + γDh(1) (9)

LBDh
(1) =0 (10)

LBDh
(Imax) =Dh(1)− γDh(1) (11)

An example is provided in Figure 4.

Time

HSD

Upper HSD 
bound

Lower HSD
bound

Intervention applied 
to decrease HSD to 
fall within allowable 

bounds

Fig. 4: A conceptual example of the operation of HSD(3).

V. EMPIRICAL EVALUATION

The three metric-based HSD control strategies and the

HMHH algorithm with no HSD control were evaluated on the

first 14 problems of the 2005 IEEE Congress of Evolutionary

Computation benchmark problem set [32] in 10 and 30

dimensions. The algorithm control parameters, such as the

HSD threshold and bounds parameters, will have an influence

on algorithm performance and will thus need to be tuned

more thoroughly in future. The initial control parameters used

are, however, listed in Table I. All the constituent algorithm

control parameters were used as specified in [1].

TABLE I: HMHH algorithm parameters.

Parameter Value used
Entities in common population (ns) 100

Iterations between re-allocation (k) 5

Size of tabu list 2

HSD threshold (HSD(1)) (β) 0.5

HSD bounds parameter (γ) 0.2

The results of the first comparison between the various

heuristic space diversity management techniques are pre-

sented in Table II. For all the experiments conducted in

this paper, results for each algorithm were recorded over

30 independent simulation runs. The notation, μ and σ,

denote the mean and standard deviation associated with the

corresponding performance measure and #FEs denotes the

number of function evaluations which were needed to reach

the global optimum within a specified accuracy. Where the

global optimum could not be found within the maximum

number of iterations, the final solution at Imax, denoted by

FFV , was recorded.

Statistical tests were also used to evaluate the signifi-

cance of the results. The results in Table III were obtained

by comparing each dimension-problem-combination of the

strategy under evaluation, to all of the dimension-problem-

combinations of the other strategies. For every comparison, a

Mann-Whitney U test at 95% significance was performed (us-

ing the two sets of 30 data points of the two strategies under

comparison) and if the first strategy statistically significantly

outperformed the second strategy, a win was recorded. If no

statistical difference could be observed a draw was recorded.

If the second strategy outperformed the first strategy, a loss

was recorded for the first strategy. The total number of wins,

draws and losses were then recorded for all combinations of

the strategy under evaluation. As an example, (1-22-5) in row

1 column 2, indicates that the HMHH strategy significantly

outperformed HSD(1) only once over the benchmark problem

set. Furthermore, 22 draws and 5 losses were recorded.

From the results it is clear that attempting to manage HSD

through an HSD metric as done in strategy HSD(1) and

HSD(2) does lead to a statistically significant difference in

hyper-heuristic performance when compared to the baseline

HMHH algorithm where no HSD manipulation is used. The

best performing HSD control strategy is HSD(1). In contrast,

HSD(3) performed quite poorly.

The best performing solution diversity management strat-

egy from Table III, HSD(1), was also compared under similar

conditions to the PAP algorithm of Yao et al. [2] and the

EIHH2 algorithm of Grobler et al. [1]. PAP was found in a

previous study [33] to be one of the better performing multi-

method algorithms currently available. In the same study,

the EIHH2 algorithm was found to be the best performing

algorithm. The EIHH2 algorithm also attempts to manage

heuristic space diversity for better algorithm performance.
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A priori knowledge of the performance of the set of con-

stituent algorithms is, however, required. The optimization

process commences with only the best performing constituent

algorithm available to the EIHH2 algorithm. At exponential

time intervals throughout the rest of the optimization process,

additional constituent algorithms are inserted into the set of

available constituent algorithms in sequence of better per-

formance. The resulting exponentially increasing HSD was

previously shown to improve algorithm performance. Finally,

the best performing constituent algorithm (CMAES) [30],

was also added for comparison purposes. The results are

recorded in Table IV. The number of “Mann-Whitney U

wins-draws-losses” obtained by HSD(1) when compared to

PAP, EIHH2, and CMAES is recorded in Table V. The

complete results of all the constituent algorithms can be

found in [34].

TABLE III: Hypotheses analysis of alternative heuristic space di-
versity control mechanisms.

HMHH HSD(1) HSD(2) HSD(3) TOTAL
HMHH NA 1-22-5 3-20-5 8-18-2 12-60-12
HSD(1) 5-22-1 NA 1-25-2 10-16-2 16-63-5
HSD(2) 5-20-3 2-25-1 NA 9-16-3 16-61-7
HSD(3) 2-18-8 2-16-10 3-16-9 NA 7-50-27

Table V shows that the HSD(1) algorithm outperformed

PAP and EIHH2 in a number of cases. HSD(1) performed

better than PAP 12 times out of 28 instances (43% of the

time) and performed better than EIHH2 6 times and equally

well 17 times out of 28 instances. HSD(1) did not perform

quite as well when compared to CMAES, only performing

better 9 times out of 28 instances. This can, however, be ex-

pected since a portion of the function evaluation budget needs

to be allocated to solve the algorithm selection problem. This

is in contrast to CMAES which can use the entire function

evaluation budget on optimization of the actual problem.

VI. CONCLUSION

This paper has investigated the impact of different heuris-

tic space diversity (HSD) management strategies on multi-

method optimization algorithm performance. The results in-

dicated that a significant performance improvement can be

obtained by controlling the HSD of the HMHH algorithm

by means of the HSD metric of Grobler et al.. The HSD(1)

strategy which attempts to maintain a high HSD throughout

the optimization run, was shown to outperform the decreas-

ing (HSD(2)) and increasing (HSD(3)) HSD management

strategies. Finally, the best performing HSD control strategy

was shown to perform well against a popular multi-method

algorithm, another meta-hyper-heuristic with embedded HSD

control, and the best performing constituent algorithm.

Future research opportunities exist in expanding the exper-

iments to a wider range of benchmark problems, conducting

a sensitivity analysis on the algorithm control parameters,

a more detailed analysis of the characteristics of the HSD

metric and developing additional HSD control strategies. The

performance of the HSD(1) strategy can also be evaluated on

large-scale real-world applications.
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TABLE V: Further hypotheses analysis of the best performing
HSD control mechanism (HSD(1)) against other popu-
lar multi-method algorithms.

PAP EIHH2 CMAES TOTAL
HSD(1) 12-12-4 6-17-5 9-2-17 27-31-26
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