
Evolving Non-linear Stacking Ensembles
for Prediction of Go Player Attributes

Josef Moudřı́k
Charles University in Prague

Faculty of Mathematics and Physics
Malostranské náměstı́ 25
Prague, Czech Republic

email: j.moudrik@gmail.com

Roman Neruda
Institute of Computer Science

Academy of Sciences of the Czech Republic
Pod Vodárenskou věžı́ 2
Prague, Czech Republic
email: roman@cs.cas.cz

Abstract—The paper presents an application of non-linear
stacking ensembles for prediction of Go player attributes. An
evolutionary algorithm is used to form a diverse ensemble of
base learners, which are then aggregated by a stacking ensemble.
This methodology allows for an efficient prediction of different
attributes of Go players from sets of their games. These attributes
can be fairly general, in this work, we used the strength and style
of the players.

I. INTRODUCTION

The field of computer Go is primarily focused on the
problem of creating a program to play the game by finding
the best move from a given board position [1]. We focus
on analyzing existing game records with the aim of helping
humans to play and understand the game better instead. In
our previous work [2], we have presented a way to extract
information rich features from sets of Go players’ games.
This paper presents machine-learning methodology we have

devised to fully utilize these extracted features. We have used
stacking ensembles with non-linear second-level learner. Both
the members of the ensemble and the second-level learner are
chosen by a genetic algorithm. The resulting model performs
better than any single base-learner (see Section III) on its own,
and also better than the best hand-tuned ensemble we have
been able to come up with.
As the methods of this work are mainly domain-

independent, we only give a brief introduction to Go-related
specifics. Go is a two-player full-information board game
played on a square grid (usually 19 × 19 lines) with black
and white stones; the goal of the game is to surround territory
and capture enemy stones. Different players tend to choose
different strategies to achieve this, in Go terminology this
is captured by the notion of playing style. Obviously, the
players also vary in their proficiency, to which we refer to
as strength. All these player attributes (various axes of style,
and strength) can be mapped on a subset of real numbers [3].
In this paper, we use thusly defined regression domains as
black-box datasets.
This paper is organized as follows. Section II gives overview

of related work. Section III presents the learners (Sections

III-A and III-B) and the genetic algorithm (Section III-C).
Section IV discusses performance measures used to compare
various learners. Experiments and results are shown in Sec-
tion V. Section VI discusses applications and future work.

II. RELATED WORK

Ensemble approaches to machine-learning have been in
researchers’ attention for over two decades. During the time,
various approaches appeared. Some of them train one model
on differently sampled data [4], as is the case of bagging [5]
and the related random forests algorithm [6]. The schemes for
combining such models in a voting-like manner seems to be
well understood [7]. For example, in neural networks, these
ideas have also recently been re-introduced in the form of a
dropout [8].
Another approach to combine different models is boost-

ing [9], where a (presumably weak) model is iteratively trained
to specialize on hard instances. Stacking [10] on the other
hand, uses a two-layered approach, where model on the second
level learns to correct for mistakes that first level learners
make. For classification, various ways of forming the features
from the first level prediction have been proposed ([11], [12]),
multi-response linear regression has been found to work well
for second level learner. For regression task such as ours,
simple linear second level models have been proposed by
Breiman [13]. We are not aware of any use of non-linear
models for second level predictors like we use in this work.
Prediction of Go player attributes has until recently been

limited to pre-defined questionnaires and simple methods [14],
[15]. Universal approach to the problem has been introduced
by our previous work [2] and [3].

III. LEARNERS

This section presents the machine learning framework we
have used. The basic methods are well-documented in litera-
ture, so we only give a very brief overview here.
Suppose we have a set of data

Tr = {(x1, y1), . . . , (xN , yN)},∀i : xi ∈ R
p, yi ∈ R,

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.235

1673

and we want to find a function r which is able to predict the
value yi from xi with a reasonable accuracy and can gener-
alize this dependency to unseen pairs. The machine learning
methods presented here are regarded as learners. For a given
data Tr, the learner should output a regression function which
performs the regression of the dependent variable, as learned
from the data.
Of course, some regression functions perform better than

others. Mainly, this is because each learner has different
(inherent) assumptions about the form of the function it is
fitting; we call this the inductive bias (of the learner and the
underlying model). Often, we deal with data where the under-
lying dependency and properties of the data are unknown, so
it is hard to say whether assumptions of a particular model are
right. To overcome this problem, usually a bunch of models is
tried and the best one is chosen (according to some criterion).
Another approach, the one we use in this work, is not to

choose the best, but rather try to combine the different models
to create one higher-level method. Because different methods
have different biases, they might be able to capture different
dependencies in the data. If we combined the methods (base
learners) usefully, we could get better performance than with
the “use the best learner” approach, we understand this as
ensemble learning.

A. Base Learners

1) Mean Regression: is a very simple method, which we
use as a reference for comparing performances of other
learners. It simply outputs the mean of the y’s in the training
set, and it is thus constant regardless of the input x.

mean(x) =
1

|Tr|

∑
(x′,y′)∈Tr

y′

2) Artificial Neural Networks: are a standard technique
used for function approximation. The network is composed of
simple computational units which are organized in a layered
topology, as described e.g. in a monograph [16]. We have
used a simple feedforward neural network with 20 hidden
units in one hidden layer. The neurons have standard sigmoidal
activation function and the network is trained using the RPROP
algorithm [17] for at most 100 iterations (or until the error is
smaller than 0.001). In both datasets used, the domain of the
particular target variable (strength, style) was linearly rescaled
to 〈−1, 1〉 prior to learning. Similarly, predicted outputs were
rescaled back by the inverse mapping.
3) k-Nearest Neighbor Regression: is another commonly

used machine learning algorithm [18]. The assumption of this
model is that we can deduce the dependent y by looking at
vectors from the feature space that are close to the x.

Definition. For a fixed k and x, let the Nb = {x′
1, . . . , x

′
k}

denote a set of k closest vectors to x from the T with respect
to some metric δ; let D be a vector of distances, such that
Di = δ(x, x′

i); for each x′
i, let y

′
i be the associated dependent

variable from the training set T .

TABLE I
BASE LEARNERS AND THEIR SETTINGS.

Base learner Settings
Mean regression —
PLS regression l ∈ {2, . . . , 10}

k-nearest neighbors k ∈ {10, 20, . . . , 60}, α ∈ {10, 20},
δ ∈ {Manhattan,Euclidean}, all combinations.

Random Forests N ∈ {5, 10, 25, 50, 100, 200}
Neural network max ∈ {50, 100, 200, 500} iterations

ε ∈ {0.001, 0.005}, 1 layer with
number of neurons ∈ {10, 20}, all combinations.

Symmetric sigmoid activation function.
Bagged Neural For ensemble sizes of ∈ {20, 40, 60}, each

Networks Neural network (from right above) was tested.

For a given x, the idea is to find the nearest k vectors (the
Nb set) from the training set, and then estimate the dependent
variable y from the associated y′1, . . . , y

′
k.

In this work, we have used the Manhattan (p-1) and Eu-
clidean (p-2) distances as δ. To infer the y, we define the
model to be:

y =

∑k

i=1 w(Di)y
′
i∑k

i=1 w(Di)
,

for some weighting function w. We have used the inverse of
the distance between x and the particular neighbor instance:

w(Di) = 1/Dα
i ,

where α is a parameter specifying the effect of increasing
distance. When α is equal to zero, we obtain the averaging
scheme, where the weights do not depend on the distance
Di—all the k neighbors are valued equally. With increasing
α, the x′

i instances closer to x are preferred over more distant
neighbors. When α goes to infinity, the method essentially
becomes one-nearest neighbor.
4) PLS: The family of partial least squares (PLS) methods

assumes that the observed variables can be modelled by means
of a few latent variables (their number is specified by a
parameter l). The method projects the data onto this latent
model in a way that minimizes error. The process is somewhat
similar to Principal Component Regression.
For a good overview, see the work [19].
5) Random Forests: utilize an ensemble of tree learners to

predict the dependent value [6], [20]. Although this model is
an ensemble itself, we treat is as a black box in this work.
Each tree from the forest (of size N) is trained on an

independently chosen subset of training data, exactly as the
bagging in Section III-B1 does. See the Breiman’s paper [6]
for details.

B. Ensemble Learners

1) Bagging: is a simple ensemble method introduced in [5].
The idea in bagging is to train a particular base learner bl
on differently sampled data and aggregate the results. The
method has one parameter t which specifies the number of
data samples. Each of them is made by randomly choosing
|Tr| elements from training set Tr with repetition. The base

1674

learner bl is trained on each of these samples. The regression
simply averages results from the t resulting models.
Paper [5] discusses, that this procedure is especially useful

for learners bl which are unstable—small perturbations in the
data have big impact on the resulting model. Aggregating
the bootstrapped models essentially introduces robustness to
such models. Examples of learners where the bagging is
beneficial are neural networks (where overfitting is often a
serious problem) and regression trees (see Random Forests
above).
2) Stacking: is a more sophisticated approach. The original

idea was pioneered by [10] and extended by [12], [13]. The
method is basically a two level hierarchical model of learners
with a clever scheme for training. The first level is composed
by an ensemble of learners. The second level is a single
learner which aggregates guesses from the 1st level models
and outputs the final prediction. Figure 1 shows the topology.
The training dataset is divided into smaller parts (by cross-

validation, see Section IV-A). The 1st level learners are trained
on some of them and their generalization biases are measured
by testing their performance on the rest. The 2nd level learner
learns to correct these—it learns what the correct output
is, given what the 1st level predictors output. Algorithm 1
describes the procedure in more detail. Usually, the 2nd level
learner is a simple linear regression, in this work we use non-
linear models as well.
Having diverse base learners (various models with different

biases) often proves to increase the prediction performance.
The performance of stacking is usually better than the best
of the base learners on its own. It is not the case, however,
that having badly performing learners in the ensemble does
not worsen the performance. Choosing the right set of 1st
level learners is very important if we are to attain the best
performance, as is the choice of the 2nd level aggregating
learner and the number of folds for the cross-validation step.
Usually, all these parameters are hand-tuned; in this work, we
use a genetic algorithm (Secion III-C).

1st Level

2nd Level

Input

A B C D

E

Fig. 1. The topology of the stacking ensemble method. A, B, C and D are
the level 1 learners, E is the level 2 learner.

C. Evolving Stacking Ensembles

We have discussed that ensemble learning might be bene-
ficial in terms of performance. For stacking, it is desirable to

Algorithm 1: Stacking for Regression
input : an ordered set of 1st level learners ensemble, a

level 2 learner l2, training data Tr, number of
folds Folds

output: regression function f

/* Training set for the level 2
learner. */

1 L2Tr ← {};
2 foreach (Tr′, T s′) in CrossValidation(Tr, Folds)
do

/* The level 1 learners trained on
split Tr′. */

3 L1← (ensemble0(Tr
′), . . . , ensemblen(Tr

′));
4 foreach (x′, y′) in Ts′ do

/* Responses of level 1 predictors
to unseen x′ and the real reply
y′. */

5 L2Tr ← L2Tr ∪ {((L10(x
′), . . . , L1n(x

′)), y′)};
6 end
7 end
/* Train the level 1 learners on the

real data. */
8 L1← (ensemble0(Tr), . . . , ensemblen(Tr));
/* Train the level 2 learner on the

prepared data. */
9 L2← l2(L2Tr);
10 return Compose(L1, L2);

form the ensemble out of diverse base learners. The problem
however is how to choose the learners into the ensemble. This
becomes apparent once one tries to hand-tune the parameters
of different base-learners, find the best combination of them
and find the best aggregating 2nd level learner.
We have used a simple genetic algorithm (GA) to search

the space of possible ensembles for the stacking. Genetic
algorithms are an universal optimization tool, see [21] for
a good tutorial. The general procedure is iterative. In each
iteration, individuals (candidate solutions) are evaluated using
a fitness function, and an intermediate population is formed by
randomly choosing individuals, with probability proportional
to the fitness (roulette selection). From this intermediate
population, the population for the next step is taken by
making pairwise crossover operation and mutation on the
newly formed individuals.
In the text below, we operate with a set of base learners

BL, from which we choose the learners into the ensemble.
We should note that the set of base learners BL is not strictly
limited to learners we have listed as base in Section III-A—we
use both differently parameterized base learners and bagged
neural networks.
We have used a very simple encoding for an individual.

An individual is a triple of (I, Folds,�v). The first two values
I and Folds define the 2nd level learner. I is the index of the
2nd level aggregating learner in BL and Folds is the number

1675

of folds for the stacking procedure. The vector �v of size |BL|
marks a subset of BL that forms the ensemble: �vi = 1 if the
base learner BLi belongs to the ensemble; �vi = 0 when it
does not.
We have used two independent mutations to modify the

individuals. Firstly, with probability PmM , we either change
I to any of 1 . . . |BL|, or we change the number of Folds to
2 . . . 6, (MutateM in the pseudocode). Whether we change
I , or Folds is decided using a further random coin toss.
Secondly, with probability Pmv a random position i in v
is selected and the bit vi is swapped, (MutateV in the
pseudocode).
The crossover operation of parents P = (I, Folds,�v)

and P ′ = (I ′, Folds′, �v′) selects a random position i ∈
{1 . . . |BL|} and outputs the following tuple

(I, Folds, (v1, . . . , vi, v
′
i+1, . . . , v

′
|BL|))

as the new individual. Please note that the index I (and number
of Folds) of the 2nd level learner is taken from the first parent
P . This is compensated for by the fact that crossover is always
performed in pairs (lines 8 – 9 in Algorithm 2).
The fitness function we have used is inversely proportional

to RMSE error of the resulting stacked ensemble.
Also, to make sure we do not lose the best solution, we have

used elitism, which brings the top E individuals unchanged
into the next generation.

IV. EVALUATING LEARNERS

To compare performances of different regression functions
(learners), we need a reliable metric. The goal is to estimate
the performance of a particular regression function on real
unseen data. We can estimate this performance by splitting
the data into parts that are only used for training (Tr) and
testing (Ts).

A. Cross-Validation

Cross-validation is a standard statistical technique for es-
timation of parameters. The idea is to split the data into k
disjunct subsets (called folds), and then iteratively compose
the training and testing sets and measure errors. In each of
the k iterations, k-th fold is chosen as the testing data, and all
the remaining k− 1 folds form the training data. The division
into the folds is done randomly, and so that the folds have
approximately the same size (in cases where the number of
samples |D| is not divisible by k, some folds are slightly
smaller than others). Please note that each sample from the
data is a part of the testing fold exactly once (it is part of a
training set k − 1 times). Refer to [22] for details.

B. Error Analysis

A commonly used performance measure is the mean square
error (MSE) which estimates variance of the error distribu-
tion. We use its square root (RMSE) which is an estimate of
standard deviation of the predictions,

RMSE =

√√√√ 1

|Ts|

∑
(ev,y)∈Ts

(predict(ev)− y)2,

Algorithm 2: Genetic Algorithm for finding optimal stack-
ing ensemble
input : size of the population S, size of the elite E,

probabilities of mutation PmM and Pmv,
maximal number of steps Max

output: The best individual.

1 Pop← RandomPopulation(S);
/* The best individual so far. */

2 Best← {};
3 foreach iteration in 1 . . .Max do
4 evaluation← Fitness(Pop);

/* PI is the intermediate
population. */

5 PI ← RouletteSelection(Pop, evaluation);
/* PN is the intermediate population

after Crossover. */
6 PN ← {};
7 foreach i in 1 . . . (S − E)/2 do
8 PN ← PN ∪ Crossover(PI[2 ∗ i],

PI[2 ∗ i+ 1]) ;
9 PN ← PN ∪ Crossover(PI[2 ∗ i+ 1],

PI[2 ∗ i]) ;
10 end

/* Save the best individual. */
11 Best← TakeTop(Pop, evaluation, 1);

/* Top E best continue unchanged. */
12 Pop← TakeTop(Pop, evaluation, E);
13 foreach individual in PN do
14 if Rnd(0,1) < PmM then
15 individual ←MutateM(individual);
16 end
17 if Rnd(0,1) < Pmv then
18 individual ←MutateV(individual);
19 end
20 Pop← Pop ∪{individual};
21 end
22 end
23 return Best;

where the machine learning model predict is trained on the
training data Tr and Ts denotes the testing data.

V. EXPERIMENTS AND RESULTS

A. Strength

One of the two major domains we have tested our frame-
work on is the prediction of player strength. In the game of
Go, strength (amateur) is measured by kyu (student) and dan
(master) ranks. The kyu ranks decrease from about 20th kyu
(absolute beginner) to 1st kyu (fairly strong player), the scale
continues by dan ranks, 1 dan (somewhat stronger than 1 kyu),
to 6 dan (a very strong player).
Dataset: We have collected a large sample of games from

the public archives of the Kiseido Go server [23], the sample
consists of over 100 000 records of games. The records were

1676

TABLE II
THE PARAMETERS OF THE GENETIC ALGORITHM FOR THE STRENGTH

DATASET.

Parameter Value
Set of base learners BL Is given in Table I.

Population size S 16
Elite size E 1

Number of iterations Max 100
Mutation probability PmI 0.2
Mutation probability Pmv 0.5

Fitness function 1/RMSE of the resulting
stacked learner The RMSE

is computed using 5-fold cross-validation.

TABLE III
STRENGTH: BEST GA STACKING ENSEMBLE.

Ensemble l. Settings
Stacking 6 folds, level 2 learner: Bagged (20×) NN:

ε = 0.005, max = 500 iter., 1 layer , 10 neurons.
Base l. Settings

Mean regression —
PLS regression l = 3

Random Forests N = 50

Neural network ε = 0.001, max = 200 iter., 1 layer, 20 neurons.
k-nn k = 20, α = 20, δ = Euclidean.
k-nn k = 40, α = 10, δ = Manhattan, Euclidean.
k-nn k = 40, α = 20, δ = Euclidean.
k-nn k = 50, α = 10, δ = Manhattan.
k-nn k = 50, α = 20, δ = Manhattan, Euclidean.
k-nn k = 60, α = 10, δ = Euclidean.
k-nn k = 60, α = 20, δ = Euclidean.

Bagged NN 20 × NN: ε = 0.001, max = 100, 1 layer, 10 neur.
Bagged NN 40 × NN: ε = 0.005, max = 100, 1 layer, 10 neur.
Bagged NN 40 × NN: ε = 0.001, max = 500, 1 layer, 20 neur.
Bagged NN 20 × NN: ε = 0.005, max = 200, 1 layer, 20 neur.
Bagged NN 40 × NN: ε = 0.005, max = 500, 1 layer, 20 neur.

divided by player’s strength and preprocessed as is detailed
in [2]. Here, it is enough to note that the dataset consists of 120
independent pairs (x, y) for each of the 26 ranks, where x is
the feature vector described in [2] (dimension of x was 1040),
and y is the target variable, which is one number describing
the rank (1-26).
Results: In the process of finding the best learner, we

started with a hand-tuned learner shown in Table IV. Using
this learner (which we found to perform reasonably well, as
shown in Table V-A) we evaluated different feature extractors
(previous section). At first, the dataset was processed using
the best feature extractors, which were concatenated to form
the data T for regression.
We then used the genetic algorithm (Section III-C; abbre-

viated to GA) to find the best performing stacked ensemble.
The initial population was seeded by the hand tuned learner.
The parameters of the genetic algorithm are given in Table II.
Unfortunately, the time needed for a single iteration was

very large in this setting (see Discussion for more detailed
treatment of the time complexity). To speed up the process, we
used a sub-sampled dataset for computing the fitness during
the GA (by randomly taking 1/10 prior to the running of
the GA). We assume, that this is not a principal obstacle

TABLE IV
THE HAND-TUNED LEARNER.

Ensemble learner Settings
Stacking 4 folds, level 2 learner: NN, ε = 0.005,

max = 100 iter., 1 layer, 10 neurons.
Base learners Settings
Mean regression —
PLS regression l = 3

k-NN k = 50, α = 20, δ = Manhattan.
Random Forests N = 50

Bagged NN 20 × NN: ε = 0.001, max = 100 iter.,
1 layer, 10 neurons.

TABLE V
REGRESSION PERFORMANCE OF DIFFERENT LEARNERS ON THE FULL

DATASET. THE RESULTS WERE COMPUTED USING 5-FOLD

CROSS-VALIDATION. PARAMETERS OF THE BEST GA STACKING

ENSEMBLE ARE GIVEN IN TABLE III, THE OTHER LEARNERS ARE TAKEN

FROM THE INITIAL HAND-TUNED LEARNER FROM TABLE IV.

Learner RMSE Mean cmp
Mean regression 7.507 1.00
Random Forrest 3.869 1.94

PLS 3.176 2.36
Bagged NN 2.66 2.82

Hand-tuned learner 2.635 2.85
Best GA stacking ensemble 2.607 2.88

for finding the best learner, since the down-sampling should
degrade the performance of the learners systematically—the
ordering of fitnesses is expected to be more or less the
same, though the fitness values surely differ. The run of
genetic algorithm took on average approximately 2.5 hours
per iteration on a 4-core commodity laptop in this setting.
The performance of the best ensemble found by the GA

(on the full dataset) are given in Table V-A along with
other learners to compare performances. The resulting learner
(Table III) is fairly complex as Figure 2 shows. Evolution of
the RMSE error in time is given in Figure 3.

B. Style

Apart from the strength estimation, we also tested the frame-
work presented in this work to test prediction of playing styles
of professional players. Playing style has different aspects,
some of them are vaguely defined (for details, see [24]).
Moreover, none of them has clear definition in a mathematical
sense. To capture these notions at least approximately, we
came up with four axes, whose ends correspond to opposing
principles in traditional Go knowledge. Next, we used a
questionnaire (submitted to domain experts) to find the style
values for a set of well known professional players from the
20th century.

Style 1 10
Territoriality Moyo Territory
Orthodoxity Classic Novel
Aggressivity Calm Fighting
Thickness Safe Shinogi

1677

3.05

3.10

3.15

3.20

3.25

3.30

 10 20 30 40 50 60 70 80 90 100

Iteration

R
M

S
E

Fig. 3. Evolution of RMSE error during the run of the genetic algorithm for finding an optimal stacking ensemble for the (sub-sampled) strength data.

Level-2 Learner

Mean

PLS

RF
50

NN

NN

NN

NN

k-nn
k-nn

Bag

Bag

Bag

9×

5×

Fig. 2. Structure of the best stacking ensemble found by the Genetic
Algorithm. The circle marks a normal learner, with description within, the
“cloud” denotes a bagging learner. The corresponding bagged learner is
connected using the circle-ended arrow. Precise descriptions of the learners are
given in Table III. Mean is the Mean regression, PLS Partial least squares
regression, RF Random Forests, NN various neural networks and k-nn is
obviously the k-nearest neighbor learner.

Dataset: The collection of games in this dataset comes from
the Games of Go on Disk (GoGoD) database by [25]. This
database contains more than 70 000 games, spanning from
the ancient times to the present. We chose a small subset
of well known players (mainly from the 20th century) and
asked some experts (professional and strong amateur players)
to evaluate these players using a questionnaire. [26] The
experts (Alexander Dinerchtein 3-pro, Motoki Noguchi 7-dan,
Vladimı́r Daněk 5-dan and Vı́t Brunner 4-dan) were asked to

value the players on four scales, each ranging from 1 to 10.
For each of 24 professional players, we obtained 12 pairs

(x, y), where x is the feature vector obtained from the games
as described in [2] (dimension of x was 640), and y is one
of the 4 styles—basically, we view the problem as 4 different
regression problems which share the same feature vectors.

Results: We used the genetic algorithm to determine the
best ensemble learner. During the process, we have encoun-
tered over-fitting problems concerning the very small size of
the dataset.

At first, we chose the parameters of the GA to be the same
as in the problem of strength (Table II), with the exception of
the fitness function. The RMSE error was computed in the
same manner as in the style feature extraction (one learner for
all the styles, the fitness of a learner is average RMSE on
the different styles). Similarly to the case of strength, it turned
out that it was not possible to use cross-validation on the full
dataset because of time constraints. We tried to workaround
this by subsampling the data prior to the experiment, but due
to very small size of the dataset, this resulted in over-fitting
of the resulting ensemble model.

Secondly, we tried not to use the cross-validation, but to use
proportional division scheme instead—the fitness is evaluated
by randomly taking 70% of the dataset for training and the
rest for testing; in each of the iterations, this is done anew to
mitigate any effects caused by biased random split (dividing
the dataset once prior to the run would cause over-fitting).
Unfortunately, this too did not yield satisfactory results. Even
though over-fitting was not the case, the genetic algorithm
was not able to consistently improve the ensembles—the sub-
sampled datasets in each of the iterations were too different
to ensure that the best individuals from one iteration would
have good chances in the next one. This rendered the genetic
algorithm unsuccessful.

1678

Consequently we concluded, that the robust cross-validation
with the full dataset is necessary and that we thus need to
compensate for the increased resource consumption differently.
We did this by limiting the population size to 10 individuals
and most importantly, by limiting the ensemble to contain at
most 5 base learners. Technically, this is done by randomly
removing excess number of base learners from each individual
at the end of each iteration. The parameters of the final genetic
algorithm are listed in Table VI.
The performances of the best learners found are given in

Table VII. The parameters of the models are omitted for
brevity, see [3] for more. Development of the RMSE error
in time is given in Figure 4. Each run of the genetic algorithm
(for different styles) took approximately one hour of CPU time
per iteration.

TABLE VI
THE PARAMETERS OF THE GENETIC ALGORITHM FOR THE STYLE

DATASET.

Parameter Value
Set of base learners BL Is given in Table I.

Population size S 10
Elite size E 1

Number of iterations Max 100
Mutation probability PmI 0.2
Mutation probability Pmv 0.5

Ensemble size limit 5
Fitness function 1/RMSE of the resulting stacked

learner. The RMSE is computed
using 5-fold cross-validation.

TABLE VII
REGRESSION PERFORMANCE OF DIFFERENT LEARNERS ON THE FULL

DATASET. THE RESULTS WERE COMPUTED USING 5-FOLD

CROSS-VALIDATION.

RMSE

Learner Territoriality Orthodoxity
Mean regression 2.403 2.421

Hand tuned learner 1.434 1.636
The best GA learner 1.394 1.506

Learner Aggressivity Thickness
Mean regression 2.179 1.682

Hand tuned learner 1.423 1.484
The best GA learner 1.398 1.432

VI. DISCUSSION

The results in both domains show that evolving stacking
ensembles non-trivially improves upon the performance of
the best hand tunes ensemble, circa by 1.5% for the case
of strength and by 4% for the style domains (averaged over
different styles). The resulting ensembles also show a lot of
diversity.
The main drawback of the methods described is clearly

the time consumed, which—even for such relatively small
datasets—is in orders of hours per iteration. The main cause
of this is the cross-validation performed at various levels,
multiplying time complexity. At the outer level, it is run to
obtain better error estimates. The cross-validation is also used

in the inner loop during training Stacking ensembles, and
moreover, in some of the base learners. In this extreme case,
the complexity of training the base model is multiplied by
number of Folds3. With some effort, the large sequential time
could also be exchanged for large number of machines, since
it is easy to train different folds in parallel. Furthermore, the
time-complexity can be lowered by limiting the number of
learners in the ensemble, or by restricting the base learners
used by the stacking ensemble to be simple and fast models
(with possible loss of precision).
The prediction of player attributes as demonstrated in this

work has been (together with the feature extraction presented
in [2]) combined in an online web application1, which evalu-
ates games submitted by players and predicts their playing
strength and style. The predicted strength is then used to
recommend relevant literature and the playing style is utilized
by recommending relevant professional players to review. So
far, the web application has served thousands of players and
it was generally very well received. We are aware of only
two tools, that do something alike, both of them are however
based on a predefined questionnaire. The first one is the
tool of [14]—the user answers 15 questions and based on
the answers he gets one of predefined recommendations. The
second tool is not available at the time of writing, but the
discussion at [15] suggests, that it computed distances to some
professional players based on user’s answers to 20 questions
regarding the style. We believe that our approach is more
precise, both because it takes into account many different
aspects of the games [2], and because the methods presented
in this paper are able to use the information well.

VII. CONCLUSION

The paper presents machine-learning algorithm which
evolves non-linear stacking ensembles of learners. The algo-
rithm is applied on two computer Go domains, prediction of
player’s strength and different aspects of his style. In both
these domains, the algorithm outperforms other methods, with
the disadvantage of taking relatively large amount of time;
solutions to this problem are proposed.

VIII. IMPLEMENTATION

The code used in this work is released online as a part
of GoStyle project [27]. The majority of the source code is
implemented in the Python programming language [28].
The machine learning models were implemented and eval-

uated using the Orange Datamining suite [29] and the Fast
Artificial Neural Network library FANN [30]. We used the
Pachi Go engine [31] for the raw game processing.

Acknowledgment

This research has been partially supported by the Czech Sci-
ence Foundation project no. 15-18108S. J. Moudřı́k has been
supported by the Charles University Grant Agency project
no. 364015 and by SVV project no. 260 224.

1http://gostyle.j2m.cz

1679

1.35

1.40

1.45

1.50

1.55

1.60

1.65

 10 20 30 40 50 60 70 80 90 100

Iteration

R
M

S
E

Territoriality
Orthodoxity
Aggressivity
Thickness

Fig. 4. Evolution of RMSE error during the run of the genetic algorithm for finding an optimal stacking ensemble for the style data.

REFERENCES

[1] S. Gelly and D. Silver, “Achieving master level play in 9x9 computer
go,” in AAAI’08: Proceedings of the 23rd national conference on
Artificial intelligence. AAAI Press, 2008, pp. 1537–1540.

[2] J. Moudřı́k, P. Baudiš, and R. Neruda, “Evaluating go game records for
prediction of player attributes,” in IEEE Computational Intelligence in
Games 2015. IEEE, 2015, pp. 162–168, in Print.

[3] J. Moudřı́k, “Meta-learning methods for analyzing go playing
trends,” Master’s thesis, Charles University, Faculty of Mathematics
and Physics, Prague, Czech Republic, 2013. [Online]. Available:
http://www.j2m.cz/∼jm/master thesis.pdf

[4] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, no. 10, pp.
993–1001, 1990.

[5] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp.
123–140, Aug. 1996. [Online]. Available: http://dx.doi.org/10.1023/A:
1018054314350

[6] ——, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[7] J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining classifiers,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 20, no. 3, pp. 226–239, 1998.

[8] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[9] Y. Freund and R. Schapire, “A desicion-theoretic generalization of
on-line learning and an application to boosting,” in Computational
Learning Theory, ser. Lecture Notes in Computer Science, vol. 904.
Springer Berlin Heidelberg, 1995, pp. 23–37. [Online]. Available:
http://dx.doi.org/10.1007/3-540-59119-2 166

[10] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5,
pp. 241–259, 1992. [Online]. Available: http://www.machine-learning.
martinsewell.com/ensembles/stacking/Wolpert1992.pdf

[11] K. M. Ting and I. H. Witten, “Issues in stacked generalization,” 1999.
[12] P. K.-W. Chan, “An extensible meta-learning approach for scalable and

accurate inductive learning,” Ph.D. dissertation, Columbia University,
1996.

[13] L. Breiman, “Stacked regressions,” Machine Learning, vol. 24, pp.
49–64, 1996. [Online]. Available: http://dx.doi.org/10.1007/BF00117832

[14] A. Dinerchtein. (2012) What is your playing style? [Online]. Available:
http://style.baduk.com

[15] Sensei’s Library. (2013) Which pro do you most play like. [Online].
Available: http://senseis.xmp.net/?WhichProDoYouMostPlayLike

[16] S. Haykin, Neural Networks: A Comprehensive Foundation (2nd
Edition), 2nd ed. Prentice Hall, jul 1998. [Online]. Available:
http://www.worldcat.org/isbn/0132733501

[17] M. Riedmiller and H. Braun, “A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm,” in IEEE Interna-
tional Conference on Neural Networks, 1993, pp. 586–591.

[18] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27,
1967.

[19] R. Rosipal and N. Krmer, “Overview and recent advances in partial
least squares,” in in Subspace, Latent Structure and Feature Selection
Techniques, Lecture Notes in Computer Science. Springer, 2006,
pp. 34–51. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.85.7735

[20] L. Breiman, J. H. Friedman, O. R. A., and C. J. Stone, Classification and
regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced
Books & Software, 1984.

[21] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing,
vol. 4, no. 2, pp. 65–85, 1994.

[22] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection.” Morgan Kaufmann, 1995, pp. 1137–
1143.

[23] W. Shubert. (2013) KGS archives — kiseido go server. [Online].
Available: http://www.gokgs.com/archives.jsp

[24] J. Fairbairn. (winter 2011) Games of Go on Disk — GoGoD
Encyclopaedia and Database, Go players’ styles. [Online]. Available:
http://www.gogod.co.uk/

[25] T. M. Hall and J. Fairbairn. (winter 2011) Games of Go on
Disk — GoGoD Encyclopaedia and Database. [Online]. Available:
http://www.gogod.co.uk/

[26] P. Baudiš and J. Moudřı́k, “On move pattern trends in a large
go games corpus,” Arxiv, CoRR, October 2012. [Online]. Available:
http://arxiv.org/abs/1209.5251

[27] J. Moudřı́k and P. Baudiš. (2013) GoStyle — Determine playing style
in the game of Go. [Online]. Available: http://gostyle.j2m.cz/

[28] Python Software Foundation. (2008, November) Python 2.7. [Online].
Available: http://www.python.org/dev/peps/pep-0373/

[29] J. Demšar et al., “Orange: Data mining toolbox in python,” Journal of
Machine Learning Research, vol. 14, pp. 2349–2353, 2013. [Online].
Available: http://jmlr.org/papers/v14/demsar13a.html

[30] S. Nissen, “Implementation of a fast artificial neural network library
(fann),” Department of Computer Science University of Copenhagen
(DIKU), Tech. Rep., 2003, http://fann.sf.net.

[31] P. Baudiš et al. (2012) Pachi — Simple Go/Baduk/Weiqi Bot. [Online].
Available: http://repo.or.cz/w/pachi.git

1680

