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Abstract—In this paper we investigate the application of
ensemble of one-class classifiers to the problem of acoustic event
classification. We present some initial results that are based on
acoustic signal emitted by different litter causing material when
contacted by human. When a person interacts with an object
made with a specific material, a characteristic sound is produced
as a result of the interactions. We consider such interactions
or activities as atomic events. We propose the application of
ensemble of one-class fuzzy rule-based classifier to the problem
of identification of activities that can cause possible litter in the
public places. The experimental results show that the classifier
gives satisfactory results and at the same time has low false alarm
rate. The results are comparable to widely used one-class SVM.
Moreover, the method is adaptive and suitable for incremental
learning.

I. INTRODUCTION

Litter is a growing threat globally, its control, prevention,

and monitoring are major challenges faced by most of the

countries worldwide. In an attempt to address these issues,

we are working on an automated system that would enable

us to detect the activities that can possibly cause litter in

public places, such as bus stops and park. Upon detection

of such activities the system would generate a voice message

(through a speaker) so that people who perform littering activ-

ity (habitually, deliberately, or accidentally) can be reminded

to appropriately bin their trash. The system would also help

authorities to take preventive measures and strategic decisions,

for example, place sufficient litter receptacles in locations

where frequent littering activities are detected or deploy more

man-power to keep the area clean.

In this paper we are presenting some initial results that are

based on acoustic signals emitted by different litter causing

material when contacted by human. Here we are considering

two common sources of litter, polymer packets mostly used for

packaging of snacks like potato chips, and paper cups. When a

person interacts with such objects made with specific material

a characteristic sound is produced as a result of interaction.

For example, when someone opens a packet of chips it will

produce a specific sound. The aim is to recognize such sound

producing events or acoustic events from a continuous audio

stream. We considered acoustic sensing over image or video

sensing for monitoring task, as it has certain distinctive char-

acteristics. First, acoustic sensing in omnidirectional as it can

capture information from all directions, and is relatively less

sensitive to the position and orientation. Second, it allows for

non-intrusive sensing without invading the subject’s privacy.

Third, processing of acoustic data is relatively faster than

image or video. Finally, the cost of the system based on

acoustic sensors will be less.

The area of acoustic event detection and classification has

recently gained attention due to its relevance to many real-

world applications such as surveillance and monitoring [1],

ambient assisted living [2], [3], [4], [5], [6], audio indexing and

retrieval [7], [8], [9], human robot interaction [10]. While the

task of acoustic event classification (AEC) involves determin-

ing the type of events that have already been extracted from an

audio stream, acoustic event detection (AED) deals with both

identifying the type of events and position of those events

in time. One of the vital steps in acoustic event classification

and detection is audio signal feature extraction .The problem of

feature extraction has been addressed by many existing works.

Some of the features that have been successfully applied to

AEC task are: perceptual features (short-time energy, zero-

crossing rate, sub-band energy, spectral-centroid, spectral roll-

off, pitch) [11], and conventional automatic speech recognition

features (Mel-frequency Ceepstral Coefficients-MFCC [12],

Linear Predictive Cepstral Coefficients-LPCC) [12]. The most

commonly used approaches for classification are: Bayesian

Classifier [13], Gaussian Mixture Model (GMM)[14], [15],

Hidden Markov Models (HMM) [16], Support Vector Ma-

chines (SVM) [17], Artificial Neural Networks, Decision trees,

Random forests, Fuzzy rule-based classifiers [4].

Even though designed for the task of automatic speech

recognition, MFCC features have been shown to work for non-

speech environment sound recognition [2]. This motivated us

to prefer MFCC for feature extraction. For the classification

task, we considered one-class classifiers which are suitable

when all data belong to one class(often referred to as target

class). In our problem it is not possible to collect and label

data for all the human activities apart from activities that

may cause litter i.e the available data has only one class

that represent activities that can cause litter. We consider four
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activities opening a polymer packet (chips packet or any such

kind of wrappers) (Packet Opening-PO), crushing a packet

(Packet Crushing-PC), throwing or dropping a paper cup (Cup

Dropping-CD), and crushing a paper cup (Cup Crushing-CC).

Hereafter,we will be refering to these activities as littering

activities (LAs). In near future we will be increasing the

number of such activities associated with all kinds of common

litter such as cans and PET bottles, and packaging. Therefore,

our classification model needs to learn and adapt to new

data representing new littering activities without forgetting

the previously acquired knowledge. This form of learning

where the data arrives in batches and the classifiers needs to

learn new data without losing the previous knowledge and

at the same time without requiring access to previously seen

data is often referred to as incremental learning. Ensemble

classifiers can address this issue naturally [18].The idea is

to train separate one class classifiers for each such littering

activity and generate additional classifiers as new batch of data

corresponding to new littering activities becomes available.

Finally, their output can be combined to identify the class.

Among the various discriminative classifiers, the rule-based

models are able to represent outlier objects in an inherent way.

If an instance is not covered by any of the existing rules then

it can be considered as an outlier [19]. In literature, it has been

shown that fuzzy rule-based model outperforms conventional

(non-fuzzy) rule-based model in identifying outliers [19]. As

the goal of one-class classifier is to distinguish between objects

of target class and all other possible objects (considered outlier

objects), fuzzy rule-based models can serve the purpose. So,

fuzz rule-based (FRB) approach is selected for the given

problem of acoustic event classification. To the best of our

knowledge ensemble of one-class classifiers based on fuzzy-

rules have not been applied so far in the domain to AEC.

Another approach that has been successfully applied to AEC

and AED is one-class SVM [5]. In this work, we also compare

the performance of one-class FRB classifier and one-class

SVM classifier.

The remainder of the paper is organized as follows: section II

present brief overview of fuzzy rule-based classifiers, section

III represent methodology used for classification, in section

IV experiment and results are discussed, and finally the

conclusions and future work is presented in section V.

II. BACKGROUND

In this section a brief overview of the key approaches used

in our work is presented.

A. Fuzzy Rule-based Classifiers

As defined in [24], a classifier that uses fuzzy sets or

fuzzy logic during the training phase, or operation is a fuzzy

classifier. A fuzzy rule-based (FRB classifier) uses a set of

fuzzy rules and an inference mechanism that generates either

a soft or crisp class label for a given input. FRB classifiers

can be distinguished into the following three categories

depending on the consequent part of fuzzy rules involved in

classification [24].

1) TYPE 1: Class label as consequent

Let R be the number of fuzzy rules, n be the number of

features, and m be the number of classes, then the rules for

this type of classifier can be given as,

Rulei : IF x1 is Ai
1 AND...AND xnisAi

n THEN yi is class k,

where xj , j = 1, 2, ...n is the input variable, Ai
1 is a fuzzy set ,

yi is the output associated with Rulei, and class k, 1 ≤ k ≤ m
is the class label.

In this model each rule votes for a class. To determine the

output of the classifier, the votes of all rules are aggregated.

One of the aggregation method is maximum aggregation

method. For the given input x, the soft class label for x consists

of membership values gk(x) ∈ [0, 1], k = 1, ...,m.
If i→ k denotes the rule i that votes for class k. Then gk(x)
is given as,

gk(x) = max
i→k

τ i(x) (1)

For a crisp label, (x) is assigned to the class with the largest

gk(x).
2) TYPE 2: Function as consequent

The rules for this classifier model can be of the following

type,

Rulei : IF x1 is Ai
1 AND...AND xnis Ai

n THEN

yi1 =
n∑

j=0

aij1xj AND...AND yim =
n∑

j=0

aijmxj (2)

where xj ,j = 1, 2, ..n is the jth input variable, Ai
1 is an

antecedent fuzzy set of rule i, yik, k = 1, 2, ..m is the output of

rule i for each class, and aijk is the jth consequence parameter

of the output k of the rule i.
In this model every rule votes for all the classes. Among

several methods, the output can be determined using the

weighted sum aggregation method,

gk(x) =
∑R

i=1 y
i
kτ

i(x)∑R
i=1 τ

i(x)
(3)

As in TYPE 1 classifier, for a crisp label, X is assigned to the

class with maximum value of gk(x)
3) Type 3: Linguistic label as consequent

The rules for this classifiers model are of the following form,

Rulei : IFx1 is Ai
1 AND...AND xn is Ani THEN

class k is Bi
1 AND class l is Bi

2

(4)

where xj , j = 1, 2...nis the input variable, Ai
1, and Bi

1 are

linguistic terms for Rulei (e.g Small, Large, Medium etc.)

defined by fuzzy sets, and class k and class l, 1 ≤ k ≤ m,

1 ≤ l ≤ m, and k �= l are the class labels.

The classifier in this case operates as a Mamdani-type fuzzy

system, and the output is a soft label.

There are several methods to learn rules for fuzzy classi-

fiers, among which are fuzzy neural networks [21], genetic

algorithms [22] and clustering-based approaches [23], [24].
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In this work we have used Type 1 fuzzy classifier with

Gaussian membership functions, where the firing strength of

a rule is given as:

τi(x) =

n∏
j=1

μij , i = [1, R], j = [1, n] and (5)

μij = e
‖x−x∗i ‖
2(rij)

2
is the membership function and rij is the

spread of membership function.

The rules of the FRB classifier are extracted using subtrac-

tive clustering [23]. In subtractive clustering , every data point

is considered to be a potential cluster centre. This potential is

quantified in terms of a value (potential value). The potential

value depends on the distance of the data point to all other

data points, the larger the number of neighbouring data points

the higher is the potential. The neighbourhood of a data

point is defined by a constant (radius); data points outside

the neighbourhood do not have significant influence on the

potential value. Initially the potential value is determined for

every data point and the point with the highest potential value

is selected as the first cluster center. After identifying the first

cluster center, the potential of all data points is reduced by an

amount that is dependent on their distance to the cluster center.

So, the points closer to the cluster center have less chance to

be selected as next cluster center. Now, the next cluster center

is the point with the next maximum potential. The termination

of the process is controlled by two threshold values. If the ratio

of potential of the current data point (x) and the potential of

the first cluster center is greater than an upper threshold value

then (x) is accepted as cluster center and the process continues.

If this ratio is less than a lower threshold value then x is

rejected and the process terminates (in [23] the author used 0.5

as upper threshold value and 0.15 as lower threshold value).

If the ratio lies between the two threshold values then it is

checked if the data point provides trade-off between having a

sufficient potential and not in proximity to the existing cluster

centers. Each of the estimated cluster centers forms the basis

of the fuzzy rules. Considering equation 5, x∗i are the cluster

centers estimated by sub cluster and ri is the radius of the

cluster. In subtractive clustering the radius is user-defined input

parameter for which the suggested value is in the range 0.2-

0.5[23].

III. METHODOLOGY

The following steps describe the methodology for acoustic

event classification. The four littering activities discussed in

section I are considered as atomic events.

Step 1. In the first step the audio input signal is read,

digitized, and normalized.

Step 2. Short-time energy calculation: First the audio

signal is divided into F frames so that each frame contains a
samples. The number of samples in each frame is given by

s = w(size) ∗ f(sampling) and F = l(signal)/w(size) (6)

where, l(signal) is the total length of signal, f(sampling) is

the sampling frequency of audio input signal, w(size) is the

window size.

After dividing the signal into F frames, energy is calculated

for each frame. short time energy (per frame) is calculated for

the a normalized signal.Short time energy calculation of each

frame is given by

Eq =

q∑
m=q−ws+1

[x(m)w(q −m)]2 (7)

Where w(q − m)is the window, q is the sample that the

analysis window is centered on, and ws is the window length.

Step 3. To isolate the atomic events energy of each

frame is used. If the energy of a frame is greater than

pre-defined threshold energy, then the frame is considered as

event causing frame. Such frames are considered for further

processing and other frames are discarded. The threshold

energy is determined experimentally.

Step 4. After the identification of all the event causing

frames, frame-wise feature extraction is performed by using

MFCC. Steps to calculate the MFCC feature of an input

signal are given below [12].

a) Calculate the Fourier transform of audio signal.

XFF (p) =
N−1∑
t=0

x(t)exp(
−2tπp

N )

where, x(t) = tth sample of signal

X(p) = pth FFT coefficient

N = total number of sample in signal

where,0 ≤ p ≤ N − 1

0 ≤ n ≤ N − 1

(8)

b) Map the powers of spectrum obtained above onto the

mel scale, using triangular overlapping windows. Mel scale

is represented as

mel(scale) = 1127 loge

(
1 +

f(sampling)

100

)
f(sampling) = frequency in hertz

(9)

c) Take the logs of powers at each of the mel-frequency.

d) Take the Discrete Cosine Transform (DCT) of each mel log

power obtained in above step.

XDC(k) =
N−1∑
t=0

xkcos

[
π

N

(
t+

1

2

)
k

]
(10)

e) The MFCCs are the amplitude of resulting spectrum.

Here we are extracting 13 MFCC features only for event

causing frames instead of extracting the MFCC for whole

audio signal. Among the all DCT coefficients obtained

after step b ( here it is 26 ) only first 13 are used because

Higher DCT coefficients represent fast changes in filterbank

energies and degrades ASR (automatic speech recognition)
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performance.

Step 5. The extracted 13 MFCC features of each frame

are used for training purpose. If P is the total number of

event causing frames in training audio signal then the size of

training data matrix will be P × 13. Now, one-class FRB and

one-class SVM are trained using this data.

Step 6. For preparing the test data, steps 1-4 are repeated for

all test audio signals and a data matrix of size Q × 13 is

obtained, where Q is the number of events causing frames in

test signals.

For comparison of results, we are using widely used One-

class SVM classifier. The one-class classification discovers

the hyperplane that separate the desired function of training

pattern from the origin of featured space.For classification,

four one class FRB classifiers are trained for each LA’s. These

four classifiers constitutes the ensemble of FRB classifiers, the

decision of all the classifiers in the ensemble is combined using

the following methods:

Mean vote rule[25]: Suppose the number of one-class FRB

classifiers is c and let us assume that classifier k has rk rules

where k = 1..c

y (x) =
1

c

c∑
k=1

Ik(x) (11)

where,

Ik(x) =

⎧⎨
⎩
1, ifmax

l

(
τ lk(x)

) ≥ θk

0, ifmax
l

(
τ lk(x)

)
< θk

(12)

and l = 1, ..rk, τ lk is the firing strength of l, and θk is the

threshold for classifier k.

The instance x is the predicted to be of target class (LA) if

y(x) is greater then a threshold value (θ)
Maximum rule[18]: It first determines the maximum firing

strength within the rules of classifiers λk, k = 1..c. It then

takes the maximum among the individual classifiers outputs

and if this value is greater than a threshold (θ) then the class

of x predicted as LA.

y(x) =

{
1, ifmaxk

(
λk(x)

) ≥ θ

0, ifmaxk

(
λk(x)

)
< θ

where, λk(x) = max(τ lk(x))

(13)

IV. EXPERIMENTS AND RESULTS

As mentioned in section I, the four littering activities

are performed by various people, and sound produced by

each of the activities is captured in regular intervals using a

microphone in a semi open indoor environment. Activities

are performed within a distance of around 2 meters from the

recording device and the recording is performed at 16KHz.

The training data consists of 55 short audio recordings of

5 seconds long ( 10 PC + 10 PO + 15 CD + 20 CC ).

Fig.1, Fig.2, Fig.3, Fig.4 shows sample audio signals for

the four different LAs. The set of test data consists of 25,

seconds long recordings with 5 recordings for each activity

and 5 recordings for random activities other than LAs. The

random activities are referred here as Non-Littering activities

(NLAs).The first two models (M1 and M2) are based on 4

one-class FRB classifiers that are trained on data with label

PC, PO, CD, CC respectively. The third one-class FRB model

(M3) is developed by combining all the data from different

classes resulting into a single one-class classifier. The decision

is taken using the maximum rule. The fourth model (M4)

is similar to M1 where 4 different one-class classifiers are

trained using one-class SVM and mean vote rule is used.

Finally, the fifth model (M5) is built in the same way as M3

using one-class SVM and considering entire training data

as belonging to one class. Table-1 summarizes the five models.

TABLE I: MODEL DESCRIPTION

Models Description
M1 Ensemble of four one-class FRB classifiers (mean vote rule)
M2 Ensemble of four one-class FRB classifiers (maximum rule)
M3 Single one-class FRB classifier
M4 Ensemble of four one-class SVM classifiers
M5 Single one-class SVM classifiers

TABLE II: DISTRIBUTION OF EVENT FRAMES

Type of Audio Recording
Audio Recordings Events Frames
Training Testing Training Testing

Packet Crushing 10 5 238 245
Packet Opening 10 5 188 200

Cup Drop 15 5 248 91
Cup Crushing 20 5 284 137

NLAs - 1 - 173

As discussed on section III, the processing is performed on a

frame-by-frame basis. When the energy of a frame exceeds the

defined threshold, it indicates occurrence of an event (possibly

littering activity). Such frames are identified and considered

for both training and testing. The distribution of high energy

frames (event frames) are given in Table II. We performed

experiments by varying the threshold parameter and computed

the true positive rate (TP) and false positive rate (FP). True

positive rate is the proportion of positive cases (LAs) that were

correctly identified and false positive rate is the proportion

of negative cases (NLAs) that were incorrectly classified as

positive (LAs). For our task, we require high TP and low FP.

In Table III, the TP and FP values of all the classifier models

along with the various threshold values is presented. It shows

TABLE III: EXPERIMENTAL RESULTS

Models
Threshold values

0.1 0.2 0.3 0.4 0.5
TP FP TP FP TP FP TP FP TP FP

M1 0.95 0.04 0.95 0.04 0.81 0 0.81 0 0.81 0
M2 0.98 0.15 0.95 0.01 0.86 0 0.60 0 0.42 0
M3 1 0.87 0.95 0.49 0.88 0.13 0.75 0.01 0.53 0
M4 0.93 0.10 0.95 0.07 0.92 0.09 0.89 0.06 0.88 0.04
M5 0.98 0.19 0.98 0.08 0.93 0.05 0.91 0.02 0.89 0.01

1684



Fig. 1: Cup Crushing Fig. 2: Cup Drop

Fig. 3: Packet Crushing Fig. 4: Packet Opening

that the maximum TP is achieved by M3 when threshold

is 0.1, but it also has very high value of FP which is not

desirable. The models M1, M2, and M3 achieved minimum

value of FP when threshold is 0.4 and 0.5, but at the same

time they show inferior TP values. Models M1, M2, and M5

give acceptable values for TP and FP. Thus, it shows that the

results of ensemble of one-class FRB classifiers has very low

false alarm rate and recognition rate is also comparable to

one-class SVM classifiers.

V. CONCLUSION AND FUTURE WORK

In this paper we investigated ensemble of one-class classi-

fiers as one of the solutions to the acoustic event classification

problem when data for negative class is not available. We

developed five classification models based on one-class FRB

and one-class SVM to identify litter activities in public spaces.

The initial results obtained from the classifiers suggest that

ensemble of one-class FRB classifier can correctly identity

littering activities and at the same time has a low false alarm

rate. Additionally, they are suitable for incremental learning.

In the work presented here, we performed experiments on

recordings based on atomic events. We are currently exper-

imenting with audio recordings based on mixed events. The

models described here perform per frame classification. As an

activity can last more than a frame so in future we would

consider classification based on per event that may consist of

multiple frames. Finally, this litter activity recognition system

will be hardware implemented on low power devices, so

we would like to investigate light weight feature extraction

methods compared to MFCCs.
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