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Abstract—A novel objective function based clustering al-
gorithm has been introduced by considering linear functional
relation between input-output data and geometrical shape of
input data. Noisy data points are counted as a separate class
and remaining good data points in the data set are considered
as good clusters. This noise clustering concept has been taken
into the proposed objective function to obtain the fuzzy partition
matrix of product space data. Block orthogonal matching pursuit
algorithm is applied to determine the optimal number of rules
from the over specified number of rules (clusters). The obtained
fuzzy partition matrix is used to determine the premise variable
parameters of Takagi-Sugeno (TS) fuzzy model. Once, the premise
variable parameters and optimal number of rules (clusters) are
identified then formulate the rule construction for identification
of linear coefficients of consequence parameters. The effectiveness
of the proposed algorithm has been validated on two benchmark
models.

I. INTRODUCTION

Fuzzy set theory has been extensively used in nonlinear
system modeling and model based control. Among various
fuzzy models, TS fuzzy model is quite popular in system iden-
tification domain because of its simple, interpretable structure
to describe the complex nonlinear model in a simple way.
Apart from system modeling, it is found in many areas such
as fuzzy control, fault tolerant control [1]–[3] etc.

TS fuzzy model mainly consists of two aspects: determi-
nations of structure and parameter identification i.e. determine
premise variable parameters and identification of consequence
variable coefficients. In structure identification, clustering al-
gorithm has been found for partitioning the data space. Batch
processing algorithms (such as Least Square (LS), weighted
recursive least square (WRLS)) are used to estimate of conse-
quence variable parameters [1], [8].

Partitioning the input-output data space into fuzzy sub-
spaces is a primary task in TS fuzzy model. Fuzzy clustering
algorithms are the most desirable technique for partitioning
the data space to obtain fuzzy subspaces and translate them
into fuzzy rules i.e. each rule in TS fuzzy model is associated
with a fuzzy cluster [4]. Fuzzy C-Means (FCM), Gustafson-
Kessel (G-K), Gath-Geva (G-G) , Fuzzy C-Regression Model
(FCRM), Enhanced Fuzzy C-Regression Model (EFCRM) are

popular clustering algorithms used in structure identification
part and LS, WRLS, orthogonal least square (OLS) technique
has been applied to estimate the consequence coefficients [8].
The (FCM) [5] clustering algorithm is partitioning a data space
in spherical nature. If the input-output data is arbitrary in shape
then FCM based TS fuzzy model could not give adequate
model accuracy [6]. The modified version of FCM algorithm,
known as, Gustafson-Kessel (G-K) algorithm, is considers data
distribution using the euclidian distance metric [7] whereas
FCM algorithm considers the simple euclidian distance metric.
However, FCM, G-K, G-G algorithm is a prototype-based
clustering algorithm since their data partitioning has been
done by the distance point shape center to data points. FCRM
algorithm partitions data space by hyperplane nature [6] which
gives better performance in comparison to prototype-based
clustering algorithm in TS fuzzy model [9]. Meanwhile, FCRM
algorithm suffers two major problems: first, algorithm conver-
gence takes much time due to bad initialization of parameters
and second, the objective function is highly sensitive to noisy
data.

The initialization problem has been addressed in [10]
while taking partial derivative of objective function in terms
of local linear model. But, input data distribution has not
been considered that affects the estimation of fuzzy model
parameters [8]. The noisy data points also affects estimation
of model parameters [11].

Modification of FCRM objective function has been done
by considering two issues. First, input data distribution has
been incorporated into the objective function. Noise Clustering
(NC) concept have been introduced into the proposed objective
function to handle noisy data points that makes the algorithm
robust. In NC, the noisy points are part of a noise cluster and
remaining good data points are parts of good clusters.

The paper is organized as follows: Section II describes
general structure of TS fuzzy modeling to represent complex
nonlinear system. In section III, Modified Fuzzy C-Regression
Model Noise Clustering (MFCRM-NC) algorithm has been
proposed and in-depth explanations are given. Block Sparse
representations for reduction of rules have been introduced.
Identifications of premise and consequence variables parameter
are also described. In section IV, the effectiveness of MFCRM-
NC algorithm based TS fuzzy model has been validated on
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two complex nonlinear models. Section V contains concluding
remarks.

II. TS FUZZY MODEL DESCRIPTIONS

A complex nonlinear dynamical system can be approxi-
mated by TS fuzzy model. Implication of a TS fuzzy model
is stated as a set of ”IF-THEN”rules and each rule has the
following form,

P i : IF xk1 isA1
iand... and xkn isAn

i

THEN yk
i = p0

i + xk1.p1
i + ...+ xkn.pn

i

= p0
i +

n∑
j=1

xkj .pj
i, (i = 1, 2, ..., C rules)

= [1xk
T ]θi = x̄kθ

i

(1)
where, θi = [p0

i, p1
i, p2

i, ..., pn
i]T ∈ R

(n+1) is
the coefficients of i-th consequence parameter, xk =
[xk1, xk2, ..., xkn]

T ∈ R
n is the k-th sample of premise

variable and yk
i is k-th sample of output variable generated

by i-th rule.

Here, the dumbbell shape membership function for premise
variable is defined as,

Aj
i(xkj) = exp[−

(xkj−vj
i)

2

(σj
i)2

] ∈ [0, 1],

(i = 1, 2, ..., C and j = 1, 2, ..., n)
(2)

where, v
i = [v1

i, v2
i, ..., vj

i]T ∈ R
n is center and σi =

[σ1
i, σ2

i, ..., σj
i]T ∈ R

n is width of the membership function.

The estimated output can be represented by weighted
average of all active rules ,

ŷk =

C∑
i=1

wk
i.yk

i

C∑
i=1

wk
i

for k − th sample (3)

wk
i = min{Aj

i(xkj)}, k = 1, 2, ..., N (4)

where, the overall truth value (wk
i) of each rule can be

obtained through logical ”AND” operator [10].

III. ARCHITECTURE OF THE PROPOSED TS FUZZY MODEL

In the section, a complete framework of TS fuzzy model
has been described through a simple architecture. The com-
plete architecture of top-down approach has been depicted
in Fig. 1. The architecture consists of two parts: First part
is related with structure identification where a novel objec-
tive function based clustering algorithm has been presented.
Optimal number of partitions are obtained by block sparse
representations of consequence vector. Last part is associated
with parameter identification where the premise variables
parameters (mean and width of the membership function) have
been identified from the proposed objective function. Then,
construct the rule for reducing the generalization error and
determine the consequence parameters by an orthogonal least
square method.

Fig. 1: Architecture of the MFCRM based TS Fuzzy model

A. The Fuzzy C-Regression Model Clustering Algorithm

Let, the data set,

D = {(xk, yk); xk ∈ R
n, yk ∈ R

k = 1, 2, ..., N}
(5)

having N number of input-output patterns from which i-th
fuzzy regression model can be drawn [12], [13]. The i-th
hyperplane based regression model is expressed as follows:

yik = F i(xk : θi)
= p0

i + xk1.p1
i + xk2.p2

i + ...+ xkn.pn
i

= [1 xkT ].θi = x̄kθ
i

(6)

where, xk = [xk1, xk2, ..., xkn]
T ∈ R

n is the k-th regression
vector and yik is the i-th regression model output. θi =
[p0

i, p1
i, p2

i, ..., pn
i]T ∈ R

(n+1) is the coefficients of linear
regressor. The modeling error [12] between actual output (yk)
and regression output (F i(xk : θi)) can be defined as

Eik
2(θi) = (yk − y

i
k)

2 (7)

Definition 1. Let, D be a finite set and 2 ≤ C < N be number
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of clusters, then fuzzy partition matrix is defined for set D,

Ufc = {U ∈ R
C×N |μik ∈ (0, 1);

C∑
i=1

μik = 1;

0 <
N∑

k=1

μik < N, ∀i = 1, 2, ..., C}

(8)

where, μik represents membership value of k-th data point
belonging to i-th cluster.

The distance error with membership value (μik) has been
used in the FCRM objective function that has to be minimized
over the clusters,

min J1(D : U, θ) =

C∑
i=1

N∑
k=1

μik
mEik

2(θi) (9)

subject to,
C∑
i=1

μik = 1, ∀k = 1, 2, ..., N (10)

where, m ∈ (0,∞) is the fuzzy exponent weight. If fuzzy ex-
ponent (m) value is set to 1, partition becomes hard partitions
i.e. fuzzy membership weight (μik) of a data point belonging
to clusters is either 1 or 0. For avoiding the trivial solution of
U , the m value is set at 2.

The modeling error based FCRM algorithm has been
applied on input-output data to create the fuzzy subspaces as a
fuzzy membership value. The coefficients of each linear model
are obtained by Least Square (LS) solution [14].

Algorithm 1: FCRM algorithm for TS fuzzy model
identification

Inputs:
Fuzziness (m = 2), Iteration number ( l = 0).
Termination constant (ξ = 0.001)
Eik(θ

i): Error distance between actual output and
regressor model output for i-th cluster.
U0 ∈ R

C×N : Fuzzy partition matrix for first iterat-
-ion.
Output:
U l: Fuzzy partition matrix for l-th iteration.
Steps:
1. Update the consequence parameters by using LS
solution.
2. Calculate the modeling error Eik(θ

i) by using
(7).
3. Update U l with distance metric Eik(θ

i).

U l =

⎧⎨
⎩

1
C∑

q=1

(
Eik

2(θi)

Eqk
2(θq)

) 1
m−1

If Eik(θ
i) > 0

0 otherwise
until

∥∥U l − U l−1
∥∥
2
≤ ξ then stop;

otherwise, l = l + 1 and go to step 1.

B. The Modified Fuzzy C-Regression Model Clustering Algo-
rithm

The solution of (9) is obtained by an iterative approach.
FCRM objective function can get terminated at local minimum

for poor initializations of cluster algorithm parameters [13].
Li have not considered premise data distribution into the
FCRM objective function that affects estimation of model
parameters [8]. The objective function of FCRM algorithm has
been modified by considering input data distribution [8]. The
premise variable partition has been done by G-K clustering
algorithm.

Gik
2 = [xk − vi]TMi[xk − vi] (11)

where, the cluster center is vi and Mi is symmetric positive
definite matrix. If Mi = I , then distance matric is a normal
euclidian distance [15].

The objective function based clustering algorithm is sen-
sitive to noisy data points [16]. Several methods are found in
clustering algorithm for handling noisy data points [16]–[18].
One of them, in noise clustering (NC) algorithm [16], outlier
data points are part of a noise cluster and other noise free data
points are considered as parts of good cluster. The membership
value of a data point belonging to noise cluster (†) is defined
as,

μ†k = 1−
C∑
i=1

μik (12)

where, μ†k is the membership value for k-th data points
belonging to noise cluster. It has a fixed distance (γ) from all
the data points i.e. it is represented as a fabricate prototype.
The NC concept has been introduced in the modified FCRM
clustering for handling the noisy data points as separate class.
Thus, the constrained membership function is relaxed as

C∑
i=1

μik < 1 (13)

The Modified Fuzzy C-Regression-Noise Clustering
(MFCRM-NC) algorithm objective function is defined
as,

min J2(D;U, θ, v, Mi) =
C∑
i=1

N∑
k=1

μik
m[Eik

2(θi) +Gik
2]

+
N∑

k=1

μ†k
mγ2

(14)
subject to,

C∑
i=1

μik + μ†k = 1 and |Mi| = ρ

i = 1, 2, ..., C and k = 1, 2, ..., N
(15)

where, the noise cluster distance (γ) can be computed as [16],

γ2 = δ ∗

C∑
i=1

N∑
k=1

[Eik
2(θi) +Gik

2]

CN
(16)

where, δ is a user defined constant depending on system model
data.

The analytical solution’s of constrained optimization prob-
lem (14-15) is obtained by the Lagrangian approach converting
it to unconstrained optimization problem by introducing N
lagrangian multipliers, λk. The mathematical expressions for
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the Lagrangian form is followed as,

L(U, λ, θ, v) = J2(D;U, θ, v,Mi)−
C∑
i=1

βi(|Mi| − ρ)

−
N∑

k=1

λk(
C∑
i=1

μik + μ†k − 1)

(17)
Differentiating (17) with respect to μik, μ†k, and λk and setting
the derivative to zero.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂L(...)
∂μ1k

= m(μ1k)
m−1

[E1k
2(θ1) +G1k

2]− λk = 0

−
−
−

∂L(...)
∂μCk

= m(μCk)
m−1

[ECk
2(θC) +GCk

2]− λk = 0
(18)

dL(...)

dμ†k
= m(μ†k)

m−1γ2 − λk = 0 (19)

dL(...)

dλk
=

C∑
i=1

μik + μ†k − 1 = 0 (20)

From (18) and (19),

μik =

[
λk

m

]1/(m−1)[
1

Eik
2(θi) +Gik

2

]1/(m−1)

(21)

μ†k =

[
λk

m

]1/(m−1)[
1

γ2

]1/(m−1)

(22)

From (18) and (19),[
λ

m

]1/(m−1)

=
μik[

1
Eik

2(θi)+Gik
2

]1/(m−1)
(23)

[
λ

m

]1/(m−1)

=
μ†k[

1
γ2

]1/(m−1)
(24)

Rearranging the (20),

C∑
i=1

μik + μ†k = 1 (25)

Put the values of (23) and (24) into (25),

[
λ

m

]1/(m−1)

⎛
⎜⎜⎝

C∑
q=1

[
1

Eqk
2(θq)+Gqk

2

]1/(m−1)

+
[

1
γ2

]1/(m−1)

⎞
⎟⎟⎠ = 1

(26)
Put (23) into (26) and rearranging to obtain μik,

μik =
1

C∑
q=1

(
Eik

2(θi)+Gik
2

Eqk
2(θq)+Gqk

2

) 1
m−1

+
(

Eik
2(θi)+Gik

2

γ2

) 1
m−1

(27)

Taking partial derivative of (17) w.r.t vi,

∂L(...)
∂vi =

N∑
k=1

μik
m[xk − v

i] = 0

⇒ v
i =

N∑
k=1

μik
m
xk

N∑
k=1

μik
m

(28)

Updating (17) by Mi ,

∂L(...)
∂Mi

=
N∑

k=1

μik
m[xk − v

i][xk − v
i]T

−βi |Mi|Mi
−1 = 0

⇒Mi
−1 =

N∑
k=1

μik
m[xk−v

i][xk−v
i]

T

βi|Mi|

= n

√
( 1
ρ|Fi|

) Fi.

(29)

where, the covariance matrix, Fi, is defined as,

Fi =

N∑
k=1

μik
m[xk − v

i] [xk − v
i]
T

N∑
k=1

μik
m

(30)

The necessary conditions for minimization of (17) w.r.t to θi

∂L(...)

∂θi
=

N∑
k=1

μik
m ∂Eik

2(θi)

∂θi
= 0 (31)

where, ∂Eik
2(θi)

∂θi is obtained from (7) by taking partial deriva-
tive ,

∂Eik
2(θi)

∂θi
= 2Eik(θ

i)
∂Eik(θ

i)

∂θi
= [yk − x̄k.θ

i].x̄k (32)

Rearranging (31- 32) and finally making it in matrix form,

N∑
k=1

μik
m[yk − x̄k.θ

i].x̄k = 0

⇒ XTΛiY − (XTΛiX)θi = 0, ∀i = 1, ..., C
⇒ θi = (XTΛiX)−1XTΛiY

(33)

Here, X , Y , and Λi are expressed as follows,

X =

⎡
⎢⎢⎢⎣

1 x1
T

1 x2
T

...
...

1 xN
T

⎤
⎥⎥⎥⎦
N×(n+1)

Y =

⎡
⎢⎢⎣

y1
y2
...
yN

⎤
⎥⎥⎦
N×1

Λi =

⎡
⎢⎢⎢⎣
μi1 0 ... 0

0 μi2 ...
...

... 0
. . . 0

0 ... 0 μiN

⎤
⎥⎥⎥⎦
N×N

C. Sparse Block Structure Representations for TS Fuzzy Rule
Reduction

Definition 2. Let, U ∈ Ufc be fuzzy partition matrix for set
D. The TS fuzzy model with C rule creates a dictionary (Zi)
for i-th rule and it is defined as,

Zi = U iX ∈ R
N×(n+1) (34)
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Algorithm 2: MFCRM-NC algorithm for TS fuzzy
model identification

Inputs:
Fuzziness (m = 2) , Iteration number (l = 0), Initialize
cluster number (C).
Cluster center= vi, Linear Coefficients= θi.
Termination constant (ξ = 0.001).
U0 ∈ R

C×N : Fuzzy partition matrix for first
iteration.
Outputs:
U l: Fuzzy partition matrix while algorithm
converges.
v
i: Cluster center for premise variable data partition.

Steps
Repeat
Compute the modeling error Eik

2(θi) by using (7)
for C-th cluster.
Compute the premise variable partition Gik

2 by
using (11) for C-th cluster.
Update fuzzy covariance matrix Fi by using (30).
Update cluster center vi by using (28).
Update noise cluster distance (γ2) by using (16).
Update linear coefficients θi by using (33).
Update fuzzy partition matrix U l by using (27).
l = l + 1.
Until: U or v stabilize.

where, X ∈ R
N×(n+1) and U i ∈ R

N×N is a diagonal matrix
for i = 1, 2, ..., C. The estimated output ŷ = [ŷ1, ŷ2, ..., ŷN ] is
obtained as,

ŷ =

C∑
i=1

Ziθi = Zθ (35)

where, θ = [θ1, θ2, ..., θC ] ∈ R
(n+1)×C is the consequence

parameters vector and Z = [Z1, Z2, ..., ZC ] ∈ R
N(n+1)×C is

the corresponding TS fuzzy model dictionary.

Minimizing square of modeling error between actual output
and estimated model output has been utilized to determine the
consequence parameters by using batch processing algorithm.

min
1

2
e2 = min

1

2

∥∥∥∥∥y −
C∑
i=1

Ziθi

∥∥∥∥∥
2

(36)

Determination of optimal rules in an oversize dictionary based
TS fuzzy model is an optimization problem [14]. Some of
the rules in a dictionary are over specified that doesn’t have
substantial contribution on model accuracy i.e. some rules are
assumed as redundant rules. Here, block sparse representations
for consequence vector are adopted for rule reductions in pro-
posed TS fuzzy modeling approach. Consequence parameters
for each rule represent a block, and redundant blocks are
simply assumed as zero.

Definition 3. Let, b = (b1, b2, ..., bm) ∈ R
m be a vector, its

sparsity defines non zero positions or entity.

‖b‖0 = lim
a→0

‖b‖
a
a = lim

a→0

m∑
i=1

|bi|
a
= �{i : bi 	= 0} (37)

where, � represents cardinality of the vector b.

Definition 4. The block structure representa-
tions for consequence vector is defined as,
θ = [p0

1, p1
1, ..., pn

1,︸ ︷︷ ︸
1−block

..., p0
C , p1

C , ., pn
C︸ ︷︷ ︸

C−Block

]T ∈ R
(n+1)×C

‖θ‖a,0 =
∥∥(∥∥θ1∥∥

a
,
∥∥θ2∥∥

a
, ...,
∥∥θC∥∥

a
)
∥∥
0

The block structure representations of consequence vector
is a optimization problem and it is defined as,

min
θ
‖θ‖2,0

subject to, 1
2

∥∥∥∥y − C∑
i=1

Ziθi
∥∥∥∥
2

2

< ∂
(38)

where, less impact blocks (θ) are discarded from over spec-
ified number by the optimization algorithm in which model
accuracy will retain high. The optimization problem (38) is
NP hard [19]. There exists two approaches to obtain solutions.
First approach to solving the problem by relaxation method
that converts 0-norm constraints to 1-norm constraints. The
convex optimization method [20] [21] can be applied directly
to obtain the solution but TS fuzzy model objective should not
be violated [22]. Second approach to solving the problem by
greedy search algorithm, includes block orthogonal match pur-
suit (BOMP), block matching pursuit (BMP), group matching
pursuit (GMP), group orthogonal matching pursuit (GOMP)
and its several extensions [23]. Here, BOMP algorithm has
been used for selecting more effective consequence coefficients
block and less effective blocks are removed from over specified
number. The BOMP has three steps: initialization, block se-
lections and update. The block greedy optimization algorithm
is described in Algorithm 3.

Algorithm 3: BOMP algorithm for TS fuzzy model
identification

Input:
Z: Given TS model dictionary.
Outputs:
Update dictionary, consequence vector, rule
selections.
Initializations:
index set Ω0 = []; dictionary matrix ℘0 = [];
residual r0 = y; and iterations number t.
Steps:Repeat
Block Selections: Find correlations lt between dictionary
and residual.
Update:
Update index set Ωt = [Ωt−1 ∪ lt ];
Update Dictionary matrix ℘t = [℘t−1 ∪ lt ];
Determine the consequence parameters
θ = arg min

θ
‖y − ℘tθ‖2

Update residuals rt = y − ℘tθ
until Termination criteria (residuals bounded (∂ = 10−5)
or fixed iterations (100)) true.
t = t+ 1, go to Repeat.

In block selection steps, the highly correlated blocks
(consequence vector) are selected, while the residual and
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consequence parameters are modified in updated steps. The
block selection’s data are applied in MFCRM-NC algorithm
to obtain fuzzy partition matrix and premise variable mean.

D. Parameter Estimations

Gaussian membership function has been used for premise
variable. The mean and width of gaussian function can be
obtained by the following expressions.

vi =

N∑
k=1

μik
mxk

N∑
k=1

μik
m

(39)

σj
i =

√√√√√√√√
2 ∗ [

N∑
k=1

μik
m(xkj − vji)

2
]

N∑
k=1

μik
m

(40)

Once, the premise parameters have been identified then con-
struct rules from section (II) to identify the consequence
parameters by the following matrix form.

y = χπopti + ε (41)

where, πopti = [p0
1, p1

1, ..., pn
1, ..., p0

Copti , ..., pn
Copti ] ,

y = [y1, y2, ..., yN ] , ε = [ε1, ε2, ..., εN ] is the error
vector with ε = [y − ŷ] and Copti is the optimal
number of rules (clusters) obtained from BOMP
algorithm. Regression vector is defined as, χ(xk) =
[ψ1k ψ1kxk1 ψ1kxk2... ψ1kxkn ... ψCoptik ... ψCoptikxkn].
where, xkn is the n-th component of input variable for
k-th sample and ψ is the normalized weight of membership
function having the following expression,

ψik =
wk

i

Copti∑
i=1

wk
i

(42)

Weighted least square (WLS) technique has been applied to
(41) to obtain the solution but it requires matrix inversion that
may not be computationally possible all the time [13]. The
orthogonal least square (OLS) approach [10] has been adopted
to obtain solution of consequence parameters.

IV. ALGORITHM VALIDATIONS THROUGH SIMULATION
RESULTS

Two different performance indices have been used in this
study i.e. Root Mean Square Error (RMSE) and Mean Square
Error (MSE), defined as,

RMSE =

√√√√√
N∑

k=1

(yk − ŷk)
2

N
(43)

MSE =

N∑
k=1

(yk − ŷk)
2

N
(44)

A. Validation on Nonlinear Dynamical System

The highly complex modified nonlinear model [24] [25]
used for checking effectiveness of the proposed modeling
approach is defined as,

yk =
yk−1(yk−2 + 2)(yk + 2.5)

10 + yk−1
2 + yk−2

2
+ uk +Δk (45)

where, yk is the model output and uk is the model input which
is bounded between [−1 + 1]. The model is also accounted
with zero mean white noise (Δk, k ≤ 1500). The following
input signal is expressed as,

uk =

{
sin(2kπ250 ) if, k ≤ 500

0.8 ∗ sin( 2kπ250 ) + 0.2 ∗ sin(2kπ25 ) otherwise
(46)

1500 samples were generated by simulation in which
500 samples were used to the train model. Fuzzy model
parameters have been identified once, testing of model
has been done by remaining 1000 samples. The prod-
uct space variables of TS fuzzy model are selected as
[yk−1, yk−2, uk, uk−1, yk] where input and output variables
are defined as [yk−1, yk−2, uk, uk−1]

T and yk respectively.
In the actions of BOMP algorithm for selecting fuzzy rules
from over specified rules, only 4 blocks of consequence vector
remain nonzeros and others shrink to zero (Fig. 2 ). However,
sparsity level of BOMP based MFCRM-NC was set to 4
[14]. Different SNR levels (SNR=1 dB, 5 dB, 10 dB, 20 dB)
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Fig. 2: Consequence block selects by BOMP algorithm

have been added to the plant model while collecting 1500
samples to classify the data space. In MFCRM-NC algorithm,
the fabricated noise cluster distance is set as (δ = 0.1).
The evaluation performance index (RMSE-trn and RMSE-test)
stands for training and testing data respectively.

Tables (I-IV) shows the comparative performance of
MFCRM-NC based TS fuzzy model with different existing
algorithms such as FCM [5], G-K [7], Fuzzy Model Identi-
fication (FMI) [26] and FCRM [12]. It is clearly seen from
the results that the MFCRM-NC based TS fuzzy model gives
better performance compared to results existing in literature.
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Fig. 3: Convergence curve of proposed objective function

TABLE I: 1 dB Noise

Model Name RMSE-trn RMSE-test Rules
FCM 0.9330 1.3646 4
G-K 0.8932 1.0226 4
FMI 0.8953 1.0320 4
FCRM 0.8872 1.0095 4
MFCRM-NC 0.8699 0.9947 4

TABLE II: 5 dB Noise

Model Name RMSE-trn RMSE-test Rules
FCM 0.6170 1.0364 4
G-K 0.5855 0.6505 4
FMI 0.6274 0.7021 4
FCRM 0.5805 0.6485 4
MFCRM-NC 0.5658 0.5998 4

TABLE III: 10 dB Noise

Model Name RMSE-trn RMSE-test Rules
FCM 0.3453 0.7150 4
G-K 0.3330 0.3489 4
FMI 0.3956 0.4416 4
FCRM 0.3312 0.3694 4
MFCRM-NC 0.3233 0.3465 4

The noise clustering distance term was capable to handle
highly noise points as a separate cluster. This noise cluster
makes the algorithm robust in the presence of high noise. The
convergence curve of proposed objective function is shown in
Fig. (3) for 1 dB noisy data.

B. Box-Jenkins Model

The Box-Jenkins model [27] is a standard model in system
identification domain. It consists of 296 input-output sam-

TABLE IV: 20 dB Noise

Model Name RMSE-trn RMSE-test Rules
FCM 0.1393 0.3004 4
G-K 0.1326 0.1484 4
FMI 0.1457 0.2378 4
FCRM 0.1291 0.1495 4
MFCRM-NC 0.1183 0.1395 4

ples. Gas flow rate into furnace and CO2 concentration in
the outlet gases is considered as input (u) and output (y)
respectively. The complete data set has been used for training
the model where the selected input and output variables are
[yk−1, uk−4]

T and yk respectively for comparing with other
existing algorithms. Table V provides a comparative perfor-
mance of proposed algorithm with other algorithms existing
in literature. However, sparsity level for Box-Jenkins model
was set to 2 [28]. Proposed algorithmic approach was also
studied on two different noise levels (SNR=30 dB, 10 dB).

TABLE V: Box-Jenkins model identification comparison

Model Inputs Rules MSE
Tong (80) [28] 2 19 0.469
Pedrycz (84) [28] 2 81 0.32
Xu (87) [28] 2 25 0.328
Joo (93) [26] 2 6 0.166
Chen (97) [26] 2 3 0.267
Liu (02) [28] 2 2 0.165
Zhang (06) [28] 2 2 0.160
MFCRM-NC, noiseless 2 2 0.152
MFCRM-NC, SNR=30 dB 2 2 0.153
MFCRM-NC, SNR=10 dB 2 2 0.277

It is clearly seen from the Table V that MFCRM-NC based
TS fuzzy model gives reasonable better performance compared
to existing algorithms in literature. For noiseless case, the
noise clustering parameter (γ) has been used in MFCRM-NC
objective function to reduce the sensitivity of data and provided
a better MSE value.

V. CONCLUSION

In this paper, objective function in FCRM algorithm has
been modified by considering input data distribution and
noise clustering concept. The block sparse representations to
consequence regressor vector for selecting the consequence
blocks in such way that the system model accuracy is retained
at high value. Block orthogonal matching pursuit algorithm
(BOMP) has been carried out for selecting the most highly
correlated block. Optimal blocks are selected, then identify
the premise variable parameters and constructions rule to
determine the consequence parameters by an orthogonal least
square method. The simulation results show that MFCRM-NC
based TS fuzzy model gives comparable accuracy compared
to algorithms existing in literature with less number rules. The
greedy search algorithm has been used to find out optimal
number rules instead of relaxed convex optimization method.
In further work, convex optimization method can be used to
determine the optimal number rules.
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