
Engineering Fitness Inheritance and Co-operative
Evolution into State-of-the-Art Optimizers

Aboubakar Hameed, Anna Kononova, David Corne
Dept. of Computer Science

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh, UK
aah30@hw.ac.uk, anna.kononova@gmail.com, dwcorne@gmail.com

Abstract—The engineering of stochastic black box
optimization methods, particularly evolutionary algorithms
(EAs), represents the most common and successful approach to
solve lareg-scale parameter optimization problems. Currently
several strategies are being explored to improve performance
when the number of parameters is large (e.g. 1000 parameters).
Prominent among these techniques are variants of differential
evolution, while an algorithm engineering strategy being
explored is ‘co-operative co-evolution’ (CC), which involves
successively optimizing subsets of the design parameters, with an
organized approach occasionally reconciling these ‘subspace’
optimizations. Recent work has shown that combining CC with
fitness inheritance (FI) – a technique heretofore rarely explored
in the context of large-scale optimization – can reliably lead to
better performance. However that work was done in the context
of a simple underlying EA (allowing us to be more confident that
the benefits were due primarily to the combination of CC and
FI). Here we explore the extent to which CC and FI provides
added value when engineered together in the context of more
sophisticated, so-called state of the art underlying algorithms,
pre-adorned with a variety of additional enhancements. To that
end, in this paper we explore SaNSDE, and DECC-DML – two
recent high-performance techniques in the field of large-scale
optimization. We also explore two basic adaptive parameter
setting strategies for the FI component. We find that engineering
FI (and CC, where it otherwise wasn’t) into these algorithms can
provides either competitive or improved results (Abstract)

I. INTRODUCTION

Evolutionary algorithms have been used abundantly, and
usually with reported success, to solve very many real-world
optimization problems [1]. However, the community as a
whole still has huge amounts to learn in terms of how best to
design and engineer an evolutionary algorithm (EA) in a way
that maximises its chances of doing well on the problem at
hand, or on a problem of a given class. Among the set of
challenges that still face EA researchers, one of the more
urgent ones is that of large-scale problems. The usual
meaning of ‘large-scale’, in this context, is an optimization

problem with a reasonably (or unreasonably) large number of
decision parameters [2]. Another common meaning of ‘large-
scale’, and a closely-related challenge, refers to problems
where the processor time requirement for evaluating a single
solution is very high. In both meanings of ‘large-scale’ (and
also in cases which combine the two), the challenge for the
algorithm design community is to find search strategies that
provide sufficiently good solutions in as small as possible a
number of fitness evaluations. In those cases where the
computational time-complexity of the fitness function is high,
the need to make progress in reduced numbers of evaluations
is obvious. On the other hand, when the number of parameters
is high, the issue tends to be different: in these circumstances,
standard algorithms tend to converge prematurely, long before
effecting a suitably extensive exploration of the parameter
space; the challenge therefore becomes that of making the
most of the available fitness evaluations, to achieve a better
level of exploration in the available time.

In this article, we continue from [3] in exploring two quite
distinct strategies that are both known to be effective on their
own. The first of these, which is currently under rampant
investigation within the EA community, is the technique of
co-operative co-evolution (CC). This is best understood as a
‘Divide and Conquer’ strategy, which works by breaking
down a many-parameter problem into a number of smaller
sub-problems. Originally developed by Potter and De Jong
[4], the essential idea behind their ‘CCEA’ algorithm was to
partition the parameter space into separate sub-problems, and
separately evolve solutions to each of these sub-problems,
using, for each such sub-problem, fixed values for the
parameters not included within it. A common-sense
arrangement was made to periodically update these ‘fixed’
values, making use of best-so-far solutions from other sub-
problems. Many variations on this idea have since been
explored. In general, any ‘CC’ approach tends to be
configured to evolve solutions to sub-problems one after
another, each time using the best parameter values for the
previous sub-problem when moving on to the next. In a
sensibly configured ‘CCEA’, there are mechanisms for more

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.238

1695

sophisticated interaction between sub-problems. For example,
sub-problems might be solved in parallel, and there might then
be brief spells of ‘whole-problem’ evolution, or hill-climbing,
rooted in the best parameters found from the sub-problems so
far. Meanwhile, it tends to be the case that the convergence
speed of a basic EA is faster than that of a version of that EA
with CC engineered into it. But, well-designed versions of CC
have frequently proven more effective than their substrate EAs
in tackling large scale problems [5].

Meanwhile, fitness inheritance (FI) is an entirely different

approach to speeding up black box optimization, introduced
by Smith, Dike and Stegmann [6]. FI tries to cut down on the
need for ‘real’ function evaluations, by making a proportion of
evaluations estimates, based on parents’ fitnesses. The
approach can be seen as a variation on a ‘surrogate model’
based EA. In a surrogate model approach, a model of fitness
(the ‘surrogate’ is learned while the algorithm is running, and
used some proportion of the time in place of the ‘full’ fitness
function, to provide a fast estimate. In fitness inheritance, this
surrogate model approximation to fitness is formed by
‘inheriting’ fitness values from one or more of an individual’s
parents [6, 7].

The work in this article follows on from that of [3]. Noting

that both CC and FI could be intuitively regarded as
‘orthogonal’ and had not previously been explored in
combination, the question explored in [3] was whether CC and
FI could provide independent, additive improvements to a
‘substrate’ EA. The findings from [3] were positive, indicating
that a simply-engineered combination of CC and FI could
yield an algorithm that was superior to the underlying EA with
only CC, or with only FI (and indeed, also superior to the EA
with neither). It remains to be seen if there is benefit in similar
engineering of more sophisticated EAs whose performance
already approaches or occupies the state of the art, such as
Yang, Tang and Yao’s ‘SaNSDE’ [8] or Omidvar, Li and
Yao’s ‘DECC-DML’ [9].

We note that the latter would seem to be a ‘big ask’.

Although independently effective, CC and FI may, either
separately or in combination, interfere with one or more of the
carefully crafted mechanisms that boost performance in
thoroughbred algorithms such as those mentioned. Of course,
CC and/or FI may be included in such an algorithm, in which
case we would be interested in incorporating the missing of
the two – however the same potential problem still arises.

Meanwhile, a limitation of [3] was its focus on a limited
number of test functions in terms of ‘large-scale’ (500D or
1000D tests). It therefore remains to be seen whether
combining CC and FI could provide robust benefits in a large-
scale optimization context. Finally, the detailed findings of [3]
were that, although CC+FI was generally beneficial, there was
certainly sensitivity to the ‘fitness inheritance proportion’
parameter, begging the future incorporation of an adaptive
approach to the latter.

To explore these issues, in this paper we engineer CC+FI
versions of both SaNSDE and DECC-DML, and we make our
comparisons mainly on a commonly employed suite of 20
500D and 1000D test functions with emphasis on 1000D [10].

The new engineered versions of CC and FI incorporate an
important amendment to the CC+FI combination that
improves upon [3], and we also developed two simple
adaptive versions of the CC+FI combination, to remove the
need to specify the main parameter of FI, the ‘fitness
inheritance proportion’.

The remainder of the paper is set out as follows. In section
II we run through the key background material; this involves
brief introductions to the two key protagonists in this paper,
fitness inheritance and co-operative co-evolution, each then
followed by a brief associated literature review; the
background material concludes by recalling the initial work on
combining these two approaches. In section III we look at
engineering CC and FI into SaNSDE, leading to an algorithm,
which we denote CCDE-nFI; it is compared with DECC-G
[11] and JACC-G [12] (for reasons noted in the section –
essentially, the former supersedes SaNSDE, and the latter
further supersedes it). In section IV we then describe our two
simple approaches to adapting the fitness inheritance
parameter in CCDE-nFI, and then we test them in the context
of engineering CC and FI into DECC-DML. A concluding
discussion is then offered in section V.

Our code is freely available at http://is.gd/cceafi, at
which site can be found java code for CCDE-nFI (the
engineered version of SaNSDE), an amended version Li’s
original DECC-DML [dmml] in matlab (this was necessary, as
mentioned in section IV), and DECC-DMLaFI (our
engineered version of DECC-DML, incorporating adaptive
fitness inheritance).

II. BACKGROUND

A. Fitness Inheritance : Introduction
‘Fitness inheritance’ (FI) refers to the simple idea of making a
fast estimate of an individual’s fitness, rather than performing
an accurate evaluation. FI can be potentially be deployed in
any ‘black box’ algorithm context. Where c is an individual in
the population, and ‘eval(c)’ represents the evaluation of its
fitness in the context of pseudocode, then we can effect the
deployment of FI simply by replacing ‘eval(c)’ with:

with prob. PFI, run inherit(c)
otherwise run eval(c)

However, sometimes care needs to be taken about the context
of the evaluation. In the majority of cases, this means that we
should ensure two things: (i) the initial population is always
evaluated with eval, and (ii) updating of the ‘best so far’
solution, and similar book-keeping, are done on the basis of
fitness values returned by eval. With the latter protections in

1696

place, we can then replace a proportion PFI of evaluations with
fast ‘inherited’ estimates.

There are three commonly used approaches to producing an

inherited fitness [13]. Where ch is the child of parents p1 and
p2, and where fx represents the stored value of the previous
evaluation of x (whether real or inherited), these are:

Averaged inheritance, in which the estimate of the
child’s fitness is simply the mean of its parents
fitnesses:

 f p1 + f p 2 inherit(ch) =
2

Weighted inheritance: this is in the spirit of averaged
inheritance, but introduces weights according to the
child’s different similarities to its two parents:

wp1 f p1 + w p 2 f p 2 inherit (ch) = wp1 + wp 2

Parental inheritance: this is an extreme version of
weighted inheritance, in which the entire current
population P is used to estimate the fitness of ch:

�p P
w p f p

inherit (ch) =
�p P

w p

How weights are calculated in the latter two approaches

depends on the algorithm and encoding context, but the
overall idea is to guess the child’s fitness by appealing to a
very simple linear approximation to the fitness landscape that
is either based solely on the parents, or based on the entire
population. Naturally, also, the obvious variations can be
made to calculate inherited fitness for children of just one
parent, or of more than two parents.

B. Fitness Inheritance: Brief Review
As previously indicated, Smith, Dike and Stegmann [6]
originated the concept of fitness inheritance (FI), at the same
time introducing the first of the two simple inheritance
schemes above. In the original work, Smith et al evaluated the
concept on two problems. The first of these was the well-
known (and these days very little used) ‘ONEMAX test
problem, in which the objective is simply to maximize the
total number of 1s in a binary chromosome. Their second
choice of test case was somewhat more interesting, being a
realistic aircraft routing problem. On both problems they
found impressive performance from FI. In [14], Sastry,
Pelikan and Goldberg made some headway into a theoretical
understanding of FI, untangling the relationship between

population size and the fitness inheritance proportion on the
ONEMAX landscape. Their conclusions, as regards separable
landscapes, were that FI could lead to significant efficiency
enhancements, halving the required number of function
evaluations, and yielding speed-ups of between 1.75-fold and
2.25-fold. Pelikan and Sastry [15] went on to find even more
impressive speedups (e.g. 30-fold) when using FI in other
application, and this has also been found in many other studies
[16—20].

Although little work so far has combined FI with CC (we
only know of [3]), FI is increasingly being explored outside
the region of ‘standard’ EAs, and being applied to nonstandard
applications. For example in [21], FI is used as an essential
tool for reducing a number of fitness evaluations when solving
a problem of constructing robust continuous multi-objective
test functions with various noise-induced features capable of
uncovering truly capacity of the tested algorithms. Meanwhile,
a modification of FI where fitness of a solution is based on its
positional relationship with other particles has also
demonstrated its benefits when used in PSO [21], typically
suffering from overwhelmingly high number of fitness
evaluations needed to find acceptable solution.

C. Co-operative Co-evolution (CC): Brief Review
The basic idea of co-operative coevolution (CC) is to solve a
large-scale (many design variables) optimization problem by
(i) decomposing it into several smaller sub-problems; (ii)
solving each of the sub-problems; (iii) constructing a solution
to the larger problem by combining the solutions to the
smaller ones. In the original framework [4] (and in the
majority of subsequent research), the ‘decomposition’ into
sub-problems is simply effected by a partitioning of the
decision variable space. For example, if we need to optimize a
function of 1,000 variables, v1,v2,…,v1000, then we can
decompose this into two smaller problems: the first sub-
problem only considers variables 1—500; and the second only
considers variables 501—1000.

In the above example, when optimizing the first sub-
problem, the quality of solutions can only be estimated by
assuming a reference set of fixed values for variables 501—
1000. Similarly, when optimizing the second sub-problem,
there needs to be a reference fixed set of values for variables
1—500. Typically, these reference sets may start at random,
but be updated as the algorithm runs via the occasional
evaluation of a judiciously composed full solution. The
initialization and updating of these ‘reference sets’ is a key
dimension of variation among the literature of CC variants,
along with other key aspects such as the details of
decomposition and its adaptation.

D. Co-operative Co-evolution (CC): Brief Review
Many researchers have investigated variations on the basic CC
framework. Relatively recently, Yang, Tang and Yao [11]
proposed their variant, DECC-G, in which the groups of

1697

parameters within a sub-problem adapted over time, in attempt
to maximize the extent to which interacting parameters were
present in the same sub-problem, This led to improved
performance on non-separable problems, when compared to
the standard framework. Another example of a variant of CC
is that of Van den Bergh and Engelbrecht [23], who explored
CC under the framework of particle swarm optimization
(PSO). In their case, parameters were randomly assigned to
sub-problems (this is also the case in [24]). In such random
assignment, each sub-problem comprises a random selection
of parameters scattered across the decision parameter vector,
and this random assignment may change in every cycle of the
algorithm. Among other key algorithm strategy choices in CC
is the question of how, for any given sub-problem, to choose
the reference set of fixed parameters that are not included in
that sub-problem. The most common approach, naturally
enough, is to use the best-so-far ‘complete’ solution, updating
these reference sets whenever a new best-so-far is found.

An example of CC in use in the context of Differential
Evolution is provided by Trunfio [25], who investigated the
use of several variants of search space decomposition in
parallel during short learning phases, allowing to adapt the
size of subcomponents during the CC search. Meanwhile,
Sayed et al [26] proposed a technique for the identification of
variable interaction aimed at limiting the number of
interdependent variables among decomposed problems – a
common theme in CC research also echoed in [9]. Sayed et
al’s particular technique, related to the concept of separability
and based on random resampling and propagation of variable
partitions, is reported to improve the ability of the
decomposition-based optimization models in scaling up to
dimension 1000.

Another effective decomposition scheme is proposed in

Mei, Li and Yao [27], which is designed especially for the
large-scale capacitated arc routing problem. In this scheme,
route information about best-so-far solution is actively
employed in constructing the following decomposition to
guarantee the non-decreasing quality of the decomposition.
Differentiation between a vast number of possible
decompositions is made based on special distances between
the solutions which allows efficient identification of
promising regions of the search.

E. Combining CC and FI
The idea explored in [3] was to combine CC and FI, with a
view to understanding whether they provided independent
additive benefits. A simple algorithm that combined the two
strategies (CCEA-FI) was designed evaluated, and evaluate
them on the same set of test functions that were explored in
[24]. These were primarily 50D and 100D functions, and the
results pointed squarely to the suggestion that CCEA-FI
generally achieves significantly better performance than either
a CC-based EA without FI, or an EA with FI but without CC.
In almost every case, CCEA-FI achieved superior statistics,
although (typically) occasional anomalous results came from

the Rosenbrock function, which showed high sensitivity to the
fitness inheritance proportion parameter.

Nevertheless, promise was clearly shown in [3] for
engineering both CI and FI into a ‘substrate’ algorithm, and
the stage was set two main potential lines of research. First, to
investigate any benefits from incorporating the CC and FI
combination into existing state of the art algorithms, and
second, to investigate adaptive versions.

III. ENGINEERING CC AND FI INTO SANSDE: CCDE-NFI

Self-adaptive Differential Evolution (SaDE) was introduced
by Qin et al. [28], with the aim of reducing the notorious
problem-dependence of DE with respect to its main variation
operators. SaNSDE [8] later incorporated further
improvements – primarily by adopting additional adaptation
and exploration mechanisms for the ‘scale factor’, F, a key
parameter in differential evolution (DE) operators. SaNSDE is
a sophisticated black box optimization algorithm with a srog
performance profile, which, arguably can still be considered
among the ‘state of the art’, and we took it as a candidate for
the ‘engineering into it’ of both CC and FI. It turns out, as it
happens, that it is not easy to find a state of the art algorithm
that doesn’t already have CC installed, so SaNSDE was a
good choice for us in this respect.

We implemented SaNSDE from the description in the
literature, and engineered CC+FI into it, using the same
CC+FI framework as in [3], but with one key improvement.
The basic CCEA framework deployed a ‘random-grouping’
version of CC, and basic FI with Averaged-Inheritance. The
improvement was simply to ensure that – in the steps of CC
where a best from each subpopulation is chosen to populate
new reference sets – these were constrained to be chosen on
the basis of real evaluations (although not actually requiring
additional real evaluations). Preliminary tests showed that was
led to significant improvement in results at high levels of the
fitness inheritance proportion (as is intuitively reasonable).
The lack of this strategy is presumably an explanation for
reduced performance at high levels of inheritance as seen in
[3], and also in [13], in which, although not involving CC, use
us made occasionally of the ‘best so far’ irrespective of how
its fitness was calculated

We denote our engineered version of SaNSDE as

‘CCDEnFI’. Table I summarizes the results, showing the
performance of CCDEnFI with the fitness inheritance
proportion fixed at 90%.

It turns out that CCDEnFI outperformed our
implementation of unadorned SaNSDE with high statistical
confidence at most levels of the FI proportion, and to save
space we omit those comparative results. Instead we focus on
comparing directly with improved ‘descendants’ of SaNSDE

1698

that have been independently developed by the associated
network of authors.

The first of the comparative algorithms listed is DECC-G [9],
which ‘supersedes’ SaNSDE in this context, being a version of
SaNSDE that has independently been configured with CC.
The second is JACC-G [12], which further improves on
DECC-G via developments in the area of its embedded DE
algorithm. The choice of test functions is the suite used in
Yang Tang and Yao [11], which enables the maximal
comparisons we can make with previously published results
for DECC-G and JACC-G.

TABLE I. COMPARING CCDE-NFI (WITH FI AT 90%) WITH
DESCENDANTS OF SANSDE

F D DECC-G
Mean

JACC-G
Mean

CCDE-nFI
Mean

F1 500 6.33e-27 - 7.6e-313

1000 2.17e-25 2.7e-80 8.73e-123

F2 500 5.95e-15 - 2.15e-297

1000 5.37e-14 2.3e-20 INF

F3 500 6.17e-25 - 0.00e+00

1000 3.71e-23 2.4e-10 0.00e+00

F4 500 4.58e-05 - 3.9e+01

1000 1.01e-01 8.0e-05 8.11e+01

F5 500 4.92e+02 - 2.97e+02

1000 9.87e+02 9.83e+02 9.23e+02

F6 500 0.00e+00 - 0.00e+00

1000 0.00e00 0.00e+00 0.00e+00

F7 500 1.50e-03 - 1.56e-03

1000 8.40e-03 1.2e-03 4.62e-03

F8 500 -209491 - -209491

1000 -418983 -418983 -418983

F9 500 0.00e+00 - 0.00e+00

1000 3.55e-16 0.00e+00 0.00e+00

F10 500 9.13e-14 - 5.07e-14

1000 2.22e-13 1.4e-14 1.05e-13

Matching the key experimental variables with those
reported in association with the comparative results, each
experiment of CCDEnFI was run for 2,500,000 function
evaluations (real, not inherited) for 500D cases, and for
5,000,000 function evaluations in the 1000D cases. The

population size was 100, and the sub-problems (in the context
of CC) were always of dimension 100 (hence, 5 sub-problems
in the 500D cases, and 10 sub-problems in the 1000D cases).

As we have mentioned, to save space we show only the
results for CCDEnFI using 90% fitness inheritance. This
achieves better or equivalent mean performance than DECC-G
on 8 of the 10 500D cases (winning 5, losing 2), and 8 of the
10 1000D cases (winning 6, losing 2). Meanwhile, it performs
better or equivalently to JACC-G on 7 of the 10 1000D test
cases (winning 4, losing 3). Comparative 500D results were
not available for JACC-G.

Simple statistical analyses of these results (using Student’s
T test and a prior confidence level of 0.05) suggests
competitive (i.e. ‘equal’ performance) for CCDE-nFI when
compared with either JACC-G or DECC-G. There is not
enough evidence to claim superiority of CCDEnFI at a high
level of confidence in this context, especially after the
Bonferroni correction. However we can conclude that simply
engineering CC and FI into a sophisticated algorithm (such as
SaNSDE) in a straightforward way, is able to provide
potentially superior results, and at least competitive results, to
those available via a suite of alternative sophistications, such
as those incorporated beyond SaNSDE in each of DECC-G
and JACC-G.

Finally, the performance (not shown here) of CCDEnFI
with lower levels of fitness inheritance was generally similar to
that shown for 90%, although lower levels (10% -- 40%)
occasionally showed reduced (and highly problem-dependent)
performance. Obviously, to achieve candidacy as a usable
algorithm, CCDEnFI (or, the engineering of CC and FI into an
algorithm in general) needs to either come along with good
guidelines for setting the fitness inheritance parameter, or there
needs to be a viable adaptive approach. The latter notion is
investigated next.

IV. ENGINEERING ADAPTIVE CC AND FI INTO DECC-DML
So far, we have investigated the combination of CC and FI in
[3] and herein, without the intention of declaring a new
algorithm, but with the intention of exploring their potential as
adornments to arbitrary black box algorithms. Nevertheless, to
be deployable and ‘proposable’ an algorithm that incorporates
both CC and FI must come along with either a good set of
fixed parameters, or with an adaptation scheme for its key
parameters. The single key parameter that looms large in this
respect is the fitness inheritance proportion (often abbreviated
as ‘FI’, at the risk of overloading that term). In this section we
take a first step at investigating adaptive schemes for it in the
CC+FI context.

Two simple ‘first-cut’ adaptive approaches were designed
as follows:

Method A: In this approach, the performance of 10%, 20%,
… and so on, up to 90% FI are sampled in the first batch of

1699

F (corrected)
DECC-DML

results

DECC-DML-aFI
Method A

DECC-DML-aFI
Method B

F1 8.68625e-08 2.94803e-08 1.876923e-08
F2 1.091e+3 1.1209e+03 1.12580e+03
F3 1.94621e-07 1.23452e-07 9.007184e-08
F4 6.68762e+12 5.56665e+12 5.78655e+12
F5 2.82387e+08 2.97985e+08 2.84147e+08
F6 9.2674e+04 1.09202e+06 6.37554e+05
F7 2.31131e+08 1.65121e+08 4.10521e+08
F8 9.34754e+07 9.36069e+07 1.16837e+08
F9 1.3458e+08 1.27753e+08 1.25674e+08

F10 1.2646e+04 1.26387e+04 1.32528e+04
F11 4.60642e+00 6.86595e-06 3.226461e-06
F12 3.97037e+06 4.09242e+06 4.86637e+06
F13 1.320e+03 1.15158e+03 1.27881e+03
F14 4.31999e+08 4.18162e+08 4.19249e+08
F15 1.5586e+04 1.55049e+04 1.62337e+04
F16 3.41033e+01 1.71398e+01 5.378018e-05
F17 7.04423e+06 7.14235e+06 8.36006e+06
F18 7.95526e+03 3.97663e+03 3.90853e+03
F19 1.783e+07 1.73677e+07 2.16407e+07
F20 9.944e+02 1.0201e+03 1.00183e+03

evaluations, with each being the sole setting for a duration of
FItest evaluations (hence 9xFItest evaluations are devoted to
this sampling process). The value of FI that performed best in
this early sampling is then used for the remainder of the run.

Method B: This begins in the same way as method A.

However the sampling process is repeated every EPOCH
evaluations. After a set of EPOCH evaluations is completed,
the sampling process is repeated (consuming 9xFItest
evaluations), and the best FI from that most recent sampling is
then used for a further (EPOCH - 9xFItest) evaluations; this
process is repeated until termination.

Our adaptive schemes were tested in the context of a further

investigation into engineering CC and FI to a sophisticated
state of the art algorithm. In this case, the algorithm of choice
was DECC-DML [9]; DECC-DML is a further co-operative
co-evolution approach based on DE, which improves on the
previous ‘random grouping’ method for constructing CC sub-
problems, aimed at being more effective at identifying
interacting variables, which are then best treated within the
same sub-problem.

DECC-DML and its available results provide a further
opportunity for us to test the engineering of combined CC and
FI. However, a slight drawback – which has turned out not
easy to avoid in the context of current large-scale optimization
research – is the fact that DECC-DML already incorporates
CC. Nevertheless, the spirit of investigation remains in that we
are exploring the capability of combinations of CC and FI,
especially in the context of already-sophisticated methods. We
therefore soldiered on, and proceeded by retaining DECC-
DML’s existing (and quite sophisticated) variant of the CC
mechanism, and engineered our adaptive versions of FI into the
existing DECC-DML code (which the authors had made
available).

The latter was done, and the resulting ‘DECC-DML-aFI’
algorithm was compared with DECC-DML over the CEC 2008
‘large scale global optimization’ test suite of 20 1000D test
functions [10]. Following preliminary investigation, the
method A and B parameters FItest and EPOCH (only in
method B) were set to 100 and 300,000 respectively. Table II
summarizes the results. The results in each case are the means
of 20 independent runs, each of which continued for a
maximum of 5,000,000 real evaluations.

Note: DECC-DML source code in Matlab, as presumably
deployed in [9] was obtained from Xiaodong Li’s website [29].
We engineered the inclusion of FI directly into this version.
However, we noticed that the mechanisms in the original
DECC-DML source code, associated with calculating and
updating the ‘delta’ value, incorporated some calls to function
evaluations that were not accounted for in the total which
counted towards algorithm termination. The results for DECC-
DML shown in Table II are therefore from our own runs with
the corrected version of the source code, ensuring comparison
on an equal basis in terms of real function evaluations.

In Table II, the best mean result for any given function is

highlighted in bold, while underline is used to indicate with of
the two adaptation methods achieved the best mean

(independent of whether either achieved overall best mean for
that function).

Analysis of Table II shows that the laurels are shared quite
equally between the three approaches. Original DECC-DML
has 7 ‘wins’, compared with 7 wins for DECC-DML-aFI
Method B, and 6 wins for the Method A version. Similarly,
both Method A and Method B show a complementary
performance profile over the 20 functions.

This suggests that, at best, we can say that the engineering
of FI into DECC-DML (via either of the two adaptive
methods) has adjusted its overall performance profile, while
not providing an ‘overall’ improvement (and certainly not
providing any overall detriment) to its performance, as
estimated over this particular function suite.

Isolating each DECC-DML-aFI method and comparing that
with DECC-DML, we note that Method A achieves a better
mean value on 13 of the 20 functions, while Method B
achieves a better mean on 9 of the 20 functions. If we consider
these success rates against expectations according to
cumulative binomial probability (assuming null hypothesis of a
success rate of 0.5 in each case), we note that 13 or more
‘wins’ can be expected to occur with probability 0.132, while 9
wins (or equivalently, 11 wins for DECC-DML) can be
expected with probability 0.411. This further confirms that the
engineering of FI into the algorithm has not caused any overall
loss in performance, but has clearly changed the performance
profile in a way we have yet to fully understand.

TABLE II. ENGINEERING SIMPLE DAPATIVE FI INTO DECC-DML
(DECC-DMLAFI

1700

In terms of recommendations for practitioners, the changed
performance profile of the FI-engineered version may well be
more favourable for particular landscapes (and intuition would
suggest these to be those on the smoother side), but
understanding that requires further research. Ultimately,
however, our results seem consistent with the notions that:

• Engineering CC and FI into a good algorithm may
well lead to improved performance, and will not
lead to reduced performance;

• Engineering CC and FI into a sophisticated, state
of the art algorithm (or engineering FI into a state
of the art algorithm that already includes CC) may
also lead to improvement, and will likely not lead
to detriment. However, the more ‘state of the art’
the original algorithm is, the more the exercise
may provide diminishing returns.

This theme will be a little more explored in the next section.

V. CONCLUDING SUMMARY AND DISCUSSION

Earlier work had suggested promise for using both co-
operative coevolution (CC) and fitness inheritance (FI) in the
design of a black box optimization algorithm (especially with
large-scale problems in mind). Essentially, that paper had
shown that the strategy of combining CC and FI works well,
providing independent and additional improvements, in the
case where the underlying EA being engineered was otherwise
a straightforward algorithm.

In this paper, however, we further explored the strategy of

combining CC and FI by jumping in at the ‘deep end’ by
seeing if combining these strategies could lead to any
advancement for algorithms that were already ‘state of the
art’, in the sense that they already comprise a variety of
sophisticated mechanisms that boost their performance.

The raw results of this effort were mixed. Of course,

comparing new approaches with ‘state of the art’ algorithms
can always be seen as a risky strategy, in cases where the
context seems to require relentless advances in performance.
However, in the case of this paper, our experiments amount to
further probing of the behavior of CC and FI combined.

The question (perhaps rationalized a little after the fact) is

not ‘Can CC+FI improve a state of the art algorithm (which
doesn’t already use both…)?’. We would a priori not hold out
high expectations that this is possible, because ‘state of the
art’ algorithms tend to incorporate a complex cookbook of
mechanisms that would likely be perturbed by significant
additional mechanisms such as either CC, FI or both. Instead,
the question is – given that we already know CC+FI can
improve a ‘straightforward’ algorithm – ‘Can CC and FI be
engineered into arbitrary black box optimization algorithms,

without doing harm?’. (alternatively: if the algorithm contains
either CC or FI already, can we engineer the other one into it
without doing harm?). If the answer to that was positive, it
would suggest that adding CC and FI to simpler algorithms
would lead to improvements, and adding them to state of the
art algorithms would leave their overall performance profile
unchanged. This is precisely what you want if, beforehand,
you don’t actually know where your algorithm sits in the
virtual ‘algorithm league table’.

In that sense, we would tentatively conclude that the new
approach to combining CC and FI explored here (involving
the amended and adapted FI) represents a recommended
algorithm-enhancement strategy.

Of course, this area of algorithm design is crying out for a
deeper understanding of (among many other things) how, why
and what circumstances CC and FI can provided additive
improvement. As we speculated in [3], the distinct nature of
the two mechanisms seemed to herald good potential for their
combination. Intuition suggests that FI works best when the
landscape is locally (at least) smooth; however, if the local
shape is not smooth, one might nevertheless expect FI to work
well if the ruggedness is within reasonable bounds; in that
circumstance, for example, an occasional inherited fitness that
ends up being a poor estimate may have the same effect, in
terms of algorithm dynamics, as the injection of diversity via
low-pressure selection. Meanwhile CC works well when the
problem can be partitioned into sub-problems which, to at
least a small extent, cluster the interacting variables. In
combined CC and FI, FI operates on the sub-problems which,
depending in the decomposition strategy, may therefore be
somewhat more rugged landscapes, however the earlier
observation still suggests benefit for FI.

We need to move beyond such speculation, and forward to
theoretical lines of investigation that might shed light on CC
and FI combinations, as well as associated black box
algorithm design mechanisms. In ongoing work, we are slowly
moving in that direction, by means of gathering data at
runtime. Such data includes tracking the ruggedness of sub-
problems, and tracking the context of use and the performance
of individual FI operations during a CC+FI run. We think that
analyses of these data will illuminate potential directions for
theoretical analysis and further algorithm design strategies.

ACKNOWLEDGMENT

We are grateful to the Libyan government for support of
the first author. We are grateful to a variety of sources for
support of the second and third authors.

REFERENCES

[1] R. Sarker, M. Mohammadian, X. Yao, Evolutionary Optimization,

Kluwer Academic Publishers, Norwell, MA, USA, 2002.
[2] R. E. Bellman. Dynamic Programming. Ser. Dover Books on

Mathematics. Princeton University Press, 1957.

1701

[3] Hameed, A.; Corne, D.; Morgan, D.; Waldock, A., "Large-scale
optimization: Are co-operative co-evolution and fitness inheritance
additive?" Computational Intelligence (UKCI), 2013 13th UK
Workshop on, vol., no., pp.104, 111, 9-11 Sept. 2013.

[4] M. A. Potter and K. A. D. Jong, “A cooperative coevolutionary
approach to function optimization,” in PPSN III: Proceedings of the 3rd

International Conference on Parallel Problem Solving from Nature,
1994, pp. 249–257.

[5] Y. Wang, B. Li, (2009) A Self-adaptive Mixed Distribution
BasedUnivariate Estimation of Distribution Algorithm for Large Scale
Global Optimization, in Nature-Inspired Algorithms for ptimization, in
series: Studies in Computational Intelligence, Raymond Chiong(Ed),
vol. 193, Chiong, Raymond (Ed.), pp. 171-198, Hardcover ISBN: 978-3-
642-00266-3, Springer-Verlag.

[6] R. E. Smith, B. A. Dike, and S. A. Stegmann, “Fitness inheritance in
genetic algorithms,” in SAC ’95: Proceedings of the 1995 ACM
symposium on applied computing, pp. 345–350, ACM Press, 1995.

[7] S. C. Agrawal, Metamodeling: a study of approximations in queueing
models. MIT Press, 1985

[8] Yang, Zhenyu, Ke Tang, and Xin Yao. "Self-adaptive differential
evolution with neighborhood search." Evolutionary Computation, 2008.
CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE
Congress on. IEEE, 2008.

[9] Omidvar, Mohammad Nabi, Xiaodong Li, and Xin Yao. "Cooperative
co-evolution with delta grouping for large scale non-separable function
optimization."Evolutionary Computation (CEC), 2010 IEEE Congress
on. IEEE, 2010

[10] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M.
Chen, , and Z. Yang, “Benchmark functions for the cec’2008 special
session and competition on large scale global optimization,” Nature
Inspired Computation and Applications Laboratory, USTC, China, Tech.
Rep., 2007, http://nical.ustc.edu.cn/cec08ss.php

[11] Z. Yang, K. Tang, and X. Yao. Large scale evolutionary optimization
using cooperative coevolution. Information Sciences, 178:2986–
2999,August 2008.

[12] Yang, Zhenyu, et al. "An adaptive coevolutionary differential evolution
algorithm for large-scale optimization." Evolutionary Computation,
2009. CEC'09. IEEE Congress on. IEEE, 2009.

[13] da Fonseca, L. G.; Lemonge, A. C. C. & Barbosa, H. J. C. (2012), A
study on fitness inheritance for enhanced efficiency in real-coded
genetic algorithms., in 'IEEE Congress on Evolutionary Computation' ,
IEEE, , pp. 1-8.

[14] K. Sastry, M. Pelikan, and D. E. Goldberg, “Efficiency enhancement of
genetic algorithms via building-block-wise fitness estimation,” in
Congress on Evolutionary Computation, 2004. CEC2004., pp. 720–
727,2004.

[15] M. Pelikan and K. Sastry, “Fitness inheritance in the bayesian
optimization algorithm,” in Genetic and Evolutionary Computation –
GECCO 2004 (K. Deb, ed.), vol. 3103 of Lecture Notes in Computer
Science, pp. 48–59, Springer Berlin / Heidelberg, 2004.

[16] M. Reyes-Sierra and C. A. C. Coello, “Dynamic fitness inheritance
proportion for multi-objective particle swarm optimization,” in
Proceedings of the 8th annual conference on Genetic and evolutionary
computation, GECCO ’06, pp. 89–90, ACM, 2006.

[17] E. Mezura-Montes, L. Mu˜noz-D´avila, and C. A. C. Coello, “A
preliminary study of fitness inheritance in evolutionary constrained
optimization,” in Nature Inspired Cooperative Strategies for
Optimization (NICSO 2007), vol. 129 of Studies in Computational
Intelligence, pp. 1–14, Springer, 2007.

[18] K. Sastry, D. E. Goldberg, and M. Pelikan. Don’t evaluate, inherit. In L.
Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt,M. Gen,
S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke,editors,
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 551–558, San Francisco, California,USA, 7-11
2001. Morgan Kaufmann.

[19] Zhao, Li, Wan-Ke Cao, and Yu-Tao He. "Fitness inheritance-based
evolutionary algorithm and its application in hybrid electric vehicle
design." International Journal of Wireless and Mobile Computing 7.2
(2014): 180-186.

[20] Barbour, Robert, David Corne, and John McCall. "Accelerated
optimisation of chemotherapy dose schedules using fitness inheritance."
Evolutionary Computation (CEC), 2010 IEEE Congress on. IEEE, 2010.

[21] Chi-Keong Goh, K. C. Tan, C.Y. Cheong, Yew Soon Ong, An
investigation on noise-induced features in robust evolutionary multi-
objective optimization, Expert Systems with Applications, 37(8):5960-
5980, 2010

[22] Chaoli Sun, Jian-Chao Zeng, Jengshyang Pan, Songdong Xue, Yaochu
Jin, A new fitness estimation strategy for particle swarm optimization,
Information Sciences, 221:355-370, 2013.

[23] F. van den Bergh and A. P. Engelbrecht. A cooperative approach to
particle swarm optimization. IEEE Transactions on Evolutionary
Computation 8(3), pages 225–239, 2004.

[24] Ray, T. and Yao, X. , “A cooperative coevolutionary algorithm with
correlation based adaptive variable partitioning,” in Proceedings of the
IEEE Congress on Evolutionary Computation, (Trondheim,Norway), pp.
983– 989, 2009.

[25] Giuseppe A. Trunfio, A Cooperative Coevolutionary Differential
Evolution Algorithm with Adaptive Subcomponents, Procedia Computer
Science, Volume 51, Pages 834-844, 2015.

[26] Eman Sayed, Daryl Essam, Ruhul Sarker, Saber Elsayed,
Decomposition-based evolutionary algorithm for large scale constrained
problems, Information Sciences 316, 457–486, 2015

[27] Yi Mei, Xiaodong Li, Xin Yao, Cooperative Coevolution With Route
Distance Grouping for Large-Scale Capacitated Arc Routing Problems.
IEEE Trans. Evolutionary Computation 18(3): 435-449 (2014)

[28] Qin, A. Kai, and Ponnuthurai N. Suganthan. "Self-adaptive differential
evolution algorithm for numerical optimization." Evolutionary
Computation, 2005. The 2005 IEEE Congress on. Vol. 2. IEEE, 2005.

[29] http://goanna.cs.rmit.edu.au/~xiaodong/publications/publications.html

1702

