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Abstract—The  engineering  of  stochastic  black  box 
optimization   methods,   particularly   evolutionary   algorithms 
(EAs), represents the most common and successful approach to 
solve lareg-scale parameter optimization problems. Currently 
several strategies are being explored to improve performance 
when the number of parameters is large (e.g. 1000 parameters). 
Prominent among these techniques are variants of differential 
evolution,   while   an   algorithm   engineering   strategy   being 
explored is ‘co-operative co-evolution’ (CC),   which involves 
successively optimizing subsets of the design parameters, with an 
organized approach   occasionally reconciling these ‘subspace’ 
optimizations. Recent work has shown that combining CC with 
fitness inheritance (FI) – a technique heretofore rarely explored 
in the context of large-scale optimization – can reliably lead to 
better performance. However that work was done in the context 
of a simple underlying EA (allowing us to be more confident that 
the benefits were due primarily to the combination of CC and 
FI). Here we explore the extent to which CC and FI provides 
added value when engineered together in the context of more 
sophisticated, so-called state of the  art  underlying  algorithms, 
pre-adorned with a variety of additional enhancements. To that 
end, in this paper we explore SaNSDE, and DECC-DML – two 
recent high-performance techniques in the field of large-scale 
optimization.   We also explore two basic adaptive parameter 
setting strategies for the FI component. We find that engineering 
FI (and CC, where it otherwise wasn’t) into these algorithms can 
provides either competitive or improved results  (Abstract) 

 
 

I.   INTRODUCTION 

Evolutionary algorithms have been used abundantly, and 
usually with reported success, to solve very many real-world 
optimization  problems  [1].  However,  the  community  as  a 
whole still has huge amounts to learn in terms of how best to 
design and engineer an evolutionary algorithm (EA) in a way 
that maximises its chances of doing well on the problem at 
hand, or on a problem of a given class. Among the set of 
challenges that  still  face  EA researchers, one  of  the  more 
urgent  ones  is  that  of  large-scale  problems.  The  usual 
meaning of ‘large-scale’, in this context, is an optimization 

 
 

problem with a reasonably (or unreasonably) large number of 
decision parameters [2]. Another common meaning of ‘large- 
scale’, and a closely-related challenge, refers to problems 
where the processor time requirement for evaluating a single 
solution is very high. In both meanings of ‘large-scale’ (and 
also in cases which combine the two), the challenge for the 
algorithm design community is to find search strategies that 
provide sufficiently good solutions in as small as possible a 
number of fitness evaluations. In those cases where the 
computational time-complexity of the fitness function is high, 
the need to make progress in reduced numbers of evaluations 
is obvious. On the other hand, when the number of parameters 
is high, the issue tends to be different: in these circumstances, 
standard algorithms tend to converge prematurely, long before 
effecting a  suitably extensive exploration of  the  parameter 
space; the challenge therefore becomes that of making the 
most of the available fitness evaluations, to achieve a better 
level of exploration in the available time. 

In this article, we continue from [3] in exploring two quite 
distinct strategies that are both known to be effective on their 
own.  The  first  of  these,  which is  currently under rampant 
investigation within the EA community, is the technique of 
co-operative co-evolution (CC). This is best understood as a 
‘Divide  and  Conquer’  strategy,  which  works  by  breaking 
down a many-parameter problem into a number of smaller 
sub-problems. Originally developed by Potter and De Jong 
[4], the essential idea behind their ‘CCEA’ algorithm was to 
partition the parameter space into separate sub-problems, and 
separately evolve  solutions to  each  of  these  sub-problems, 
using,  for  each  such  sub-problem,  fixed  values  for  the 
parameters   not   included   within   it.    A   common-sense 
arrangement was made to periodically update these ‘fixed’ 
values, making use of best-so-far solutions from other sub- 
problems. Many variations on this idea have since been 
explored.   In   general,   any   ‘CC’   approach   tends   to   be 
configured to evolve solutions to sub-problems one after 
another, each time using the best parameter values for the 
previous sub-problem when moving on to the next. In a 
sensibly configured ‘CCEA’, there are mechanisms for more
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sophisticated interaction between sub-problems. For example, 
sub-problems might be solved in parallel, and there might then 
be brief spells of ‘whole-problem’ evolution, or hill-climbing, 
rooted in the best parameters found from the sub-problems so 
far. Meanwhile, it tends to be the case that the convergence 
speed of a basic EA is faster than that of a version of that EA 
with CC engineered into it. But, well-designed versions of CC 
have frequently proven more effective than their substrate EAs 
in tackling large scale problems [5]. 

 
Meanwhile, fitness inheritance (FI) is an entirely different 

approach to speeding up black box optimization,  introduced 
by Smith, Dike and Stegmann [6]. FI tries to cut down on the 
need for ‘real’ function evaluations, by making a proportion of 
evaluations estimates, based on parents’ fitnesses. The 
approach can be seen as a variation on a ‘surrogate model’ 
based EA. In a surrogate model approach, a model of fitness 
(the ‘surrogate’ is learned while the algorithm is running, and 
used some proportion of the time in place of the ‘full’ fitness 
function, to provide a fast estimate.  In fitness inheritance, this 
surrogate  model  approximation  to  fitness  is  formed  by 
‘inheriting’ fitness values from one or more of an individual’s 
parents [6, 7]. 

 
The work in this article follows on from that of [3]. Noting 

that  both  CC  and  FI  could  be  intuitively  regarded  as 
‘orthogonal’ and had not previously been explored in 
combination, the question explored in [3] was whether CC and 
FI  could  provide independent, additive improvements to  a 
‘substrate’ EA. The findings from [3] were positive, indicating 
that a  simply-engineered combination of  CC and FI could 
yield an algorithm that was superior to the underlying EA with 
only CC, or with only FI (and indeed, also superior to the EA 
with neither). It remains to be seen if there is benefit in similar 
engineering of  more sophisticated EAs whose performance 
already approaches or occupies the state of the art, such as 
Yang, Tang and Yao’s ‘SaNSDE’ [8] or Omidvar, Li and 
Yao’s ‘DECC-DML’ [9]. 

 
We note that the latter would seem to  be a  ‘big ask’. 

Although independently effective, CC and FI may, either 
separately or in combination, interfere with one or more of the 
carefully crafted mechanisms that boost performance in 
thoroughbred algorithms such as those mentioned. Of course, 
CC and/or FI may be included in such an algorithm, in which 
case we would be interested in incorporating the missing of 
the two – however the same potential problem still arises. 

Meanwhile, a limitation of [3] was its focus on a limited 
number of test functions in terms of ‘large-scale’ (500D or 
1000D tests). It therefore remains to be seen whether 
combining CC and FI could provide robust benefits in a large- 
scale optimization context. Finally, the detailed findings of [3] 
were that, although CC+FI was generally beneficial, there was 
certainly  sensitivity  to  the  ‘fitness  inheritance  proportion’ 
parameter, begging the  future incorporation of an adaptive 
approach to the latter. 

To explore these issues, in this paper we engineer CC+FI 
versions of both SaNSDE and DECC-DML, and we make our 
comparisons mainly on a  commonly employed suite of 20 
500D and 1000D test functions with emphasis on 1000D [10]. 

The new engineered versions of CC and FI  incorporate an 
important   amendment   to   the   CC+FI   combination   that 
improves  upon  [3],  and  we  also  developed  two  simple 
adaptive versions of the CC+FI combination, to remove the 
need to specify the main parameter of FI, the ‘fitness 
inheritance proportion’. 
 

The remainder of the paper is set out as follows. In section 
II we run through the key background material; this involves 
brief introductions to the two key protagonists in this paper, 
fitness inheritance and co-operative co-evolution, each then 
followed   by   a   brief   associated   literature   review;   the 
background material concludes by recalling the initial work on 
combining these two approaches. In section III we look at 
engineering CC and FI into SaNSDE, leading to an algorithm, 
which we denote CCDE-nFI; it is compared with DECC-G 
[11] and JACC-G [12] (for reasons noted in the section – 
essentially, the former supersedes SaNSDE, and the latter 
further supersedes it). In section IV we then describe our  two 
simple   approaches   to   adapting   the   fitness   inheritance 
parameter in CCDE-nFI, and then we test them in the context 
of engineering CC and FI into DECC-DML. A concluding 
discussion is then offered in section V. 
 

Our code is freely available at http://is.gd/cceafi, at 
which site can be found java code for CCDE-nFI (the 
engineered version of  SaNSDE), an  amended version  Li’s 
original DECC-DML [dmml] in matlab (this was necessary, as 
mentioned in  section IV), and  DECC-DMLaFI (our 
engineered  version  of  DECC-DML,  incorporating adaptive 
fitness inheritance). 
 
 

II.  BACKGROUND 
 
A.  Fitness Inheritance : Introduction 
‘Fitness inheritance’ (FI) refers to the simple idea of making a 
fast estimate of an individual’s fitness, rather than performing 
an accurate evaluation. FI can be potentially be deployed in 
any ‘black box’ algorithm context. Where c is an individual in 
the population, and ‘eval(c)’ represents the evaluation of its 
fitness in the context of pseudocode, then we can effect the 
deployment of FI simply by replacing ‘eval(c)’ with: 
 

with prob. PFI, run inherit(c) 
otherwise run eval(c) 

 
However, sometimes care needs to be taken about the context 
of the evaluation. In the majority of cases, this means that we 
should ensure two things: (i) the initial population is always 
evaluated with eval, and  (ii)  updating of  the  ‘best  so  far’ 
solution, and similar book-keeping, are done on the basis of 
fitness values returned by eval. With the latter protections in
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place, we can then replace a proportion PFI of evaluations with 
fast ‘inherited’ estimates. 

 
There are three commonly used approaches to producing an 

inherited fitness [13]. Where ch is the child of parents p1 and 
p2, and where fx  represents the stored value of the previous 
evaluation of x (whether real or inherited), these are: 

 
Averaged inheritance, in which the estimate of the 
child’s fitness is simply the mean of its parents 
fitnesses: 

 

 f p1  +  f p 2  inherit(ch) = 
2 

 
Weighted inheritance: this is in the spirit of averaged 
inheritance, but introduces weights according to the 
child’s different similarities to its two parents: 

 

wp1   f p1  + w p 2   f p 2  inherit (ch) = wp1 + wp 2 

 
Parental inheritance: this is  an extreme version of 
weighted inheritance, in which the entire current 
population P is used to estimate the fitness of ch: 

 

�p P 
w p    f p  

inherit (ch) = 
�p P 

w p 

 
How weights are calculated in the latter two approaches 

depends  on  the  algorithm  and  encoding  context,  but  the 
overall idea is to guess the child’s fitness by appealing to a 
very simple linear approximation to the fitness landscape that 
is either based solely on the parents, or based on the entire 
population.  Naturally,  also,  the  obvious  variations  can  be 
made to calculate inherited fitness for children of just one 
parent, or of more than two parents. 

 
 
 

B.  Fitness Inheritance: Brief Review 
As previously indicated, Smith, Dike and Stegmann [6] 
originated the concept of fitness inheritance (FI), at the same 
time  introducing  the  first  of  the  two  simple  inheritance 
schemes above. In the original work, Smith et al evaluated the 
concept on two problems. The first of these was the well- 
known (and these days very little used) ‘ONEMAX test 
problem, in which the objective is simply to maximize the 
total number of 1s in a  binary chromosome. Their second 
choice of test case was somewhat more interesting, being a 
realistic  aircraft  routing  problem.  On  both  problems  they 
found  impressive  performance  from  FI.  In  [14],  Sastry, 
Pelikan and Goldberg made some headway into a theoretical 
understanding  of  FI,  untangling  the  relationship  between 

population size and the fitness inheritance proportion on the 
ONEMAX landscape. Their conclusions, as regards separable 
landscapes, were that FI could lead to significant efficiency 
enhancements, halving the required number of function 
evaluations, and yielding speed-ups of between 1.75-fold and 
2.25-fold. Pelikan and Sastry [15] went on to find even more 
impressive speedups (e.g.  30-fold) when using FI  in other 
application, and this has also been found in many other studies 
[16—20]. 
 

Although little work so far has combined FI with CC (we 
only know of [3]), FI is increasingly being explored outside 
the region of ‘standard’ EAs, and being applied to nonstandard 
applications. For example in [21], FI is used as an essential 
tool for reducing a number of fitness evaluations when solving 
a problem of constructing robust continuous multi-objective 
test functions with various noise-induced features capable of 
uncovering truly capacity of the tested algorithms. Meanwhile, 
a modification of FI where fitness of a solution is based on its 
positional relationship with other particles has also 
demonstrated its benefits when used in PSO [21], typically 
suffering from overwhelmingly high number of fitness 
evaluations needed to find acceptable solution. 
 
 
C.  Co-operative Co-evolution (CC): Brief Review 
The basic idea of co-operative coevolution (CC) is to solve a 
large-scale (many design variables) optimization problem by 
(i) decomposing it into several smaller sub-problems; (ii) 
solving each of the sub-problems; (iii) constructing a solution 
to  the  larger  problem  by  combining  the  solutions  to  the 
smaller ones.   In the original framework [4] (and in the 
majority  of  subsequent research),  the  ‘decomposition’ into 
sub-problems is simply effected by a partitioning of the 
decision variable space. For example, if we need to optimize a 
function of 1,000 variables, v1,v2,…,v1000, then we can 
decompose this into two smaller problems: the first sub- 
problem only considers variables 1—500; and the second only 
considers variables 501—1000. 
 

In the above example, when optimizing the first sub- 
problem, the quality of solutions can only be estimated by 
assuming a reference set of fixed values for variables 501— 
1000. Similarly,  when optimizing the  second  sub-problem, 
there needs to be a reference fixed set of values for variables 
1—500.  Typically, these reference sets may start at random, 
but be updated as the algorithm runs via the occasional 
evaluation of a judiciously composed full solution. The 
initialization and updating of these ‘reference sets’ is a key 
dimension of variation among the literature of CC variants, 
along with other key aspects such as the details of 
decomposition and its adaptation. 
 
 
D. Co-operative Co-evolution (CC): Brief Review 
Many researchers have investigated variations on the basic CC 
framework.   Relatively recently, Yang, Tang and Yao [11] 
proposed  their  variant,  DECC-G,  in  which  the  groups  of
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parameters within a sub-problem adapted over time, in attempt 
to maximize the extent to which interacting parameters were 
present in the same sub-problem, This led to improved 
performance on non-separable problems, when compared to 
the standard framework. Another example of a variant of CC 
is that of Van den Bergh and Engelbrecht [23], who explored 
CC  under  the  framework  of  particle  swarm  optimization 
(PSO). In their case, parameters were randomly assigned to 
sub-problems (this is also the case in [24]). In such random 
assignment, each sub-problem comprises a random selection 
of parameters scattered across the decision parameter vector, 
and this random assignment may change in every cycle of the 
algorithm. Among other key algorithm strategy choices in CC 
is the question of how, for any given sub-problem, to choose 
the reference set of fixed parameters that are not included in 
that sub-problem. The most common approach, naturally 
enough, is to use the best-so-far ‘complete’ solution, updating 
these reference sets whenever a new best-so-far is found. 

An example of CC in use in the context of Differential 
Evolution is provided by Trunfio [25], who investigated the 
use of several variants of search space decomposition in 
parallel during short learning phases, allowing to adapt the 
size of subcomponents during the CC search.   Meanwhile, 
Sayed et al [26] proposed a technique for the identification of 
variable interaction aimed at limiting the number of 
interdependent variables among  decomposed problems  –  a 
common theme in CC research also echoed in [9]. Sayed et 
al’s particular technique, related to the concept of separability 
and based on random resampling and propagation of variable 
partitions, is reported to improve the ability of the 
decomposition-based optimization  models  in  scaling  up  to 
dimension 1000. 

 
Another effective decomposition scheme  is  proposed in 

Mei, Li and Yao [27], which is designed especially for the 
large-scale capacitated arc routing problem. In this scheme, 
route information about best-so-far solution is actively 
employed in constructing the following decomposition to 
guarantee the non-decreasing quality of the decomposition. 
Differentiation between a vast number of possible 
decompositions is made based on special distances between 
the   solutions   which   allows   efficient   identification   of 
promising regions of the search. 

 
 

E.  Combining CC and FI 
The idea explored in [3] was to combine CC and FI, with a 
view to understanding whether they provided independent 
additive benefits. A simple algorithm that combined the two 
strategies (CCEA-FI) was designed evaluated, and evaluate 
them on the same set of test functions that were explored in 
[24]. These were primarily 50D and 100D functions, and the 
results pointed squarely to the suggestion that CCEA-FI 
generally achieves significantly better performance than either 
a CC-based EA without FI, or an EA with FI but without CC. 
In almost every case, CCEA-FI achieved superior statistics, 
although (typically) occasional anomalous results came from 

the Rosenbrock function, which showed high sensitivity to the 
fitness inheritance proportion parameter. 
 

Nevertheless, promise was clearly shown in [3] for 
engineering both CI and FI into a ‘substrate’ algorithm, and 
the stage was set two main potential lines of research. First, to 
investigate any benefits from incorporating the CC and  FI 
combination into existing state of the art algorithms, and 
second, to investigate adaptive versions. 

III.    ENGINEERING CC AND FI INTO  SANSDE: CCDE-NFI 

Self-adaptive Differential Evolution (SaDE) was introduced 
by Qin et al. [28], with the aim of reducing the notorious 
problem-dependence of DE with respect to its main variation 
operators. SaNSDE [8] later incorporated further 
improvements – primarily by adopting additional adaptation 
and exploration mechanisms for the ‘scale factor’, F, a key 
parameter in differential evolution (DE) operators. SaNSDE is 
a sophisticated black box optimization algorithm with a srog 
performance profile, which, arguably can still be considered 
among the ‘state of the art’, and we took it as a candidate for 
the ‘engineering into it’ of both CC and FI. It turns out, as it 
happens, that it is not easy to find a state of the art algorithm 
that doesn’t already have CC installed, so SaNSDE was a 
good choice for us in this respect. 
 

We implemented SaNSDE from the description in the 
literature,  and  engineered  CC+FI  into  it,  using  the  same 
CC+FI framework as in [3], but with one key improvement. 
The basic CCEA framework deployed a ‘random-grouping’ 
version of CC, and basic FI with Averaged-Inheritance. The 
improvement was simply to ensure that – in the steps of CC 
where a best from each subpopulation is chosen to populate 
new reference sets – these were constrained to be chosen on 
the basis of real evaluations (although not actually requiring 
additional real evaluations). Preliminary tests showed that was 
led to significant improvement in results at high levels of the 
fitness inheritance proportion (as is  intuitively reasonable). 
The lack of this strategy is presumably an explanation for 
reduced performance at high levels of inheritance as seen in 
[3], and also in [13], in which, although not involving CC, use 
us made occasionally of the ‘best so far’ irrespective of how 
its fitness was calculated 
 
 
We   denote   our   engineered   version   of   SaNSDE   as 

‘CCDEnFI’. Table I summarizes the results, showing the 
performance of CCDEnFI with the fitness inheritance 
proportion fixed at 90%. 

It  turns  out  that  CCDEnFI  outperformed  our 
implementation of unadorned SaNSDE with high statistical 
confidence at most levels of the FI proportion, and to save 
space we omit those comparative results. Instead we focus on 
comparing directly with improved ‘descendants’ of SaNSDE
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that  have  been  independently developed  by  the  associated 
network of authors. 

 
The first of the comparative algorithms listed is DECC-G [9], 
which ‘supersedes’ SaNSDE in this context, being a version of 
SaNSDE that has independently been configured with CC. 
The  second  is  JACC-G  [12],  which  further  improves  on 
DECC-G via developments in the area of its embedded DE 
algorithm.   The choice of test functions is the suite used in 
Yang Tang and Yao [11], which enables the maximal 
comparisons we can make with previously published results 
for DECC-G and JACC-G. 

 
 

TABLE I.           COMPARING CCDE-NFI (WITH FI AT 90%) WITH 
DESCENDANTS OF SANSDE 

 

F D DECC-G 
Mean 

JACC-G 
Mean 

CCDE-nFI 
Mean 

F1 500 6.33e-27 - 7.6e-313

1000 2.17e-25 2.7e-80 8.73e-123

F2 500 5.95e-15 - 2.15e-297

1000 5.37e-14 2.3e-20 INF

F3 500 6.17e-25 - 0.00e+00

1000 3.71e-23 2.4e-10 0.00e+00

F4 500 4.58e-05 - 3.9e+01

1000 1.01e-01 8.0e-05 8.11e+01

F5 500 4.92e+02 - 2.97e+02

1000 9.87e+02 9.83e+02 9.23e+02

F6 500 0.00e+00 - 0.00e+00

1000 0.00e00 0.00e+00 0.00e+00

F7 500 1.50e-03 - 1.56e-03

1000 8.40e-03 1.2e-03 4.62e-03

F8 500 -209491 - -209491

1000 -418983 -418983 -418983

F9 500 0.00e+00 - 0.00e+00

1000 3.55e-16 0.00e+00 0.00e+00

F10 500 9.13e-14 - 5.07e-14

1000 2.22e-13 1.4e-14 1.05e-13

 
 
 
 
 

Matching  the   key   experimental  variables  with   those 
reported in association with the comparative results, each 
experiment of CCDEnFI was run for 2,500,000 function 
evaluations  (real,  not  inherited)  for  500D  cases,  and  for 
5,000,000  function  evaluations  in  the  1000D  cases.  The 

population size was 100, and the sub-problems (in the context 
of CC) were always of dimension 100 (hence, 5 sub-problems 
in the 500D cases, and 10 sub-problems in the 1000D cases). 
 

As we have mentioned, to save space we show only the 
results for CCDEnFI using 90% fitness inheritance. This 
achieves better or equivalent mean performance than DECC-G 
on 8 of the 10 500D cases (winning 5, losing 2), and 8 of the 
10 1000D cases (winning 6, losing 2). Meanwhile, it performs 
better or equivalently to  JACC-G on 7 of the 10 1000D test 
cases (winning 4, losing 3).  Comparative 500D results were 
not available for JACC-G. 
 

Simple statistical analyses of these results (using Student’s 
T test and a prior confidence level of 0.05) suggests 
competitive (i.e. ‘equal’ performance) for CCDE-nFI when 
compared with either JACC-G or DECC-G. There is not 
enough evidence to claim superiority of CCDEnFI at a high 
level of confidence in this context, especially after the 
Bonferroni correction. However we can conclude that simply 
engineering CC and FI into a sophisticated algorithm (such as 
SaNSDE) in a straightforward way, is able to provide 
potentially superior results, and at least competitive results, to 
those available via a suite of alternative sophistications, such 
as those incorporated beyond SaNSDE in each of DECC-G 
and JACC-G. 
 
 

Finally, the performance (not shown here) of CCDEnFI 
with lower levels of fitness inheritance was generally similar to 
that shown for 90%, although lower levels (10% -- 40%) 
occasionally showed reduced (and highly problem-dependent) 
performance. Obviously, to achieve candidacy as a usable 
algorithm, CCDEnFI (or, the engineering of CC and FI into an 
algorithm in general) needs to either come along with good 
guidelines for setting the fitness inheritance parameter, or there 
needs to be a viable adaptive approach. The latter notion is 
investigated next. 
 
 
 

IV.    ENGINEERING ADAPTIVE CC AND FI INTO  DECC-DML 
So far, we have investigated the combination of CC and FI in 
[3] and herein, without the intention of declaring a new 
algorithm, but with the intention of exploring their potential as 
adornments to arbitrary black box algorithms. Nevertheless, to 
be deployable and ‘proposable’ an algorithm that incorporates 
both CC and FI must come along with either a good set of 
fixed parameters, or with an adaptation scheme for its key 
parameters. The single key parameter that looms large in this 
respect is the fitness inheritance proportion (often abbreviated 
as ‘FI’, at the risk of overloading that term). In this section we 
take a first step at investigating adaptive schemes for it in the 
CC+FI context. 
 
 

Two simple ‘first-cut’ adaptive approaches were designed 
as follows: 
 

Method A: In this approach, the performance of 10%, 20%, 
… and so on, up to 90%  FI are sampled in the first batch of
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F (corrected) 
DECC-DML 

results 

DECC-DML-aFI 
Method A 

DECC-DML-aFI 
Method B 

F1 8.68625e-08 2.94803e-08 1.876923e-08 
F2 1.091e+3 1.1209e+03 1.12580e+03 
F3 1.94621e-07 1.23452e-07 9.007184e-08 
F4 6.68762e+12 5.56665e+12 5.78655e+12 
F5 2.82387e+08 2.97985e+08 2.84147e+08 
F6 9.2674e+04 1.09202e+06 6.37554e+05 
F7 2.31131e+08 1.65121e+08 4.10521e+08 
F8 9.34754e+07 9.36069e+07 1.16837e+08 
F9 1.3458e+08 1.27753e+08 1.25674e+08 

F10 1.2646e+04 1.26387e+04 1.32528e+04 
F11 4.60642e+00 6.86595e-06 3.226461e-06 
F12 3.97037e+06 4.09242e+06 4.86637e+06 
F13 1.320e+03 1.15158e+03 1.27881e+03 
F14 4.31999e+08 4.18162e+08 4.19249e+08 
F15 1.5586e+04 1.55049e+04 1.62337e+04 
F16 3.41033e+01 1.71398e+01 5.378018e-05 
F17 7.04423e+06 7.14235e+06 8.36006e+06 
F18 7.95526e+03 3.97663e+03 3.90853e+03 
F19 1.783e+07 1.73677e+07 2.16407e+07 
F20 9.944e+02 1.0201e+03 1.00183e+03 

evaluations, with each being the sole setting for a duration of 
FItest evaluations (hence 9xFItest evaluations are devoted to 
this sampling process). The value of FI that performed best in 
this early sampling is then used for the remainder of the run. 

 
Method B: This begins in the same way as method A. 

However the sampling process is repeated every EPOCH 
evaluations. After a set of EPOCH evaluations is completed, 
the sampling process is repeated (consuming 9xFItest 
evaluations), and the best FI from that most recent sampling is 
then used for a further (EPOCH - 9xFItest) evaluations; this 
process is repeated until termination. 

 
Our adaptive schemes were tested in the context of a further 

investigation into engineering CC and FI to a sophisticated 
state of the art algorithm. In this case, the algorithm of choice 
was DECC-DML [9]; DECC-DML is a further co-operative 
co-evolution approach based on DE, which improves on the 
previous ‘random grouping’ method for constructing CC sub- 
problems, aimed at being more effective at identifying 
interacting variables, which are then best treated within the 
same sub-problem. 

 

DECC-DML and its available results provide a further 
opportunity for us to test the engineering of combined CC and 
FI. However, a slight drawback – which has turned out not 
easy to avoid in the context of current large-scale optimization 
research – is the fact that DECC-DML already incorporates 
CC. Nevertheless, the spirit of investigation remains in that we 
are exploring the capability of combinations of CC and FI, 
especially in the context of already-sophisticated methods. We 
therefore  soldiered on,  and  proceeded by  retaining DECC- 
DML’s existing (and quite sophisticated) variant of the CC 
mechanism, and engineered our adaptive versions of FI into the 
existing DECC-DML code (which the authors had made 
available). 

 

The latter was done, and the resulting ‘DECC-DML-aFI’ 
algorithm was compared with DECC-DML over the CEC 2008 
‘large scale global optimization’ test suite of 20 1000D test 
functions   [10].   Following   preliminary   investigation,   the 
method  A  and  B  parameters  FItest  and  EPOCH  (only  in 
method B) were set to 100 and 300,000 respectively. Table II 
summarizes the results. The results in each case are the means 
of 20 independent runs, each of which continued for a 
maximum of 5,000,000 real evaluations. 

 
 

Note: DECC-DML source code in Matlab, as presumably 
deployed in [9] was obtained from Xiaodong Li’s website [29]. 
We engineered the inclusion of FI directly into this version. 
However, we noticed that the mechanisms in the original 
DECC-DML source code, associated with calculating and 
updating the ‘delta’ value, incorporated some calls to function 
evaluations that were  not  accounted for  in  the  total  which 
counted towards algorithm termination. The results for DECC- 
DML shown in Table II are therefore from our own runs with 
the corrected version of the source code, ensuring comparison 
on an equal basis in terms of real function evaluations. 

 
In Table II, the best mean result for any given function is 

highlighted in bold, while underline is used to indicate with of 
the   two   adaptation   methods   achieved   the   best   mean 

(independent of whether either achieved overall best mean for 
that function). 
 

Analysis of Table II shows that the laurels are shared quite 
equally between the three approaches. Original DECC-DML 
has 7 ‘wins’, compared with 7 wins for DECC-DML-aFI 
Method B, and 6 wins for the Method A version. Similarly, 
both Method A and Method B show a complementary 
performance profile over the 20 functions. 
 

This suggests that, at best, we can say that the engineering 
of  FI  into  DECC-DML  (via  either  of  the  two  adaptive 
methods) has adjusted its overall performance profile, while 
not providing an ‘overall’ improvement (and certainly not 
providing any overall detriment) to its performance, as 
estimated over this particular function suite. 
 

Isolating each DECC-DML-aFI method and comparing that 
with DECC-DML, we note that Method A achieves a better 
mean value on 13 of the 20 functions, while   Method B 
achieves a better mean on 9 of the 20 functions. If we consider 
these   success   rates   against   expectations   according   to 
cumulative binomial probability (assuming null hypothesis of a 
success rate of 0.5 in each case), we note that 13 or more 
‘wins’ can be expected to occur with probability 0.132, while 9 
wins  (or  equivalently,  11  wins  for  DECC-DML)  can  be 
expected with probability 0.411. This further confirms that the 
engineering of FI into the algorithm has not caused any overall 
loss in performance, but has clearly changed the performance 
profile in a way we have yet to fully understand. 
 
 

TABLE II.         ENGINEERING SIMPLE DAPATIVE FI INTO DECC-DML 
(DECC-DMLAFI
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In terms of recommendations for practitioners, the changed 
performance profile of the FI-engineered version may well be 
more favourable for particular landscapes (and intuition would 
suggest these to be those on the smoother side), but 
understanding that requires further research. Ultimately, 
however, our results seem consistent with the notions that: 

• Engineering CC and FI into a good algorithm may 
well lead to improved performance, and will not 
lead to reduced performance; 

• Engineering CC and FI into a sophisticated, state 
of the art algorithm (or engineering FI into a state 
of the art algorithm that already includes CC) may 
also lead to improvement, and will likely not lead 
to detriment.  However, the more ‘state of the art’ 
the original algorithm is, the more the exercise 
may provide diminishing returns. 

 

This theme will be a little more explored in the next section. 
 
 
 

V.  CONCLUDING SUMMARY AND DISCUSSION 
 

 
Earlier work had suggested promise for using both co- 
operative coevolution (CC) and fitness inheritance (FI) in the 
design of a black box optimization algorithm (especially with 
large-scale problems in mind). Essentially, that paper had 
shown that the strategy of combining CC and FI works well, 
providing independent and additional improvements, in the 
case where the underlying EA being engineered was otherwise 
a straightforward algorithm. 

 
In this paper, however, we further explored the strategy of 

combining CC and FI by jumping in at the ‘deep end’ by 
seeing if combining these strategies could lead to any 
advancement for algorithms that were already ‘state of the 
art’, in the sense that they already comprise a variety of 
sophisticated mechanisms that boost their performance. 

 
The raw results of this effort were mixed. Of course, 

comparing new approaches with ‘state of the art’ algorithms 
can always be seen as a risky strategy, in cases where the 
context seems to require relentless advances in performance. 
However, in the case of this paper, our experiments amount to 
further probing of the behavior of CC and FI combined. 

 
The question (perhaps rationalized a little after the fact) is 

not ‘Can CC+FI improve a state of the art algorithm (which 
doesn’t already use both…)?’. We would a priori not hold out 
high expectations that this is possible, because ‘state of the 
art’ algorithms tend to incorporate a complex cookbook of 
mechanisms that would likely be perturbed by significant 
additional mechanisms such as either CC, FI or both. Instead, 
the  question is  –  given that  we  already know CC+FI can 
improve a ‘straightforward’ algorithm – ‘Can CC and FI be 
engineered into arbitrary black box optimization algorithms, 

without doing harm?’. (alternatively: if the algorithm contains 
either CC or FI already, can we engineer the other one into it 
without doing harm?). If the answer to that was positive, it 
would suggest that adding CC and FI to simpler algorithms 
would lead to improvements, and adding them to state of the 
art algorithms would leave their overall performance profile 
unchanged. This is precisely what you want if, beforehand, 
you don’t actually know where  your  algorithm sits in  the 
virtual ‘algorithm league table’. 

In that sense, we would tentatively conclude that the new 
approach to combining CC and FI explored here (involving 
the amended and adapted FI) represents a recommended 
algorithm-enhancement strategy. 
 

Of course, this area of algorithm design is crying out for a 
deeper understanding of (among many other things) how, why 
and  what  circumstances CC  and  FI  can  provided additive 
improvement. As we speculated in [3], the distinct nature of 
the two mechanisms seemed to herald good potential for their 
combination. Intuition suggests that FI works best when the 
landscape is locally (at least) smooth; however, if the local 
shape is not smooth, one might nevertheless expect FI to work 
well if the ruggedness is within reasonable bounds; in that 
circumstance, for example, an occasional inherited fitness that 
ends up being a poor estimate may have the same effect, in 
terms of algorithm dynamics, as the injection of diversity via 
low-pressure selection.  Meanwhile CC works well when the 
problem can be partitioned into sub-problems which, to at 
least a small extent, cluster the interacting variables. In 
combined CC and FI, FI operates on the sub-problems which, 
depending in the decomposition strategy, may therefore be 
somewhat more rugged landscapes, however the earlier 
observation still suggests benefit for FI. 
 

We need to move beyond such speculation, and forward to 
theoretical lines of investigation that might shed light on CC 
and  FI   combinations,  as   well  as  associated  black  box 
algorithm design mechanisms. In ongoing work, we are slowly 
moving in that direction, by means of gathering data at 
runtime. Such data includes tracking the ruggedness of sub- 
problems, and tracking the context of use and the performance 
of individual FI operations during a CC+FI run. We think that 
analyses of these data will illuminate potential directions for 
theoretical analysis and further algorithm design strategies. 
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