
Improved Constructive Cooperative Coevolutionary
Differential Evolution for Large-Scale Optimisation

Emile Glorieux, Bo Svensson, Fredrik Danielsson
Department of Engineering Science

University West

S-461 86 Trollhättan, Sweden

Email: emile.glorieux@hv.se

Bengt Lennartson
Department of Signals and Systems

Chalmers University of Technology

S-412 96 Gothenburg, Sweden

Abstract—The Differential Evolution (DE) algorithm is widely
used for real-world global optimisation problems in many dif-
ferent domains. To improve DE’s performance on large-scale
optimisation problems, it has been combined with the Cooperative
Coevolution (CCDE) algorithm. CCDE adopts a divide-and-
conquer strategy to optimise smaller subcomponents separately
instead of tackling the large-scale problem at once. DE then
evolves a separate subpopulation for each subcomponent but
there is cooperation between the subpopulations to co-adapt the
individuals of the subpopulations with each other. The Con-
structive Cooperative Coevolution (C3DE) algorithm, previously
proposed by the authors, is an extended version of CCDE that has
a better performance on large-scale problems, interestingly also
on non-separable problems. This paper proposes a new version,
called the Improved Constructive Cooperative Coevolutionary
Differential Evolution (C3iDE), which removes several limitations
with the previous version. A novel element of C3iDE is the
advanced initialisation of the subpopulations. C3iDE initially
optimises the subpopulations in a partially co-adaptive fashion.
During the initial optimisation of a subpopulation, only a subset of
the other subcomponents is considered for the co-adaptation. This
subset increases stepwise until all subcomponents are considered.
The experimental evaluation of C3iDE on 36 high-dimensional
benchmark functions (up to 1000 dimensions) shows an improved
solution quality on large-scale global optimisation problems
compared to CCDE and DE. The greediness of the co-adaptation
with C3iDE is also investigated in this paper.

I. INTRODUCTION

Population-based algorithms are well-suited and popular
for solving real-world global optimisation problems. More and
more optimisation problems arise in engineering and other
fields. Many real-world problems are large-scale in terms
of number of parameters to optimise. The requirements for
algorithms to solve these problems are increasing, in terms
of solution quality, complexity, optimisation time reduction,
usability, etc. There is a continuous demand in the field of
computational intelligence for more advanced optimisation
algorithms to solve large-scale real-world problems within a
practical time-frame.

Differential Evolution (DE) is an efficient, simple, robust
and powerful population-based evolutionary algorithm, espe-
cially for continuous optimisation problems [1]. DE became
popular among computer scientists and practitioners soon
after its original definition by Storn and Price [2]. A main
difference with DE compared to other evolutionary algorithms

is that it perturbs the individuals of the population with scaled
differences of other randomly selected and distinct individuals.
DE is thereby self-organising, which reduces the number of
control parameters that must be set by the user [2].

DE and many DE-variants typically have an excellent
performance for problems that have between 30 to 100 dimen-
sions, but the performance rapidly decreases when it increases
beyond 500 dimensions [3], i.e. large-scale problems. The
number of dimensions is a major factor that contributes to the
complexity of an optimisation problem and the difficulty to
solve it. For such large scale problems, one of the approaches
is to extend DE with the Cooperative Coevolution (CC) algo-
rithm [4]–[13]. With CCDE, the optimisation problem is di-
vided into smaller subcomponents that are easier to solve. Each
subcomponent is assigned a separate subpopulation. These
subpopulations are then evolved separately, by DE, while
cooperating with each other to co-adapt the individuals. This
improves the performance of the optimisation of large-scale
problems. Though, there are difficulties with CCDE, specifi-
cally to decompose and optimise non-separable problems. For
separable problems, the optimum can be found by performing
a line search in each search direction (i.e. for each parameter).
Whereas this is impossible for non-separable problems because
there are interdependencies/interactions between parameters.

An extended version of CCDE was previously proposed by
the authors, called Constructive Cooperative Coevolutionary
Differential Evolution (C3DE) [14], [15]. The extension of
C3DE includes deploying a constructive heuristic to create
good initial feasible solution for the complete problem. This
initial solution is then used for the cooperation between the
subpopulations at the start of the optimisation with CCDE.
When the search with C3DE stagnates, it restarts to create
a new different initial feasible solution. The results show that
C3DE outperforms CCDE on real-world problems concerning
interacting production stations [14]. Though, it was found that
there are several drawbacks and limitations with this version
of C3DE which make it relatively complex to implement and
use.

The objective of this paper is to propose and investigate an
improved version of the previously proposed C3DE for large-
scale optimisation. The improvements are concerned with a
more effective mechanism to co-adapt the subpopulations. A
second objective of this paper is to investigate how to control
the greediness of the co-adaptation.

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.239

1703

The main contribution of this paper is the proposed Im-
proved Constructive Cooperative Coevolution Differential Evo-
lution (C3iDE) algorithm for large-scale optimisation. A novel
element with C3iDE is that a subpopulation is co-adapted
with an elite fraction of the other subpopulations, already
during its initialisation. Furthermore, the size of the elite
fraction affects the greediness of C3iDE and can be controlled.
During the initialisation, the subpopulation is immediately co-
adapted with the elite fraction of the previously initialised
subpopulations, and are first initially optimised in this way to
obtain an optimised elite fraction for the initialisation of the
next subpopulations. Compared to the previous version, the
improvements of C3iDE are a controllable greediness, fully
scalable in number of subcomponents, fewer user-settings to
tune, simpler to implement, and applicable to a wider range
of problems. These improvements increase the performance
and make C3iDE easier to use. A second contribution is
the investigation of several method to control the greediness
of C3iDE that indicates that 100% greedy or a dynamically
controlled greediness are preferable.

II. COOPERATIVE COEVOLUTIONARY DIFFERENTIAL

EVOLUTION

Cooperative Coevolution (CCDE) is a divide-and-conquer
strategy to optimise large-scale problems. The pseudo-code of
the CCDE algorithm is shown in Algorithm 1. The problem
is decomposed into smaller, easier-to-solve, subcomponents
that can be optimised separately, as shown on line 1 in Algo-
rithm 1. This is done by grouping the parameters into n sets
{G1, . . . , Gn}. After randomly initialising the subpopulations
of each subcomponent (line 2 in Algorithm 1), an evolutionary
algorithm is typically adopted to evolve the subpopulations of
the subcomponents. This is done in a round-robin fashion for
the subcomponents as shown on lines 4-10 in Algorithm 1.
To calculate the fitness of an individual, the subpopulations
cooperate by exchanging individuals. These individuals are
called collaborators [16]. This exchange is necessary because
an individual of a subpopulation represents only a subvector
of the solution vector for the problem. To evaluate the fitness
of an individual, it is combined with the collaborators, one
from each other subcomponent, to form a solution vector for
the complete problem (lines 7-8 in Algorithm 1). The fitness
is assigned to the individual under evaluation and also to the
collaborators (line 9 in Algorithm 1). The fitness assignment to
the collaborators can be done in different ways, as proposed
by Wiegand et al. [17], i.e. optimistic, pessimistic or hedge.
In the optimistic case, an individual is assigned/keeps the best
fitness of its own evaluation and all collaborations in which
it takes part. The pessimistic case is similar, an individual is
assigned/keeps the worst fitness of its own evaluation and all
collaborations in which it takes part. In the hedge case, an
individual is assigned the average fitness of its own evaluation
and all collaborations in which it takes part. Next, the best
individual, either a parent or its corresponding child is selected
for the new subpopulation (line 10 in Algorithm 2).

Several researchers adopt and investigate improvements
for CCDE to further improve the performance on large-scale
problems [4]–[13]. More advanced version of CCDE focus
either on the self-adaptation of the DE’s control parameters or
on automatic and adaptive grouping strategies to decompose
the problem [18].

1: G = {G1, . . . , Gn} ← grouping(n)
2: pop← initialise(pop1, . . . , popn)
3: while termination criteria false do
4: for each subcomponent i do
5: select parents from popi
6: produce children from selected parents
7: select collaborators from (pop− popi)
8: evaluate children interacting with collaborators
9: assign fitness to children and collaborators

10: select survivors for new popi
11: end for
12: end while
13: return best solution

Algorithm 1: Pseudo code of the (CCDE) algorithm

Zamuda et al. [4] and Weber et al. [5] proposed self-
adaptation for CCDE. Each individual of the subpopulations
directly encodes two control parameters of DE, i.e. the muta-
tion scale factor (F) and the crossover parameter (CR). A
“log-normal” self-adaptation mechanism is adopted to tune
these control parameters during the optimisation. The self-
adaptation allows the control parameters to self-adapt for each
specific subcomponent without any user interaction.

For non-separable problems, it was found that it is crucial
to group interacting parameters together in the same sub-
component, so they are optimised together. Depending on
the problem, this might not be straightforward or feasible,
especially as often these interactions are not known explicitly.
Different ways for grouping the parameters to decompose the
problem have been proposed to handle such non-separable
problems, for example random grouping [7], [8], correlation-
based grouping [9], variance-based CCDE [10], multi-level
CCDE [11], [12] and differential grouping [13]. A more
detailed overview of grouping strategy is given by Trunfio
[18]. These strategies are particularly interesting when nothing
or very little is known about the interactions between the
parameters. For some problems, an appropriate decomposition
might be explicitly known and can be hand-decomposed in
advance. In this work, the grouping strategy is not studied
but considered as future work. Thereby, in the tests performed
in this work, the problems are decomposed randomly in the
equal-sized subcomponents.

Furthermore, the selection of the collaborators from the
subpopulations is an important aspect of CCDE that can
influence the performance [17]. For some problems, it is
sufficient to chose the best individual in the subpopulation
as the collaborator, but for other problems this is too greedy
[19]. As investigated by Wiegand et al. [17], there are three
main aspects to alternatives, i.e. collaborator selection pres-
sure, number of collaborators, credit assignment when using
multiple collaborators. It was found that the greedy alternative
is preferable for straight-forward fully separable problems.
For complex non-separable problems, the higher number of
collaborators, the better the performance. Although, this comes
with an additional computational cost. Hence, that is not
always applicable. The influence of the selection pressure
seemed to be of lesser importance. In this study of the
collaborators selection by Wiegand et al. [17], only three
different benchmark functions with low number of parameters

1704

were considered. Therefore, in the work presented in this
paper, the collaborators selection is further investigated for
C3iDE and with wider range of larger problems.

III. ORIGINAL CONSTRUCTIVE COOPERATIVE

COEVOLUTIONARY DIFFERENTIAL EVOLUTION

The Constructive Cooperative Coevolutionary (C3DE) al-
gorithm is an extended version of CCDE and was proposed by
the authors for optimising the control of interacting production
stations using simulation-based optimisation [20], [21]. It
was tested on real-world computationally-expensive large-scale
problems and compared with other algorithms such as CCDE,
DE, CCPSO and Particle Swarm Optimiser. It was found that
it outperforms the other algorithms on these problems.

The C3DE algorithm works as following, it starts with
step-wise constructing a feasible solution, by initialising and
optimising one subcomponent’s subpopulation at the time. The
best individual of the previously initialised subpopulations is
used as collaborator during the initial optimisations. For the
fitness calculations, the problem’s dimensions is thus reduced
to only the dimensions of the individual and the collaborators.
For example, when initially optimising the second subpop-
ulation, the fitness is calculated on a problem reduced in
dimensions corresponding to the dimensions of the first and
second subcomponent.

After all subpopulations have been initialised, C3DE con-
tinues optimising in the same way as CCDE. Then, C3DE
uses a fixed set of collaborators (one for each subcomponent)
for all function evaluations. At certain intervals, this set of
collaborators is updated by trying to combine the new single
best individuals in each subpopulation. This is done by an
exhaustive search of all possible enumerations of the old
collaborators and new best individuals in the subpopulations.

When the search stagnates, C3DE restarts the constructive
method by stepwise reinitialising subpopulations and optimis-
ing the subcomponents. The construction restarts from the best
individual from one of the subpopulations after initialisation
that was not used as collaborator during the previous construc-
tion. To be able to select the best individual, it must be possible
to compare their fitness value although the different individuals
consider a different number of subcomponents. For this to be
possible, it is required that all subcomponents are similar.

There are several drawbacks with this version of C3DE.
First, it is very greedy because the single best individual from
each subpopulation is always used as collaborator. It also was
found that it is not scalable in number of subcomponents due
to this exhaustive search for updating the set of collaborators.
Furthermore, there are several setting parameters that need
to be tuned, such as the interval for updating the set of
collaborators, how to decide that the search stagnated and
how to restart. The updating of the set of collaborators and
the restarting when the search stagnates make that it is not
necessary straightforward to implement C3DE. C3DE also
requires that all subcomponents are similar in nature, as that
they represent similar substructures of the problem.

IV. IMPROVED CONSTRUCTIVE COOPERATIVE

COEVOLUTIONARY DIFFERENTIAL EVOLUTION

The Improved Constructive Cooperative Coevolutionary
Differential Evolution (C3iDE) algorithm is proposed in this
paper. C3iDE avoids having the drawbacks and limitations
of the earlier version (C3DE) which were discussed in the
previous section. The pseudo-code of C3iDE is shown in
Algorithm 2. First, the optimisation problem is decomposed
into n subcomponents based on the partitioning of the D
parameters (or dimensions) G = {1, 2, . . . , D} into n sets
G1, . . . , Gn (line 1 in Algorithm 2). Each set of parameters
defines the search space of the corresponding subcomponent.
The number of dimensions for a subcomponent’s search space
is thus significantly less than total number of dimensions D.
When a subcomponent is optimised, DE is applied on the
subcomponent’s search space. Each subcomponent is assigned
a separate subpopulation S(i). By construction, an individual
in S(i) only contains the parameter set of the corresponding
subcomponent.

One requirement remains with C3iDE which is that a
subpopulation’s individual’s fitness can be calculated combined
with no collaborators or with fewer collaborators (less than
one for each subcomponent). The fitness of an individual is
then calculated by applying it to only the corresponding sub-
component, and without considering all other subcomponents.
The individual can also be combined with collaborators from
the other subpopulations but not necessarily all, then only
the subcomponents of these collaborators are considered for
calculating the fitness. This is thus equivalent to having the
same problem with lower number of dimensions.

1: G = {G1, . . . , Gn} ← grouping(n)
2: pop← {∅}
3: for each subcomponent i do
4: pop←initialise(popi)
5: while termination criteria false do
6: select parents from popi
7: produce children from selected parents
8: select collaborators from (pop1, . . . , popi−1)
9: evaluate children interacting with collaborators

10: assign fitness to children and collaborators
11: select survivors for new popi
12: end while
13: end for
14: while termination criteria false do
15: for each subcomponent i do
16: select parents from popi
17: produce children from selected parents
18: select collaborators from (pop− popi)
19: evaluate children interacting with collaborators
20: assign fitness to children and collaborators
21: select survivors for new popi
22: end for
23: end while
24: return best solution

Algorithm 2: Pseudo code of the C3iDE algorithm

1705

A. Description C3iDE algorithm

C3iDE starts with stepwise initialising and optimising the
subpopulations in a constructive fashion (line 3-13 in Algo-
rithm 2). First, a subcomponent’s subpopulation is initialised
randomly (line 4 in Algorithm 2). This subpopulation is then
optimised by DE as following. First, DE selects the parent
individuals from the subpopulation and children are produced
from these (lines 6-7 in Algorithm 1). Collaborators are
selected from the previously initialised subcomponents (line 8
in Algorithm 2). Only these subcomponents will be considered
for the fitness calculation and the others are neglected. The
children are evaluated while cooperating with the selected
collaborators (line 9 in Algorithm 2). The calculated fitness
is assigned to the individual under evaluation and to the
collaborators. The fitness assignment to the collaborators is
done in an optimistic way [17], i.e. an individual is assigned
the best fitness of its own evaluation and the collaborations
in which it takes part. A collaborator’s fitness value that was
calculated with less subcomponents is always replaced by the
new fitness calculated with more subcomponents. Next, the
best individual, either a parent or its corresponding child is
selected for the new subpopulation (line 10 in Algorithm 2).
A single subpopulation is optimised until the predefined ter-
mination criterion is reached (line 5 in Algorithm 2) and then
the subpopulation of the next subcomponent is initialised and
optimised in the same way.

Once this is done for all subcomponents, the optimisation
continues in the same fashion as CCDE. Each subpopulation
popi is optimised separately (lines 14-24 in Algorithm 2).
This is done in a round-robin fashion for the subpopulation
of the subcomponents, performing one generation for each
subpopulation. Now, in contrast with before, collaborators
from all other subpopulations are used for the individuals’
fitness calculations. This is continued until the termination
criteria for the optimisation are met. The best individual that
includes all subcomponents is then presented as the found
optimal solution for the problem.

The generation of the initial population of DE is an
important issue. Although random initialisation is typically
used for DE, for certain optimisation problems and/or hybrid
optimisation algorithms that use DE, it is likely that there
exist other population initialisation strategies that lead to much
better results [22]. C3iDE inherits the stepwise initialisation
and optimisation of the subpopulations from the previous
version. Instead of initialising all subpopulations randomly
at once, each subpopulation is initially optimised taking into
account the subcomponents that were previously initialised.
The individuals of the subpopulations are thereby already co-
adapted to the other subcomponents during the initialisation.

Compared to the previous version, the improvements with
C3iDE relate to using different randomly selected collab-
orators from an elite subset of each subpopulation, both
during the initial optimisations and when all subpopulations
are initialised. This allows to control the greediness, whereas
in the previous version, the search was always 100% greedy
because only the best individual of a subpopulation is used
as collaborator. This makes the initialised individuals of the
subpopulations more robust in the sense that they are co-
adapted to different collaborators instead of just one. Further-
more, it avoids having to perform the exhaustive search of

all possible enumerations of the old and new collaborators to
update the set of collaborators used once all subpopulations are
initialised. This exhaustive search puts a limit on the number
of subcomponents the previous version could handle. With
the improved C3iDE, there is no exhaustive search to update
the collaborators and thus no limitations on the number of
subcomponents.

In total, there are four user-parameters with C3iDE, next
to the usual user-parameter(s) for the termination-criteria of
an evolutionary algorithms. A first user-parameter of C3iDE
is the number of subcomponents (n). It is assumed that equal-
sized (Dn) subcomponents are used as proposed in this work,
otherwise the size of each subcomponent must also be defined.
A second user-parameter of C3iDE is the size of the subpop-
ulations (NP), or in other words the number of individuals in
the subpopulations. Another user-parameter is the termination
criteria for the initial optimisation of a subpopulation. This
will set the ratio between how much of the optimisation effort
is spent on the initial optimisations, and how much when all
subpopulations are initialised. In this work, a ratio of 1/1 was
adopted so half of the total optimisation effort is spent on the
initial optimisations. A final user-parameter is the greediness of
the collaborator selection (k). This decides which individuals
of a subpopulation are chosen as collaborators. Different ways
to set k will be proposed and discussed in the next subsection.

B. Greediness collaborator selection

To control the greediness of the collaborator selection,
collaborators are selected from an elite set of individuals of
each subpopulation, i.e. a fraction of a subpopulation with the
k best individuals. As with CCDE, the greediness influences
the performance as discussed by Wiegand et al. [17]. When
k = 1, the selection has maximum greediness and only the
best individual in a subpopulation is chosen as collaborator.
When k is equal to the size of the subpopulations k = NP ,
then there is no greediness and a random individual is chosen
from a subpopulation as collaborator. Another possibility is
to use a specific value for k (i.e. 1 < k < NP). Then, a
collaborator is randomly selected from the k best individuals
in a subpopulation. Different values can be used during the
initialisation optimisations of the subpopulations (line 8 in
Algorithm 2) and then another k value is used when all
subpopulations are initialised, (line 18 in Algorithm 2).

It might be valuable to consider dynamically adjusting
k, to increase C3iDE’s greediness as the search progresses.
When dynamically adjusting k during the search, it starts
from the subpopulation size k = NP . This means that a
random individual from each subpopulation is chosen. During
the search, k is gradually decreased so that by then end of the
optimisation it is equal to one k = 1. The collaborator selection
is initially fully random and as the optimisation progresses,
the greediness increases until it finally becomes 100% greedy
at the end of the optimisation. The search space is widely
explored at the beginning of the optimisation and by the end
the optimisation searches around the best solutions found so
far.

Another possibility is to let DE self-adaptively tune the
value for k for each subpopulation. In this case, there is a
specific k value for each subcomponent. The self-adaptive

1706

TABLE I. THE BENCHMARK FUNCTIONS’ SPECIFICATIONS [24], [25]

Separable Modality Domain

fAckley Yes Multi [−35; 35]

fEliptic Yes Uni [−100; 100]

fRastrigin Yes Multi [−5.12; 5.12]

fSphere Yes Uni [−10; 10]

fSumOfSquares Yes Uni [−10; 10]

fW/Wavy Yes Multi [−π;π]

fDixon&Price No Uni [−10; 10]

fRot.Ackley No Uni [−35; 35]

fRot.Rastrigin No Uni [−5.12; 5.12]

fRosenbrock No Uni [−10; 10]

fSchwefel No Uni [−10; 10]

fGriewank No Multi [−5; 5]

mechanism used is entirely similar as for the control parameter
in the self-adaptive DE (jDErpo) algorithm proposed by Brest
et al. [23]. Each individual of a subpopulation has its own
k value. The better values for k lead to better individuals,
which propagate their k values into the new populations.
The individuals with a bad k value are replaced by other
individuals.

Different values for k, dynamically adjusting k and self-
adaptively tuning k have been investigated in this work and
are discussed in the numerical section of this paper.

V. IMPLEMENTATION

The jDErpo algorithm proposed by Brest et al. [23] is used
in combination with C3iDE. This is a self-adaptive version that
uses two different mutation strategies (rand/1 and pBest/1). It
also uses a mechanism to adapt the control parameters, i.e.
the mutation scale factor (F) and the crossover parameter
(CR). During the optimisation, the control parameters are also
gradually increased, by raising the lower boundaries for the
adaptation. It is shown that these improvements result in a
better performance of jDErpo compared to other version of
DE [23].

The performance of C3ijDErpo, with different k values,
is evaluated and compared with CCjDErpo and standalone
jDErpo for a set of large-scale benchmark functions. For
clarity, in C3ijDErpo and CCjDErpo, the subcomponents are
optimised using jDErpo. The tests with different k values
allows us to investigate the best k-value for different types
of problems. In total, 36 tests are done for each algorithm
in the comparison, i.e. for 12 different functions and each
again for 3 different number of parameters (D = 100, D =
500, D = 1000). The 12 functions are listed in Table I and
a detailed description is given by Jamil and Yang [24] and
Omidvar et al. [25]. The functions are decomposed randomly
into 25 equally-sized different subcomponents (n = 25).

For all tests with C3ijDErpo and CCjDErpo, jDErpo is
used to optimise the subcomponents. The size of the subpopu-
lations was set to NP = 50. The population size for the stand-
alone DE was set to NP = 100. The stand-alone DE has a
larger population size to be able to handle all D parameters at
once, where as the subpopulations is to optimise only the D

n
parameters of the corresponding subproblem. The termination
criterion of the optimisation was 3 · 106 fitness calculations.
For C3ijDErpo, the termination criterion for the initialisation

optimisation of a subcomponent was set to 60,000 fitness
calculations. This results in that half of the optimisation effort
(i.e. 1.5 · 106 fitness calculations) is spent on the initialisation
optimisations of the subcomponents. All tests are repeated
25 times to obtain reliable mean results. All repetitions are
performed independently, with random start values.

In total five different k-values are tested in this work. First,
two different k-values were used, k1 for during the initial opti-
misations, and another value k2 when all subpopulations have
been initialised. In Table II, this is referred to as k = (k1, k2).
In these tests, k1 was set to 5 (best 10% of the subpopulation)
and k2 was set to 25 (best 50% of the subpopulation). This was
based on the intuition that the search must be greedy during the
initial optimisations to quickly find good solutions. When all
subpopulations are initialised, the search must be less greedy,
to explore the regions around these good solutions from the
initial optimisations. For the second group of tests, the k-value
was set to the size of the subpopulations. In Table II, this is
referred to as k = NP . This means that the greediness is 0%
and any individual from a subpopulation can be selected as
collaborator. In the third group of tests, the k-value was set
to 1. This is referred to as k = 1 in Table II. This means
that the greediness is 100% and that the best individual in the
subpopulation is always chosen as collaborator. In the fourth
group of tests, k-value is dynamic, which means that in the
beginning of the optimisation it is set to subpopulation size (i.e.
zero greediness) and it is then decreased incrementally as the
optimisation progresses, and by the end of the optimisation
it has become 1 (i.e. 100% greedy). This is referred to as
“dynamic k” in Table II. For the fifth group of tests, the k-
value is self-adaptive. This is referred to as “adaptive k” in
Table II.

VI. RESULTS AND DISCUSSION

The results of all tests done in this work are presented
in Table II. The values shown in this table are the fitness
of the best solution found during the optimisation (i.e. after
3 · 106 function evaluations) and are the mean of the 25
repetitions. The significantly best results, using the Kruskal-
Wallis nonparametric one-way ANOVA test with Bonferroni
correction and a significance level of 0.05, are highlighted in
bold.

First, the comparison of the different k-values for
C3ijDErpo is discussed. The results show that for 22 of the
36 tests, there was no difference between the different options
for k. The value k = (k1, k2) performs worse than the other
k-values in 6 tests, k = NP in 13 tests and adaptive k in 1
test. In general, it can be said that k = 1 and dynamic k are
the preferred options for k. In the authors’ opinion, it is rather
remarkable that k = 1 generates good results even though it
is 100% greedy.

The k-value becomes more important with non-separable
functions. In 3 of the 18 tests on separable functions there are
differences between the different k-values. Whereas, this is the
case in 11 of the 18 tests on the non-separable functions.

Next, the results of C3ijDErpo (with k = 1) are compared
the results of CCjDErpo. C3ijDErpo has a better performance
than CCjDErpo in 19 of the 36 tests. In all other tests, there
is no difference between the performance of C3ijDErpo and

1707

TABLE II. RESULTS INVESTIGATION k VALUE FOR C3iDE AND COMPARISON WITH CCDE AND DE (WHEN THERE IS A SIGNIFICANT DIFFERENCE,
THE BEST RESULTS ARE HIGHLIGHTED IN BOLD)

C3iDE
CCDE DE

D (k1, k2) NP 1 dynamic adaptive

fAckley

100 6.5E-19 6.5E-19 6.5E-19 6.5E-19 6.5E-19 1.4E-15 1.7E-1

500 1.1E-15 1.1E-15 1.2E-15 1.1E-15 1.1E-15 2.9E+0 5.4E+0

1000 3.0E-11 4.5E-3 7.8E-10 6.9E-10 7.7E-14 6.6E+0 8.4E+0

fElliptic

100 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 1.8E-22

500 2.8E-23 9.3E-24 2.1E-23 1.1E-23 1.3E-23 3.4E-23 4.5E-3

1000 3.4E-14 4.9E-2 3.6E-20 2.7E-20 2.4E-20 6.2E-19 3.9E+7

fRastrigin

100 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 5.4E+1

500 2.6E+1 2.5E+1 2.6E+1 2.5E+1 2.6E+1 8.6E+1 6.1E+2

1000 9.8E+2 1.1E+3 6.8E+2 6.8E+2 5.3E+2 5.2E+2 1.4E+3

fSphere

100 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 4.1E-29

500 5.2E-30 3.7E-30 4.7E-30 6.0E-30 4.0E-30 1.0E-29 7.2E-9

1000 1.0E-20 3.3E-16 5.9E-26 6.7E-26 6.4E-26 1.3E-25 8.9E+1

fSumOfSquares

100 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 2.1E-27

500 2.3E-27 3.0E-27 1.2E-27 1.9E-27 1.6E-27 4.5E-27 6.6E-6

1000 8.5E-18 7.2E-14 4.0E-23 3.2E-23 4.4E-23 1.4E-22 3.1E+4

fW/Wavy

100 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 5.1E-17 6.3E-2

500 3.9E-3 3.5E-3 3.6E-3 3.7E-3 3.6E-3 2.0E-2 2.2E-1

1000 2.8E-2 2.8E-2 2.9E-2 2.8E-2 2.9E-2 6.5E-2 2.8E-1

fDixonPrice

100 3.6E+1 4.7E+1 3.1E+1 3.1E+1 3.1E+1 4.8E+3 6.7E-1
500 2.6E+2 8.0E+2 1.0E+2 1.1E+2 1.2E+2 4.6E+2 6.9E+2

1000 1.8E+3 4.3E+3 1.4E+3 1.5E+3 1.3E+3 2.3E+3 2.6E+6

fRot.Ackley

100 7.3E-19 0.0E+0 0.0E+0 1.7E-20 0.0E+0 3.3E+3 4.3E+3

500 3.8E-17 8.4E-17 1.0E-17 1.1E-17 1.4E-17 1.6E+4 1.7E+4

1000 4.2E-14 7.1E-12 3.3E-16 3.6E-16 3.4E-16 3.4E+4 3.7E+4

fRot.Rastrigin

100 1.1E-14 1.1E-14 1.1E-14 1.1E-14 1.1E-14 2.1E+1 2.0E+1

500 1.2E-14 1.2E-14 1.2E-14 1.2E-14 1.2E-14 2.2E+1 2.1E+1

1000 2.7E-9 1.3E-8 1.2E-11 1.3E-11 1.1E-11 2.2E+1 2.1E+1

fRosenbrock

100 1.9E+4 2.8E-2 8.8E-9 1.9E+4 8.8E-9 1.3E+2 2.1E+1

500 5.4E+2 4.7E+3 5.3E+2 5.3E+2 5.3E+2 9.6E+2 1.2E+3

1000 1.7E+3 5.5E+5 1.6E+3 1.7E+3 1.6E+3 2.1E+3 1.2E+5

fSchwefel

100 2.0E-31 1.5E-31 2.5E-30 3.2E-31 0.0E+0 8.2E+3 2.3E-7
500 2.7E-3 9.4E+0 1.4E-4 1.5E-4 1.9E-4 1.4E+5 1.5E+2
1000 3.0E+2 2.7E+4 5.7E+2 2.0E+2 7.0E+2 2.8E+5 7.9E+5

fGriewank

100 3.0E-4 1.5E-4 3.0E-4 4.4E-4 4.4E-4 4.0E-19 3.0E-4

500 4.4E-4 1.5E-4 4.4E-4 4.4E-4 3.0E-4 5.7E-18 2.6E-10

1000 1.4E-18 1.5E-4 3.0E-4 3.0E-4 1.3E-18 4.8E-17 5.5E-2

CCjDErpo. In general, it can be said that C3ijDErpo has a
better or similar performance compared to CCjDErpo.

In the tests on non-separable functions, there is a significant
difference in 14 of the 18 tests. This is a clear indication
that C3ijDErpo outperforms CCjDErpo on non-separable
problems. This is interesting because it is known that coop-
erative coevolutionary optimisation algorithms struggle with
non-separable problems.

C3ijDErpo and CCjDErpo perform similar in most the
tests on the separable functions (13 of 18). In the other 5
tests, there is a significant difference is favour of C3ijDErpo.
Concluding that C3ijDErpo performs as good as CCjDErpo
and sometimes even better on separable problems.

When comparing C3ijDErpo with jDErpo, the results
show that C3ijDErpo has a better performance for the majority
of the benchmark functions (i.e. 27 of 36) and in the 9 other,
the performance is similar. This indicates that C3ijDErpo
performs superior on large-scale problems

It should also be mentioned that for 8 of the 18 tests on the

non-separable functions, CCjDErpo has a worse performance
than jDErpo. Specifically, this is the case for the tests on
fDixonPrice (D = 100), fRot.Rastrigin (D = 100, 500, 1000),
fRosenbrock (D = 100), and fSchwefel (D = 100, 500, 1000).
This confirms the conclusion from other researchers that
CCDE has difficulties to solve non-separable problems [11],
[13], [26]. Note that this cannot be seen in Table II for all
those 8 tests because only the significantly best results are
highlighted in bold.

The computational cost of the different algorithms, i.e.
C3ijDErpo, CCjDErpo and jDErpo was compared. There
was no noticeable difference in computational cost of these
different algorithms. Therefore, no further investigations into
the computational cost were done in this work. It could does
be concluded that C3ijDErpo has the same computational cost
as the CCjDErpo and jDErpo.

In general, it can be said that it is preferable to use
C3ijDErpo instead of CCjDErpo for large-scale benchmark
functions, as either C3ijDErpo performance is better or similar
than CCjDErpo’s, and there is no extra computational cost.

1708

VII. CONCLUSIONS

In this paper, the Improved Constructive Cooperative Co-
evolutionary Differential Evolution (C3iDE) algorithm for
large-scale global optimisation is proposed and evaluated.
C3iDE adopts a divide-and-conquer strategy to optimise sub-
components of the considered problem separately while co-
operating with each other to co-adapt the individuals of the
subpopulations during the optimisation. At the start of the
optimisation with C3iDE, the subpopulation of each sub-
component is initially optimised in a constructive fashion,
by considering only the previously initialised subpopulations
for the co-adaptation. The improvement of C3iDE, compared
to the previous version C3DE, are that randomly selected
collaborators from an elite fraction of the other subpopulations
are used for the function evaluations. Resulting in that with
C3iDE, the greediness can be controlled, it becomes scalable
in number of subcomponents, there are less user-parameters to
tune, and no longer requires to have similar subcomponents.
In this paper, the self-adaptive jDErpo algorithm proposed
by Brest et al. [23] is used in the C3iDE to evolve the
subpopulations.

The performance of C3iDE is evaluated on a set of high-
dimensional benchmark functions (up to 1000 dimensions).
The results are compared with CCDE and standalone DE. The
results show that C3iDE has a superior performance on large-
scale problems compared to DE. Furthermore, C3iDE out-
performs CCDE on non-separable problems, whereas CCDE
struggles with this type of problems. On separable problems,
the performance of C3iDE is similar or better compared
to CCDE. Also, there is no extra computational cost with
C3iDE compared to CCDE. Hence, it can be concluded that
in general, C3iDE is a competitive optimisation algorithm
compared to CCDE.

Several mechanisms to control the greediness of C3iDE
are proposed and tested in this paper. These included 100%
greedy, 0% greedy, a different greediness during the initial
optimisations, a dynamically adjusted greediness and a self-
adaptive greediness per subcomponent. The results indicate
that the 100% greedy option (k = 1) or a dynamically adjusted
k-value are most preferable. It was also observed that the k-
value becomes more important on non-separable problems then
on separable problems.

Future work should include investigating how automatic
and/or dynamic/adaptive decomposition strategies can be com-
bined with C3iDE. The problem decomposition can have a
very significant influence on the performance of the algorithm.
With an automatic decomposition strategy, it is not necessary
to have a predefined decomposition, thereby making C3iDE
easier and more convenient to use on a wider range of optimi-
sation problems. Such a strategy could then also automatically
determine the termination criteria for the initial optimisation
of the subpopulations. Thereby eliminating the need for the
user to determine this for each problem. In future work, the
DE algorithm could also automatically adapt its population
size during the optimisation, as proposed by Brest et al. [27]
or Teng et al. [28]. Also, all tests in this work were done
for single-objective problems, therefore in future work C3iDE
should be evaluated for multi-objective problems. This type of
problems are typically more difficult to solve, especially when
there are many parameters that must be optimised.

ACKNOWLEDGMENT

This work was conducted at University West’s Production
Technology West research centre in Trollhättan, Sweden and
was supported by Västra Götalandsregionen, Sweden, under
the grant PROSAM 612-0974-14.

REFERENCES

[1] F. Neri and V. Tirronen, “Recent advances in differential evolution:
a survey and experimental analysis,” Artificial Intelligence Review,
vol. 33, no. 1-2, pp. 61–106, Oct. 2009.

[2] R. Storn and K. Price, “Differential Evolution A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, Dec. 1997.

[3] S. Das and P. Suganthan, “Differential Evolution: A Survey of the State-
of-the-Art,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 1, pp. 4–31, Feb. 2011.

[4] A. Zamuda, J. Brest, B. Boskovic, and V. Zumer, “Large Scale Global
Optimization using Differential Evolution with self-adaptation and
cooperative co-evolution,” in Proc. Congr. Evolutionary Computation
(CEC 08), 2008, pp. 3718–3725.

[5] M. Weber, F. Neri, and V. Tirronen, “Two algorithmic enhancements for
the parallel differential evolution,” International Journal of Innovative
Computing and Applications, vol. 3, no. 1, pp. 20–30, Jan. 2011.

[6] O. Olorunda and A. Engelbrecht, “Differential evolution in high-
dimensional search spaces,” in IEEE Congress on Evolutionary Com-
putation, 2007. CEC 2007, Sep. 2007, pp. 1934–1941.

[7] Z. Yang, J. Zhang, K. Tang, X. Yao, and A. Sanderson, “An adaptive
coevolutionary Differential Evolution algorithm for large-scale opti-
mization,” in IEEE Congress on Evolutionary Computation, 2009. CEC
’09, May 2009, pp. 102–109.

[8] M. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative Co-evolution for
large scale optimization through more frequent random grouping,” in
IEEE Congress on Evolutionary Computation, 2010. (CEC’10), 2010,
pp. 1–8.

[9] T. Ray and X. Yao, “A cooperative coevolutionary algorithm with
Correlation based Adaptive Variable Partitioning,” in IEEE Congress on
Evolutionary Computation, 2009. CEC ’09, May 2009, pp. 983–989.

[10] Y. Wang, B. Li, and X. Lai, “Variance priority based cooperative co-
evolution differential evolution for large scale global optimization,” in
Proc. Congr. Evolutionary Computation (CEC 09), 2009, pp. 1232–
1239.

[11] Y. Zhenyu, T. Ke, and Y. Xin, “Multilevel cooperative coevolution for
large scale optimization,” in IEEE Congress Evolutionary Computation,
2008, pp. 1663–1670.

[12] M. Omidvar, Y. Mei, and X. Li, “Effective decomposition of large-
scale separable continuous functions for cooperative co-evolutionary
algorithms,” in 2014 IEEE Congress on Evolutionary Computation
(CEC), Jul. 2014, pp. 1305–1312.

[13] M. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative Co-evolution with
Differential Grouping for Large Scale Optimization,” IEEE Transactions
on Evolutionary Computation, vol. Early Access Online, 2013.

[14] E. Glorieux, F. Danielsson, B. Svensson, and B. Lennartson, “Construc-
tive cooperative coevolutionary optimisation for interacting production
stations,” The International Journal of Advanced Manufacturing Tech-
nology, vol. 80, no. 1-4, pp. 673–688, 2015.

[15] E. Glorieux, B. Svensson, F. Danielsson, and B. Lennartson, “A
Constructive Cooperative Coevolutionary Algorithm Applied to Press
Line Optimisation,” in Proceedings of the 24th International Conference
on Flexible Automation and Intelligent Manufacturing, May 2014, pp.
909–917.

[16] E. Popovici, A. Bucci, R. P. Wiegand, and E. D. De Jong, “Coevo-
lutionary principles,” in Handbook of Natural Computing. Springer,
2012, pp. 987–1033.

[17] R. P. Wiegand, W. C. Liles, and K. A. D. Jong, “An Empirical Analysis
of Collaboration Methods in Cooperative Coevolutionary Algorithms,”
in Proc. from the Genetic and Evolutionary Computation Conference.
Morgan Kaufmann, 2001, pp. 1235–1242.

1709

[18] G. A. Trunfio, “Adaptation in Cooperative Coevolutionary Optimiza-
tion,” in Adaptation and Hybridization in Computational Intelligence,
ser. Adaptation, Learning, and Optimization, I. Fister and I. F. Jr, Eds.
Springer International Publishing, 2015, no. 18, pp. 91–109.

[19] M. A. Potter and K. A. De Jong, “Cooperative Coevolution: An
Architecture for Evolving Coadapted Subcomponents,” Evol. Comput.,
vol. 8, no. 1, pp. 1–29, Mar. 2000.

[20] E. Glorieux, “Constructive cooperative coevolution for optimising
interacting production stations,” Licentiate Thesis, University West,
Trollhttan, Sweden, 2015.

[21] E. Glorieux, F. Danielsson, B. Svensson, and B. Lennartson, “Optimisa-
tion of interacting production stations using a Constructive Cooperative
Coevolutionary approach,” in 2014 IEEE International Conference on
Automation Science and Engineering (CASE), Aug. 2014, pp. 322–327.

[22] I. Poikolainen, F. Neri, and F. Caraffini, “Cluster-Based Population Ini-
tialization for differential evolution frameworks,” Information Sciences,
vol. 297, pp. 216–235, Mar. 2015.

[23] J. Brest, A. Zamuda, I. Fister, and B. Boskovic, “Some Improvements
of the Self-Adaptive jDE Algorithm,” in 2014 IEEE Symposium on
Differential Evolution (SDE), Dec. 2014, pp. 1–8.

[24] M. Jamil and X. Yang, “A literature survey of benchmark functions for
global optimisation problems,” International Journal of Mathematical
Modelling and Numerical Optimisation, vol. 4, no. 2, pp. 150–194, Jan.
2013.

[25] M. N. Omidvar, X. Li, and K. Tang, “Designing benchmark problems
for large-scale continuous optimization,” Information Sciences, vol. 316,
pp. 419–436, Sep. 2015.

[26] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, no. 15,
pp. 2985–2999, Aug. 2008.

[27] J. Brest, B. Boskovic, A. Zamuda, I. Fister, and M. Maucec, “Self-
adaptive differential evolution algorithm with a small and varying
population size,” in 2012 IEEE Congress on Evolutionary Computation
(CEC), Jun. 2012, pp. 1–8.

[28] N. S. Teng, J. Teo, and M. H. A. Hijazi, “Self-adaptive population sizing
for a tune-free differential evolution,” Soft Computing, vol. 13, no. 7,
pp. 709–724, Jul. 2008.

1710

