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Abstract—The impetus behind data analytics and integration
is the need for greater insight and data visibility, but since a
growing share of our data is multimedia, there is a parallel need
for methods that can align multimedia data. This paper explores
georeferencing, which is used to combine spatial datasets and
used here to align map images to 2D GIS models. This paper
surveys various approaches for building the key components of
a georeferencing solution, notes their strengths and weaknesses,
and comments on their trajectory to help orient future work.
The implementation presented here uses Hough transforms for
feature detection, nearest neighbor correspondences with simplis-
tic similarity measures, and a population based optimizer. The
comparison among metaheuristics has shown that Differential
Evolution (DE) frameworks appear especially suited for this
problem. In particular, the controlled randomization of DE
parameters appears to display the best performance in terms
of execution time and competitive performance in terms of
function evaluations even with respect to more complex memetic
implementations.

I. INTRODUCTION

One of the main functions of government is managing land

under their authority, which is supported by producing maps

that portray their geography in a variety of ways. Maps from

satellite imagery depict the real world as it existed at a point in

time, cadastral maps show property boundaries based on offi-

cial deeds, and tax maps aggregate or partition land into wide

area or individual taxable units. Each of these representations

are different views of the same geography, each view is fit

for a particular purpose, and there are legitimate variations

between them. Just as overlaying street maps on satellite

imagery produce a composite with greater informational value

than the individual views, the integration of other maps could

likewise amplify the value of individual datasets and their

aggregates. Here we overlay tax maps onto cadastral maps to

depict the the many to many relationships between cadastral

and tax boundaries.

In county level governments throughout the United states,

a cadastral map is typically maintained as a seamless digital

model of a geography using a geographic information system

(GIS), whereas a paper based indexing system is used to

manage a collection of tiled tax maps where each map contains

annotations that reference adjacent maps. Tiled maps are often

produced by scanning and “photo-shopping” maps submitted

by private land developers, which yields digital images in

tagged image file format (TIFF). A TIFF file is like a container

for both images and meta-data called TIFF tags that describe,

for example, image dimensions, palette, and compression,

which tell rendering software how to process and display

their content. The TIFF specification allows additional tags

to be defined and published to support interoperability and

the GeoTiff specification [1] defined a set of TIFF tags for

storing geographic information such as GPS coordinates and

coordinate spaces. Absent such geographic meta-data, images

would be rendered either at the canvas origin or within a

user defined rectangle, but geotiffs provide rendering software

with enough information to render the image in a more

geographically appropriate place by transforming the image’s

coordinate space to some other coordinate space.

A common coordinate space is a prerequisite for integrating

geographical data, but image and model coordinate spaces are

defined differently. The origin in image space is defined as

the top-left corner so the y-axis increases downward and the

extents of image space are bounded by zero and the width and

height of the image in unit pixels. The origin in GIS model

space is in the lower-left corner and often assigned non-zero

coordinate values while the extents are arbitrary and defined

by a standards setting body. Rendering software converts

image coordinates to model coordinates using a transformation

matrix that encodes translation, rotation, and scale. Differences

in how the origin is defined is handled by the translation

component of the transformation matrix, extents are handled

by scaling, and the different y-axis convention is handled by

a reflection matrix. Since the mechanism for transforming

image coordinates to model coordinates is known, automatic

georeferencing is essentially a parameter identification prob-

lem, which involves the search for the appropriate translation,

rotation, and scaling parameters required to position a tiled

map over its corresponding geography in the GIS.

Information on some types of maps do not necessarily exist

on other maps, which means that only a subset of significant

features can be correlated between geospatial datasets. The

identification of corresponding points of interest, or features,

is often a manual process, but properties of both GIS and
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Fig. 1: Example input data. Figure (a) shows a property tax map with detailed inset (lower right corner) and leader lines (top

right of map). Figure (b) shows the corresponding geography in the seamless GIS model

tax maps lend themselves to automatic feature identification.

Using standard GIS tools, the location of each property could

be abstracted to a coordinate by computing the centroid of

each property boundary or, if the GIS contains labels such

as each property’s street address, then coordinates for those

labels could be used to represent property locations. Tax maps

uniquely identify taxable units using identifiers composed of

a map’s book and page numbers and block and lot numbers

(“APN”). As shown in Figure 1a, lot numbers are enclosed in

small circles of a standard diameter and are therefore easier

to identify and take coordinates from than finding centroids

of arbitrary shapes. More generally, therefore, automatic geo-

referencing is a point matching problem with an embedded

parameter estimation problem.

Georeferencing is nontrivial due to the noise within and

between the datasets. The different views of property (taxable

parts vs. cadastral lines of ownership) constitute the most

significant source of noise between the datasets, while a

minor source of noise is imparted by differences in mapping

conventions. For example, the tax maps may place property

numbers dead center, whereas cadastral maps may place prop-

erty numbers at a fixed perpendicular distance from the road to

indicate the location of the property’s entrance. Also, since tax

maps are drawn at a fixed scale, there is the occasional need

to draw detailed insets or to use leader-lines that point into

a smaller part of the map. Finally, even though the creation

of tax and cadastral maps are document driven, differences in

which documents are used to update each type of map can

contribute to variations.

This paper surveys the popular ways in which features are

extracted from images, how relationships between features

within each dataset are represented, how features between

the datasets are correlated, and how the parameters of the

transformation from image coordinates to model coordinates

are estimated. The combination of feature extraction tech-

nique, knowledge representation, correlation approach, and

optimization techniques are required to completely specify a

georeferencing solution and this research includes the results

of one such system.

The remainder of this paper is organized as follows. The
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literature review in Section II provides a broad overview of the

application areas, techniques, and challenges. Section III offers

a general discussion on key design decisions and Section IV

goes over the experiments in this study. The paper ends with

a summary of results found in Section V and conclusions in

Section VI.

II. LITERATURE REVIEW

A. Applications

Automatic referencing lies at the intersection of optimiza-

tion and computer vision, which is a subset of image process-

ing. Registration is a special case of referencing that is limited

to integrating datasets of the same type, e.g., two images.

Popular registration applications include image mosaicing to

create panoramas [4], [6]–[8], canceling out the effect of

camera vibrations, building 3D models from stereo images

[8]–[13], motion detection, and object tracking [7], [14], [15].

Common referencing applications include combining range

and satellite imagery to create digital elevation models or local

world models for robot navigation [16], or combining medical

data acquired from ultrasounds, X-rays or MRIs [15], [17],

[18]. Other applications include pattern [9], shape [9], or facial

recognition [11].

B. Challenges

Fundamentally, the challenges referencing regard the quality

and quantity of input and the tradeoff between computational

speed and accuracy. Factors affecting input include variations

in data production or acquisition [13], distortions [18], blurring

[18], occlusion [19], and variations in quantity such as extra-

neous data or noise [12], [20], missing data [14], outliers [20],

or variations in the density or distribution of data [9]. These

input related issues will hereinafter be referred to as noise and

are addressed through greater levels of data abstraction as will

be discussed later.

Since transformations and similarity measures are described

mathematically, analytic methods involving derivatives of

those expressions can be used to compute solutions. Among

the fastest referencing techniques use analytic methods to

compute the exact transform of noiseless datasets [21], but

since real world problems are noisy, most techniques involve

searching for solutions using regression or population based

meta-heuristics. Generally, regression works relatively well for

small 2D datasets with small local changes and little overall

noise, whereas meta-heuristics also work well in large and

noisy ND datasets. Self adaptation typically increases dimen-

sionality [22], [23], which thereby decreases the feasibility of

regression.

Both techniques contain internal parametrization problems.

Since they are heavily influenced by starting point (initial

pose) regression techniques are often fooled into local minima

and, to compensate, researchers proposed various hierarchical

techniques that parametrized depth, changes in resolution,

and the number of iterations [7], [11], [12], [16]. Common

population based parameters include computational budget,

thresholds, and population size. These parameters can have

a significant impact on an implementation’s accuracy, control,

and capability.

Much of the applied research in referencing contain lit-

erature reviews followed by a litany of reasons why exist-

ing implementations would not work well for the particular

application at hand. Such observations can be explained by

the No Free Lunch Theorem, which represents an algorithm’s

performance as some unit distribution over all problems and

states that if an algorithm performs well for a particular

application then it necessary performs poorly in others [23]. In

other words, the average performance of any algorithm across

all problems will be no better than random; broad based algo-

rithms will perform worse than application specific algorithms.

The specificity and quantity of algorithms, however, can be

mitigated through the use of memetic algorithms containing a

variety of search operators [22].

C. Knowledge Representation

Barring abstraction, every pixel in an image would be a

feature that would have to be matched to a point in model

space, but such a detailed representation of the image would

make referencing super sensitive to annotations, noise, color,

illumination, and image quality. Extracting particular points

from an image encodes some knowledge about the source data

and thereby yields an abstraction of the original.

What other knowledge can be extracted and how should it

be represented? Since an image is a 2D array of pixel values,

some researchers proposed extracting the gradient of neigh-

boring intensity values to represent the image as a force field

diagram, while others extended that idea by binning the image

into larger pseudo-pixels with averaged pixel values in order to

further abstract away detail [24]. Other researchers extracted

points of interest and then created orthogonal histograms of

the entire image space [25], histograms projected onto one

dimension [26], or radial histograms limited to the immediate

neighborhood of extracted points [27]. Yet others encoded sets

of points using minimum spanning trees [27] or B-splines [4],

[20], [28], [29], both of which yield more detail about the

distances and directions to neighboring points. Throughout

the literature, less abstract or image-based operations work

better locally, but more abstract feature-based operations are

better globally. The tradeoff, therefore, is between the scope of

the search and abstraction, which removes detail (required for

local discrimination) as well as noise. As shown in Figure 2,

the general trajectory of research and development is moving

towards greater abstraction to address noise and towards a

greater consideration of local neighborhoods to address qual-

ity.

Note that gradient based methods examine changes in pixel

intensity to detect corners and edges, while the examination

of the rate of change is used to detect more abstract features

like ridges and areas. In either case, the roots of the first and

second derivatives of the image yield concise self-describing

information about significant points of interest [30] and the

consideration of each point’s relationship to other points,

i.e., local neighborhood, similarly enriches the description of
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each point. In other words, the underlying trend is actually

the increased use of meta-data, which in turn increases the

expressiveness of knowledge.

D. Correlation

The preponderance of evidence in literature suggests that

referencing quality is directly proportional to expressiveness.

That is, the ability to discriminate, discern, and correlate

depends on the amount of detail perceived. A human can

instantly pick out corresponding points on a pair of stereo

images, but a computer’s view is limited only to the detail

extracted or derived from the images.

Using only coordinate information, points from one dataset

can be correlated to points in another by associating each point

to its nearest neighbor in the other set, but such an approach

is highly susceptible to both incorrect and non-unique N:1

correspondences. However, if edges between points in each set

were known, then correlation could be based on matching the

lengths and angles of edges leaving each point (a.k.a. Shape

Context [27]). Likewise, any increase in the amount of meta-

data used to describe each point also increases the likelihood

of achieving correct and unique 1:1 correspondences.

This is reflected in the dominant point matching algorithms:

the Iterative Closest Point (ICP) algorithm uses nearest neigh-

bor correspondences, which makes it highly susceptible to

noise and initial pose whereas the Robust Point Matching

(RPM) algorithm correlates all point combinations between

sets (star correspondences), which broadens the domain of

convergence but yields “compromise solutions” [31] as it

applies equal weight to legitimate points and noise. [32]

reported star correspondences worked well for rigid body

transformations, but was unable to correlate points in the

presence of noise even when both point sets contained an equal

number of points.

Since real world problems are often plagued with noise,

even the most expressive feature descriptions would be de-

railed if similarity was based on matching exact values. There

are two schools of thought delineated on the cardinality of

correspondences: one school accepts N:1 correspondences but

selects the most likely one based on a statistic, while the

other achieves 1:1 correspondences by leveraging derivatives

to identify the best match. Statistics based techniques include

Gaussian weighted multiple matches [20], [27], bi-partite

graph matching [27], Bayesian inference [20], soft assign [10],

and mutual information [17], [33]. Statistical methods have

also been used to gauge correspondence quality and reduce

the influence of noise, but are admittedly computationally

intensive and have limits on scalability [31]. Derivative based

techniques include: M-estimators [27], maximum votes [6],

maximum likelihood [9], minimum shape context [27], and

minimal euclidean distance [20], [21].

The final decision regarding correlation is how to compare

quantized properties of features. A single measure of how well

one dataset fits to another is customarily achieved by summing

differences. However, since some differences may be negative

and others positive, the net effect could be canceled out by

summation [34], which is why the differences are typically

squared. Alternatives to the sum of squared differences (SSD)

include root mean square (RMS), the sum of absolute differ-

ences (SAD), and the mean of absolute differences (MAD).

E. Optimization

Exact methods guarantee that an optimal solution will

converge to the optimal solution if this solution exists, whereas

metaheuristics offer no such guarantee since they operate on

an abstracted or estimated view of the problem. Metaheuristics

are the only option in most real world cases when for example

the analytical formulation of the objective function is not avail-

able or even when real world limitations such as uncertainties

with unknown features are present within the problem.

Among metaheuristics, population based algorithms rep-

resent a parallel generate and test strategy where members

of the population encode solutions of varying quality, which

are scored by an objective function, see [35]. Members of

the population are perturbed using some combination of the

following operators: crossover, which usually combines in

some ways members of the population, or mutation, which

produces randomized parameter changes within the solution.

These operators can be understood as operators of different

nature as the crossover exploits the existing pieces of in-

formation stored within the population while the mutation

generates perturbs the existing search directions and searches

for new ones by exploring untested areas of the search space.

Some algorithms select and perturb higher scoring individuals

in hopes of producing offspring with some combination of

favourable characteristics found in the parents, while other

algorithms perturb combinations of all members to produce

a surplus population that is then truncated down to the higher

performing individuals. Classical population based algorithms,

which are all thoroughly described in [22] [23] [36], include:

genetic algorithms (GA), evolutionary strategy (ES), particle

swarms (PSO) [37], and differential evolution (DE).

This study tests and compare these classical metaheuristics

as well as some more modern algorithmic implementations.

The main aim is to clarify relative advantages and disadvan-

tages of each optimizer for the data science problem under

investigation. Although the features of the main metaheuristic

frameworks are well-known, let us briefly summarise and

highlight what, in the view of the authors, the main differences

among them are.

The main focus of the search in GAs is driven by crossover,

which yields some interpolation of genes between a selected

pair of solutions [23]. On the contrary, in ES the search of new

promising solutions is mostly driven by mutation from which

the top performing solutions are picked out of an expanded

population to seed the subsequent generation [23]. Both these

frameworks have selection/replacement schemes that take into

account the entire population individuals (along with their

fitness) to select the most promising search directions.

Swarm intelligence algorithms and DE are characterised

by a different replacement logic. In PSO, members of the

population are not replaced, but rather their position is updated

1722



Fig. 2: Progression of feature detection techniques

using a weighted vector sum of three terms. Several pertur-

bation logics exist. If a particle’s new position outperforms

its prior or global best, then memory of those positions are

updated, which change the direction of the individual particles

and overall movement of the swarm. Exploitation is driven by

linear decreases in inertia each iteration, which transitions the

search from global to local. DE’s mutation uses the difference

between two vectors and makes use of some randomisation

to generate a new solution [36]. Despite its simplicity, DE

contains an implicit self-adaptation [38] as the average search

radius progressively shrinks during optimization and thereby

enhances exploitation. The main feature common to swarm

intelligence and DE is that the pairwise comparison and re-

placement logic is performed in one-to-one spawning fashion:

the update occurs when the newly generated point/position

outperforms the solution that generated it.

III. DESIGN

A georeferencing solution is completely specified upon

selecting a particular feature extraction technique, knowledge

representation, correlation approach, and optimization tech-

nique, but in real world applications these choices are often

constrained by nontechnical considerations such as project

schedule or nonfunctional requirements such as performance.

Orange County (CA), for example, has manually georefer-

enced about 60,000 survey-map images in the past 15 years

at an average rate of 2 images per working hour, so a

reasonably compelling lower bound for system performance

may be 20 images per hour. At that rate, it would take 5 weeks

around the clock to georeference their 16,000 tax maps and

this performance requirement limits the full range of options

available to each system component. Scalability is another key

nonfunctional requirement since the road map for the present

work includes use in 3D geospatial datasets as well as arbitrary

map images rather than only tax maps.

Accordingly, metaheuristic optimization appeared to be the

more promising optimization approach since it better accom-

modates higher dimensional problems and is less dependent on

initial pose, which avoids multiple runs per problem and there-

fore longer processing times. Regarding feature detection tech-

nique, OpenCV’s Hough circle transform was used to detect

circles around lot numbers in under 30 seconds, but imposed

a filesize limitation since the algorithm is memory intensive.

This was an acceptable compromise for the current application

since nearly all tax map images were under that 400kb limit.

Property boundaries in both datasets were represented only

as a set of coordinates since the relationships between points

within each set, such as the distances and angles between

them, were expected to overly constrain the problem if there

were different numbers of points or high dissimilarity between

the two datasets. Experimentation, therefore, centered around

identifying the best fit metaheuristic optimization algorithm,

correlation approach, and objective function.

There were two simplifying assumptions used in the present

work. Tax maps were uniformly scaled, which meant Sx = Sy

and this observation reduced the dimensionality of the problem

from 5D to 4D. Secondly, since tax map images are named

after their book and page numbers and since property records

in the GIS have an APN attribute, it was possible to prune

model state space by selecting records where part of the APN

attribute from the GIS matched the image filename.

IV. EXPERIMENT

This summer project afforded only enough time to test a

couple variations of correlation approaches, objective func-

tions, and metaheuristic algorithms. To reduce the combi-

nations of options within those three components, a base-

line objective function was established first so that the best

metaheuristic algorithm could be selected and factored out

from subsequent tests. A generate and test strategy compared

results from a baseline system to results from alternatives.

The selection criteria for a particular system specification was

based on the percentage of images that were accurately and

precisely georeferenced. Alternatives were vetted using a set

of 4 problems to facilitate multiple test cycles and to identify

variations that broadened the scope of solvable problems using

a pair of problems that were correctly georeferenced by the

baseline and a pair that were not. Successful variants were then

run against another set of 36 problems to gauge improvements

in accuracy and precision, which were assessed qualitatively

and ranked. The best variant was run unattended against a set

of nearly 20,000 tax maps from Santa Barbara and Orange

Counties (CA). To assess solution quality, final variances

logged during processing were mined to compute average

differences and standard deviations between measures. For a

more detailed analysis, 200 results within the Orage County

cities of La Palma and San Clemente were quantitatively eval-

uated to gauge georeferencing quality in terms of translation,

scale, and rotation errors.

A. Objective Functions

Relatively simple measures were used because increases in

expressiveness meant an increased computational burden to

correlate points and would thereby have a disproportionate

impact on performance. Accordingly, the baseline objective
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function used the nearest neighbor correspondences and as-

sessed the quality of the solution using scaled sums of absolute

differences (SAD) between five measures, which included the

distances di between nearest neighbors and four meta-data

based measures. Since nearest neighbor correspondences are

not 1:1, the distinct subset of matched points with minimal

distances were scored as d while all other trial points were

assigned a penalty score d′ equal to 100 ∗ max(d), both

of which allowed the optimization of translation parameters

tx and ty . Likewise, every other characteristic desirable in

the solution requires a measure so it can be optimized.

Scale was optimized by comparing the height MBRH and

width MBRW of the minimum bounding rectangles (MBR)

around both datasets, which implicitly encoded information

to distinguish orthogonal rotations. Additional detail about

rotation was derived from the length δ of the line from the

top-left corner of the MBR to the left-most point. The absolute

differences of these meta-data derived terms were scaled by

constants ci, which imparted a form of hierarchical processing

since more highly scaled parameters were estimated first. Two

alternative objective functions were variations on the baseline

where one used SSD rather than SAD to aggregate measures

and the other used star correspondences rather than nearest

neighborbor correspondences. The fourth and final objective

function used vertical and horizontal historgrams to match the

point sets.

B. Metaheuristic Algorithms

Using a representative cross section of metaheuristic al-

gorithms, the selection criteria for the best algorithm was

the one that exhibited the best accuracy and performance in

terms of execution time. Each algorithm was tested against

the same set of 10 problems, one run per problem, random

starting points, a 50 member population, a 1e+6 evaluation

computational budget, a diversity-based exit criteria set to

1e−9. Algorithms included a real-valued GA with tournament

parent selection, box child selection, Gaussian mutation, and

generational replacement [39]. ES was implemented with two

parent recombination, unbiased parent and gene selection,

Gaussian mutation, 1/5 success rule, and survivor selection

based on the comma strategy see [39]. CLPSO followed

its original implementation in [40]. An adaptive version of

differential evolution called jDE [41] used rand/1 mutation

and an exponential crossover, while a memetic form of jDE

improved each trial solution using the S3 algorithm proposed

in [42]. It must be remarked that in this study we have chosen

to use some examples of classical metaheuristic and some

relatively modern implementations (CLPSO and jDE) which

are these days renown as simple and efficient algorithmic

frameworks. The memetic implementation can be seen as an

attempt to integrate local search within an efficient algorithm.

The parameter settings used for the algorithms are as

follows: (GA) tournament size equal to 2, a σ within the

mutation of 0.5. (ES) initial mutation step size σ = 2 and

offspring population λ = 7. (CLPSO) maximum velocity 10,

minimum and maximum inertia, 5 and 10 respectively, weight

(a)

(b)

Fig. 3: Meta-heuristic algorithm performance on the same set

of 10 4D problems. Note the logarithmic scale for time in

figure (b).

2, and constant Pc = 0.5, see [40]. (DE) scale factor and

crossover rate equal to 0.5. (jDE) thresholds τ1−τ2 = 0.5 and

upper and lower bounds of scale factor 1 and 0.1 as indicated

in [41]. (jDE+S3) as defined above with S3 using a large initial

step-size δ = 5.

V. RESULTS

The choice of how measures are aggregated affected the

shape and amplitude of problem landscapes and thereby

affected search algorithm efficacy. Metrics captured during

optimization indicate that the signal to noise ratios using SSD

had better discriminatory power than SAD, but those effects

did not broaden the scope of solvable problems. On the set

of 36 problems, the SSD variant improved baseline results

in 64% of problems, did worse on 33%, and was otherwise

as wrong as the baseline. The other variants were abandoned

upon failure to solve the 4 vetting problems possibly because

of inadequately tuned parameters.

The metaheuristic algorithms that exhibited the best perfor-

mance were jDE proposed in [41] and the jDE+S3 variant. As

shown in Figure 3a the memetic algorithm with an embedded

steepest descent local search operator within a jDE framework

exhibited the best performance with respect to convergence

speed and fitness evaluations, but had average execution times

and standard deviations more than an order of magnitude

greater than jDE alone as shown in Figure 3b.

jDE offered the best balance between speed and accuracy

and was used in the large scale test of nearly 20,000 images,

but could not meet the 5 week processing schedule without

being distributed across 12 computing nodes. About 80% of

the geography covered by the datasets were urban or suburban

1724



TABLE I: Summary results from nearly 20, 000 images show-

ing the variances of MBR-derived measures

MBRW MBRH MBRθ

ft ft ◦
Average 515 502 6
Mean 16 17 1
StdDev 2467 3125 9
Min 0 0 0
Max 132548 146624 80

TABLE II: Detailed error metrics from a subset of results from

suburban areas

Rotation Placement Scale
◦ ft %

Average 8 127 10
Mean 2 28 2
StdDev 24 276 23
Min 0 6 0
Max 180 1613 132

areas that had dense point sets and good results, but large

scale or rural areas performed poorly likely because of the

insufficient control imparted by fewer points. This suggests

that larger point sets blur or average the differences between

the sets. Generally, about 50% of the results had negligible

variances, which indicate the inputs had high similarity and

outputs had excellent alignment. An additional 35% to 45%

of all images were within one standard deviation, but the

magnitude of the variances shown in Table I suggest that

either major failures in sparse areas comprising 20% of the

geography contributed to large spreads or that the MBR-based

scale measure was insufficiently weighted. A detailed analysis

of suburban areas within La Palma and San Clemente yielded

the statistics shown in Table II. Rotation errors appear more

aesthetically egregious than scale or translation errors and 56%

of the results were within 2.5◦ of the model and another 19%

were within 5◦. However, because these results were for a

suburban area, these quantitative results do not incorporate

results from large scale rural areas, which had significant

placement errors.

VI. CONCLUSION

Point matching is a challenging problem because it often

involves noisy datasets, large state spaces, and a modest num-

ber of parameters that need to be estimated to transform points

in image space to points in model space. The single most

important system component is arguably the computational

framework. Although the baseline objective function employed

here was simplistic, the system produced results in suburban

and urban areas with accuracy and precision comparable

to manually georeferenced images. It should be noted that

there is value even when a map is roughly georeferenced,

because being in the immediate vicinity of its correct position

significantly reduces the amount of manual effort required

to correct georeferencing. The meta-data measures evaluated

each point set as a whole, which was resilient to noise but

too abstract for precise parameter estimation. The histogram

based objective function, by binning the coordinate space

into 10 partitions along each axis, offered a more granular

evaluation of the datasets, but was insufficient in itself to

tune rotation and scale. Future work may investigate meta-data

measures specific to each point that can then be used determine

correspondence ratios between points in each set from which

largely 1:1 correspondences can be determined. Furthermore,

the baseline objective and its variants strongly supported the

need to explicitly handle outliers to avoid assimilating their

effect into the final solution.

REFERENCES

[1] N. Ritter and M. Ruth, “Geotiff format specification,”
http://www.remotesensing.org/geotiff/spec/geotiffhome.html, 2000.

[2] R. Stephens, Two-Dimensional Transformations in Visual Basic Graph-
ics Programming, 2nd ed. Wiley, 2000, pp. 363–416.

[3] G. Bradski and A. Kaehler, Image Transforms in Learning OpenCV.
Sebastopol: OReilly, 2008.

[4] M. Xia and B. Liu, “Image registration by super-curves,” IEEE Trans-
actions Image Processing, pp. 720–732, 2004.

[5] A. Kadyrov and M. Petmu, “Fast registration for 2d images, the clock
algorithm,” in Proc. Int. Conf. Image Processing, vol. 2, 2003, pp. 715–
718.

[6] Q. Wei, F. Zhizhong, L. Lingqiao, and D. Zaiqiang, “Image registration
based on feature extraction and voting strategy,” in Int. Conf. Commu-
nications, Circuits and Systems, 2008, pp. 706–709.

[7] Q. Zheng and R. Chellappa, “A computational vision approach to image
registration,” in 11th IAPR Int. Conf. Pattern Recognition, 1992, pp.
193–197.

[8] G. Caner, M. Tekalp, G. Sharma, and W. Heinzelman, “An adaptive
filtering framework for image registration,” in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing, 2005, pp. 885–888.

[9] J. Ma, J. Zhao, J. Tian, Z. Tu, and A. L. Yuille, “Robust estimation
of nonrigid transformation for point set registration,” in IEEE Conf.
Computer Vision and Pattern Recognition, 2013, pp. 2147–2154.

[10] P. Zhang, S. Wang, Y. Qiao, J. Yang, and Y. Gao, “Affine softassign
with bidirectional distance for point matching”, booktitle =.”

[11] C. Li, J. Xue, S. Du, and N. Zheng, “A fast multi-resolution iterative
closest point algorithm,” in Chinese Conf. Pattern Recognition, 2010,
pp. 1–5.

[12] C. Li, X. Luo, S. Du, and L. Xiao, “A method of registration based
on skeleton for 2-d shapes,” in 5th Int. Congress Image and Signal
Processing, 2012, pp. 810–813.

[13] D. Cobzag, H. Zhang, and M. Jagersand, “A comparative analysis of
geometric and image-based volumetric and intensity data registration
algorithms,” in Proc. 2002 IEEE Int. Conf. Robotics and Automation,
2002, pp. 2506–2511.

[14] R. Sandhu, S. Dambreville, and A. Tannenbaum, in IEEE Conf. Com-
puter Vision and Pattern Recognition, 2008, pp. 1–8.

[15] I. Sahin, “Registration of 2d point sets by complex translation and
rotation operations,” in 32nd Annu. Int. Conf. IEEE EMBS, 2010, pp.
5605–5607.

[16] X. Zhang, L. Li, and D. Tu, “Point cloud registration with 2d and
3d fusion information on mobile robot integrated vision system,” in
Proceeding IEEE Int. Conf. Robotics and Biomimetics, 2013, pp. 11 187–
1192.

[17] M. N. Haque, M. R. Pickering, M. Biswas, M. R. Frater, J. M. Scarvell,
and t. . P. N. Smith.

[18] M. S. Yasein and P. Agathoklis, “A feature-based image registration
technique for images of different scale,” in IEEE Int. Symp. Circuits
and Systems, 2008, pp. 3558–3561.

[19] K. V. Arya, “An efficient 2d image registration algorithm,” in 4th Int.
Conf. Industrial and Information Systems, 2009, pp. 354–357.

[20] H. Chui and A. Rangarajan, “A feature registration framework using
mixture models,” in Proc. IEEE Workshop Mathematical Methods In
Biomedical Image Analysis, 2000, pp. 190–197.

[21] J. Ho, M. Yang, A. Rangarajan, and B. Vemuri, “A new affine registration
algorithm for matching 2d point sets,” in IEEE Workshop Applications
Of Computer Vision, 2007, p. 25.

1725



(a) Small scale suburban area with negligible rotation (b) Medium scale suburban area with negligible rotation

(c) Large scale rural area with small rotation (d) Medium scale urban area with large rotation

Fig. 4

[22] F. Neri, C. Cotta, and P. Moscato, Handbook of Memetic Algorithms,
ser. Studies in Computational Intelligence. Springer, 2012, vol. 379.

[23] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
ser. Natural Computing. Springer, 2003.

[24] “Edge detection,” available at http://en.wikipedia.org/wiki/Edge detection,
2015.

[25] M. Weinmann and B. Jutzi, “Fast and accurate point cloud registration
by exploiting inverse cumulative histograms,” in Joint Urban Remote
Sensing Event, 2013, pp. 218–221.

[26] V. Daum, D. Hahn, and J. Hornegger, “A nonlinear projection scheme
for fast rigid registration,” in IEEE Nuclear Science Symp. Conf. Record,
2007, pp. 4022–4026.

[27] M. Rogers and J. Graham, “Robust and accurate registration of 2-d
electrophoresis gels using point-matching,” IEEE Transactions Image
Processing, pp. 624–625, 2007.

[28] X. Wang and D. Feng, “Automatic hybrid registration for 2-dimensional
ct abdominal images,” in IEEE 1st Symp. Multi-Agent Security and
Survivability, 2004, pp. 208–211.

[29] M. Hansen, R. Larsen, B. Glocker, and N. Navab, “Adaptive parametriza-
tion of multivariate b-splines for image registration,” in IEEE Conf.
Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[30] “Ridge detection,” available at http://en.wikipedia.org/wiki/Ridge detection,
2015.

[31] M. Sofka, G. Yang, and C. V. Stewart, “Simultaneous covariance driven
correspondence (cdc) and transformation estimation in the expectation
maximization framework,” in IEEE Conf. Computer Vision and Pattern
Recognition, 2007, pp. 1–8.

[32] J. Xu, J. Hu, and X. Jia, “Genetic algorithm for distorted point set
matching,” in 6th Int. Congress Image and Signal Processing, 2013, pp.
1724–1729.

[33] L. Xu, J. Liu, W. Zhan, and L. Gu, “A novel algorithm for ct-ultrasound
registration,” in IEEE Point-Of-Care Healthcare Technologies, 2013, pp.
101–104.

[34] S. Brown, “Least squares - the gory details,” available at
http://brownmath.com/stat/leastsq.htm, 2007.
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