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Abstract—The Vehicle Routing Problem with Time Windows
(VRPTW) is a well-known combinatorial optimization problem
found in many practical logistics planning operations. While
exact methods designed for solving the VRPTW aim at min-
imizing the total distance traveled by the vehicles, heuristic
methods usually employ a hierarchical objective approach in
which the primary objective is to reduce the number of vehicles
needed to serve the customers while the secondary objective
is to minimize the total distance. In this paper, we apply a
holistic approach that optimizes both objectives simultaneously.
We consider several state-of-the-art Ant Colony Optimization
(ACO) techniques from the literature, including the Min-Max Ant
System, Ant Colony System, and Population-based Ant Colony
Optimization (PACO). Our experimental investigation shows that
PACO outperforms the others. Subsequently, we introduce a new
pheromone matrix initialization approach for PACO (PI-PACO)
that uses information extracted from the problem instance at
hand and enforces pheromone assignments to edges that form
feasible building blocks of tours. Our computational tests show
that PI-PACO performs better than PACO. To further enhance
its performance, we hybridize it with a local search method. The
resulting algorithm is efficient in producing high quality solutions
and outperforms similar hybrid ACO techniques.

I. INTRODUCTION

The Vehicle Routing Problem with Time Windows

(VRPTW) is a well-known distribution logistics problem

where a homogeneous fleet of m vehicles serves n geograph-

ically dispersed customers. Each customer ci has a demand wi

and is associated with a service time si. Each customer has a

time window [ei, li] during which servicing is allowed. ei is

the earliest and li is the latest service time. The time window

is assumed to be strict. In other words, the actual service start

time bi at customer ci must satisfy ei ≤ bi ≤ li. So, any

vehicle arriving at ci before ei must wait until ei. The vehicles

reside in a central depot are denoted as 0 and associated

with time window [e0, l0]. This time window implies that any

vehicle must leave the depot after e0 and must return to the

depot before l0. Each route originates and terminates at the

depot. Each customer must be serviced exactly once by exactly

one vehicle, and the total demand of the customers assigned

to a route must not exceed the vehicle capacity.

The VRPTW has been extensively studied in the literature

over the past three decades, with numerous exact and meta-

heuristic methods developed to solve it efficiently. While exact

methods minimize the total distance traveled by the vehicles,

metaheuristics usually optimize these objectives separately,

adopting a hierarchical objective approach: the primary ob-

jective is to minimize the number of vehicles (f1) needed to

serve the customers and the secondary objective is to minimize

the total travel distance (f2). Different from heuristics, meta-

heuristics build and refine several solutions but they cannot

guarantee optimality [1, 2]. Genetic Algorithms [3, 4], Ant

Colony Optimization (ACO) [5], Simulated Annealing [6, 7],

Tabu Search (TS) [8, 9, 10], Adaptive Large Neighborhood

Search [11], Variable Neighborhood Search [12] as well as

hybrid methods [13, 14] are among the metaheuristic ap-

proaches that have been successfully applied to the VRPTW.

We refer the interested reader to [15] for an extensive review

of metaheuristics applied to the VRPTW.

Many researchers have applied two-stage methods to solve

the two objectives of the VRPTW separately, and metaheuris-

tics are hybridized in each stage. Such two-stage hybridized

algorithms are regarded as the most powerful methods to solve

the VRPTW. Homberger and Gehring [13], for instance, chose

an evolution strategy to generate solutions with the goal of

reducing the number of vehicles in the first stage. Then, in

the second stage, TS was used to minimize the total distance.

Liu and Shen [16] introduced a two-stage metaheuristic based

on a new neighborhood structure utilizing the relationship

between routes and nodes. Developing such approaches re-

quires carefully dividing the runtime between the local and

global parts of the hybrid algorithms as well as between

the optimization of the two objectives. Different from these

methods, we argue that optimizing the two objectives at the

same time but in a prioritized way can lead to better results. It

is also the more elegant and holistic approach. We investigate

four ACO algorithms for this purpose: the Min-Max Ant
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System (MMAS) [17], the Ant Colony System (ACS) [18],

our previously developed Initialized ACO (IACO) [19], and

the Population-based ACO (PACO) algorithm [20, 21].

Note that distance minimization may arise as the only

objective in scenarios where a company outsources its dis-

tribution/collection operations to third party logistics service

providers and is charged on a per kilometer basis. ACO is

shown to provide competitive results for this case too [22, 23].

The rest of the paper is structured as follows. In Section II,

we describe some preliminaries for implementing the ACO al-

gorithms. We then discuss the experimental setup and compare

the results of four ACO variants in Section III. We present the

probability initialization method and investigate its effects in

Section IV. In Section V, we enhance the initialization of the

pheromone trails and hybridize the algorithm with local search

to further improve the solution quality. The performance of the

proposed algorithm is compared with those of two state-of-the-

art ACO-based approaches in Section VI. Finally, Section VII

concludes the paper.

II. PRELIMINARIES

A. Solution Construction

A solution to the VRPTW is a schedule specifying which

customers each vehicle serves and the timing of the service.

The vehicle must service each of its customers within the

time window without exceeding its capacity. The distance

between two customers ci and cj is denoted as di j . In most of

the benchmark problem instances (e.g., well-known instances

generated by Solomon [24]), this is the Euclidean distance of

customer coordinates in a two-dimensional plane. The travel

time ti j between ci and cj is usually assumed to be equal to

di j and also represents the travel cost.

A permutation of customers π = (ci, cj , . . . ) can be used

to encode a route. All vehicles leave the depot at e0. Let

a vehicle first visit ci in the permutation π. The service

start time bi at ci is then equal to max {ei, e0 + t0 i}. The

service at the second customer in the sequence cj will then

start at time bj = max {ej, bi + si + ti j}. This is repeated

for the remaining customers in the schedule until either the

vehicle capacity is reached by the aggregated demands of the

customers visited or no other customer can be visited because

of its time-window restriction. Then, the vehicle will return to

the depot. This procedure is repeated with a new vehicle until

all customers have been visited.

B. Objectives

The VRPTW has two objective functions: the number of

vehicles needed to service all the customers f1 and the

total distance traveled by the vehicles f2. These objectives

do not have the same priority, i.e., minimizing f1 is more

important than f2 ([25]), because it is assumed that the number

of vehicles has more weight on total operating costs. In

this study, we optimize both objectives simultaneously while

respecting this prioritization. A solution π1 is considered to

be better than another solution π2 if either f1(π1) < f1(π2)
or f1(π1) = f1(π2) and f2(π1) < f2(π2).

C. Pre-Processing

Some customer visiting sequences can be ruled out from

any valid schedule, e.g., those that violate the time window

constraints. By applying a pre-processing step [19], the search

space can be reduced:

cj can be visited after ci ⇒ lj ≥ ei + si + ti j (1)

Eq. 1 is a necessary condition to enable cj to be reached within

the time window after servicing ci. For each customer, we can

determine the domain [19], i.e., the set of customers that can

be visited next in the same route. To select the customer to be

visited next, we need to consider customers that are included

in the current domain, and that the vehicle capacity limitation

is not violated. The size of the search space can be reduced

by up to 28% on average by this pre-processing procedure.

III. PERFORMANCE EVALUATION OF ACO ALGORITHMS

Before presenting an enhanced pheromone initialization

approach, we investigated the performances of several ACO

approaches using instances of the VRPTW. Specifically, we

applied six algorithms to the Solomon [24] benchmark in-

stances: MMAS, ACS, IACO, age-based PACO (PACO-ABS),

quality-based PACO (PACO-QBS), and PACO with an elitist

archive update strategy (PACO-EBS). When comparing two

solutions during the optimization process, we first evaluated

the numbers of vehicles, and if they were equal, we compared

the total distances [19].

The Solomon data set consists of 25-, 50-, and 100-customer

instances. The data includes 56 problems for each size, i.e.,

there are a total of 168 problems. We performed 20 indepen-

dent runs for each of the settings. In each run, we granted

300,000 objective function evaluations (FEs). 20 ants were

used to construct solutions. For all algorithms, we set the

ACO parameters ρ = 0.95, β = 2, and α = 2. Parameter

values for IACO were set the same as in [19]. For the MMAS,

τmax = n
f2(πbs)

and τmin = 1
c∗n2 , where f2(πbs) is the

travel distance of the best-so-far solution and c∗ is the average

distance between the customers. For the ACS, q0 = 0.9 and the

local and global updating rules were defined according to [18].

For PACO, we set the archive size K = 30 and maximum

pheromone τmax = 60.

We collected the results and used the Mann-Whitney U test

with a significance level of 0.02 to check whether the observed

differences in performance were significant. We tested the two

objectives separately in order to identify in which objective an

algorithm performs better. The final results are listed in Table I.

The columns marked with symbol − (+, 0) show the

number of instances “Algorithm 1” produces significantly

better (worse, not significantly different) solutions than “Al-

gorithm 2”. From Table I, we can see that the ACS performs

the worst for both f1 and f2. IACO performs worse than

the MMAS in small-size problems but better in large data

instances: IACO has 35 smaller f1 values than the MMAS out

of 56 100-customer problems and is always better in terms of

f2. Overall, it outperforms the MMAS. The performance of

PACO is slightly better than IACO in small-scale problems

but significantly better in the 50- and 100-customer instances.
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TABLE I: Mann-Whitey U test comparison results for ACO algorithms (− is better, + is worse).

Instances with 25 customers Instances with 50 customers Instances with 100 customers Total
f1 f2 f1 f2 f1 f2 f1 f2

Algorithm 1 vs. 2 - + 0 - + 0 - + 0 - + 0 - + 0 - + 0 - + 0 - + 0
ACS IACO 0 40 16 0 52 4 0 40 16 1 51 4 0 44 12 0 54 2 0 124 44 1 157 10
ACS MMAS 0 49 7 1 51 4 0 41 15 9 36 11 2 36 18 35 7 14 2 126 40 45 94 29
ACS PACO-ABS 0 12 44 9 31 16 0 35 21 5 45 6 0 54 2 0 51 5 0 101 67 14 127 27
ACS PACO-EBS 0 47 9 0 54 2 0 48 8 0 54 2 0 55 1 0 52 4 0 150 18 0 160 8
ACS PACO-QBS 0 45 11 0 55 1 0 49 7 0 55 1 0 56 0 0 56 0 0 150 18 0 166 2

IACO MMAS 0 17 39 13 28 15 9 7 40 38 7 11 35 1 20 56 0 0 44 25 99 107 35 26
IACO PACO-ABS 0 12 44 9 31 16 0 35 21 5 45 6 0 54 2 0 51 5 0 101 67 14 127 27
IACO PACO-EBS 0 9 47 9 28 19 0 31 25 4 43 9 0 42 14 2 39 15 0 82 86 15 110 43
IACO PACO-QBS 0 13 43 8 34 14 0 37 19 4 49 3 0 54 2 0 52 4 0 104 64 12 135 21

MMAS PACO-ABS 5 1 50 15 12 29 0 31 25 1 49 6 0 54 2 0 56 0 5 86 77 16 117 35
MMAS PACO-EBS 3 1 52 19 12 25 0 29 27 0 49 7 0 53 3 0 56 0 3 89 82 19 117 3 2
MMAS PACO-QBS 3 1 52 16 15 25 0 33 23 0 52 4 0 55 1 0 56 0 3 83 76 16 123 29

PACO-ABS PACO-EBS 0 0 56 5 1 50 3 0 53 19 2 35 28 0 28 48 0 8 31 0 137 72 3 93
PACOABS PACO-QBS 0 0 56 0 3 53 0 1 55 0 13 43 0 1 55 1 28 27 0 2 166 1 44 123
PACO-EBS PACO-QBS 1 0 55 0 18 38 0 4 52 0 34 22 0 39 17 0 55 1 1 43 124 0 107 61

In short, PACO performs the best among all tested ACO

algorithms. We observe that PACO-ABS, PACO-QBS, and

PACO-EBS show similar performances based on the 25-

customer problem instances but PACO-QBS outperforms the

other two when the larger data instances were used.

In the next section, we present a new pheromone initial-

ization approach to improve the solution quality of PACO.

Inspired by our previous work on IACO [19], the proposed

approach is called probability initialization in view of the

features of PACO.

IV. PROBABILITY-INITIALIZED PACO FOR THE VRPTW

In PACO, the probability to traverse a given edge is defined

by two factors: (i) the number of solutions that contain the

given edge in the archive and (ii) constant lower and upper

pheromone limits (τ0i j and τmax). During the course of PACO,

solutions enter the archive and the transition probabilities

are updated. We speed up this process by initializing the

pheromone trails with knowledge extracted from the problem

instance. We compute good per-edge lower pheromone bounds

τ0i j , i.e., the minimum pheromone values may now differ from

edge to edge. High τi j values indicate that it may be a good

idea to visit customer cj after ci. Our initialization process

uses two components to determine such relationships: time

windows and distance.

A. Initializing Pheromones in PACO

The service begin time bi of a customer ci is not known

in advance, as it is the result of the vehicle schedule. This

uncertainty propagates to subsequent customers. We, therefore,

model bi as a random variable x that complies with a certain

probability distribution function denoted as PDi(x). Differ-

ent families of probability distributions investigated include

normal, uniform, and power function distributions.

For the normal distribution, we set parameters μi and σi as

follows:

PDi(x) =
1

σi

√
2π

e
−

(x−μi)
2

2σ2
i (2)

μi =
ei + li

2
(3)

σi =
li − ei

6
(4)

For the uniform distribution, PDi(x) is defined as follows:

PDi(x) =

{
1

li−ei
if ei ≤ x ≤ li

0 otherwise
(5)

For the power function distribution, we set PDi(x) as follows:

PDi(x) =

{
1

In(
li+1

ei+1 )(x+1)
if ei ≤ x ≤ li

0 otherwise
(6)

Assuming that customer cj is near customer ci and its latest

service time is such that a vehicle departing from ci may barely

arrive at cj before the latest service time. Then, it may make

sense to increase the probability of visiting cj directly after

ci, since it will be hardly possible to insert another customer

between ci and cj . Using this idea, we derive the function

VE(i, j, bi,m) whose value is larger when customers ci and

cj are closer and when cj is serviced at the end of its time

window if it is visited immediately after ci. VE(i, j, bi,m) is

formulated as follows:

VE(i, j, bi,m) =

⎧⎪⎨
⎪⎩

0 if bj ≥ lj
di

di j
+ γ

(
tj

tj+1
− ej−bj

tj

)
if ej > bj

di

di j
+ γ

tj
lj−bj+1 if ej ≤ bj < lj

(7)

where di is the average distance from customer ci to all

customers in its domain. tj is the total length of the time

window of customer cj . Under the assumption that customer

ci is visited before cj and is serviced at bi,m, then bj can be

calculated as bj = bi,m + si + di j . di

di j
is used to give higher

probabilities to closer customers and it decreases with di j .
ej−bj

tj
represents a penalty to punish early arrival. lj − bj + 1

is the time left to meet the latest service time. γ is a control

parameter governing the relative influence between distance

and time. We set it to 1 in our initial experiments.
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Eq. 7 considers three possible visits to a customer: failing to

service due to late arrival; early arrival and waiting to service;

and arrival within the time window and service immediately.

In order to indicate the price and penalty for each type,

we add or subtract a ratio. If a vehicle visits customer cj
immediately after customer ci, we can separate the time

window of customer ci into two disjoint parts: the waiting

time WTi,j and the active time VTi,j during which service

takes place. If the vehicle arrives during WTi,j at cj , it has

to wait and VE(i, j, bi,m) = di

di j
+ γ(

tj

tj+1
− ej−bj

tj
). If it

arrives during VTi,j , it can immediately begin servicing cj

and VE(i, j, bi,m) = di

di j
+ γ

tj
lj−bj+1 .

To numerically estimate the initial pheromone τ0i j on the

edge from ci to cj based on these situations, we divide the time

window of ci into M intervals of length Δbi, each associated

with a service begin time bi,m. The computation is as follows:

τ0i j = max

{
1

n
,

M∑
m=1

PDi(bi,m) ∗ VE(i, j, bi,m) ∗Δbi

}
(8)

B. Experimental Results

We refer to PACO equipped with the probability initializa-

tion described above as PI-PACO. To test its performance, we

compared the results obtained with PI-PACO using the nor-

mal, uniform, and power distributions to the results achieved

by PACO without the proposed initialization method. In

Section III, we have observed that PACO-QBS outperforms

PACO-ABS and PACO-EBS. Thus, in the subsequent exper-

iments we used only PACO-QBS and it will be referred to

simply as PACO. We again applied the Mann-Whitney U

test at significance level 0.02 to check the final results. The

parameters were set the same as in Section III.

The columns −, +, and 0 in Table II have the same meaning

as in Section III. From the table, we can see that PACO

initilized based on the power or uniform distribution performs

significantly better than PACO in both f1 and f2. This means

our initialization procedure improves the solution quality.

Among the three choices of probability distributions, the

normal distribution performs worse than the other two while

the power distribution has a slight advantage over the uniform

distribution, especially for larger instances. The results indicate

that the proposed probability initialization approach is clearly

beneficial and our algorithm is relatively robust in terms of

the choice of initialization method.

V. INITIALIZATION ENHANCEMENT AND LOCAL SEARCH

A. Modification in the Initialization Approach

Pheromone initialization is a way to provide PACO with a

priori information about the problem in the form of (modified)

transition probabilities from one customer to another. In an

ideal case, edges whose pheromone values have been increased

would form continuous sub-tours. In Figure 1, we plot the

edges with the strongest initial pheromones for three of the

benchmark problems.

We can see that this intended behavior occurs for clustered

problems (C-type), but diminishes when the problem type

changes to random/clustered mix (RC-type) or fully random

(R-type) instances. The reason why rather distant and seem-

ingly unrelated customers are linked in problem R101 could

be that the relative influence between distance and time is not

set very well at γ = 1. Thus, we decrease the value of γ to add

weight to the distance between nodes. In order to determine the

proper value of γ, we take problem R101 as an example and

display the same plots for γ ∈ {0.1, 0.5, 1.0, 1.5}) in Figure 2.

From the figure, we see that the lower the γ value, the nearer

customers are linked by the increased pheromone values and

the initialization seems to be able to pre-construct more useful

solution fragments. In other words, lower values of γ (such as

0.1) appear to perform well.

In Figures 1 and 2, we can only spot a few solution

fragments. Sometimes, several edges with strong initialized

pheromones lead to the same customer. This is not desirable

since each customer can only be visited once. The perfor-

mance of the current initialization method may be improved,

especially for random problem instances (R-type). These

benchmark instances are characterized by random customer

positions and random earliest service times. As a result, there

are many potential choices for the next customer to visit

following a given customer. To speed up the search by hinting

PACO towards good solution building blocks, we want to

reduce situations where multiple edges with strong initialized

pheromone emanate from the same customer. For that, we

decrease the initial pheromone values on certain edges to the

minimum value. Assume that the current customer is ci and we

want to only keep the initialized pheromone on one edge going

into ci. We tested two ways to choose this edge: First, we

can keep the one with the largest value (maximum selection).

However, this edge could come from a customer that has

several edges with similarly high pheromone values leaving

it, while the edge whose pheromone we delete could be the

one with the highest pheromone value leaving its origin. The

second approach is to compare all incoming edges of ci. If two

such edges are those with the highest pheromone leaving their

origins, we pick the one with the largest pheromone difference

to the second highest pheromone on any edge leaving its origin

(difference selection).

In Figure 3, we sketch the impact of the difference selec-

tion approach in problem instances C201, RC201, and R201

compared to the original initialization procedure. As expected,

the pheromone values have increased on one departing edge

per customer. Some customers become isolated due to weaker

pheromones to customers in their domains. In other words,

these customers show random distribution characteristics.

Moreover, this figure illustrates the different patterns for differ-

ent problem types. In C201, the increased pheromones almost

outline complete tours. However, in RC201 and R201 with

random features, only a few segments are linked. From these

figures, we preliminarily conclude that the selection methods

can extract not only a priori information from problems but

also maintain problem characteristics. The maximum selection

approach (not illustrated) has a similar visual appearance as

the difference selection approach. In Algorithm. 1, we show

the complete process of the probability initialization method.

This procedure is executed once at the beginning of PI-PACO.
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TABLE II: Mann-Whitney U test results for PACO with different strategies.

Instances with 25 customers Instances with 50 customers Instances with 100 customers Total
f1 f2 f1 f2 f1 f2 f1 f2

Algorithm 1 vs. 2 - + 0 - + 0 - + 0 - + 0 - + 0 - + 0 - + 0 - + 0
NoIni Normal 0 2 54 4 26 26 4 7 45 6 32 18 8 14 34 4 32 20 12 23 133 14 90 64
NoIni Power 0 3 53 1 33 22 2 7 47 3 35 18 5 13 38 4 34 18 7 23 138 8 102 58
NoIni Uniform 0 2 54 1 39 16 1 7 48 4 40 12 3 15 38 2 42 12 4 24 140 7 121 40

Normal Power 0 0 56 1 13 42 0 2 54 1 8 47 0 1 55 1 6 49 0 3 165 3 27 138
Normal Uniform 0 0 56 0 19 37 0 3 53 1 13 42 0 3 53 0 15 41 0 6 162 1 47 120
Power Uniform 0 0 56 4 0 52 0 0 56 3 1 52 0 0 56 9 0 47 0 0 168 16 1 151
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Fig. 1: Edges with the strongest initial pheromone values for three of the Solomon problems based on γ = 1.
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(d) γ = 1.5

Fig. 2: Edges with the strongest initial pheromone values for problem R101 with varied values of γ.

B. Local Search

Local search algorithms are optimization methods that

maintain and improve a candidate solution by exploiting on

one (or multiple) neighborhood structure(s). They are widely

used in solving the many VRP variants, often in a hybrid form

combined with global search methods, e.g., further improving

the iteration-best solution found by ACO. In this section,

we hybridize PI-PACO with local search. We first introduce

different neighborhood structures explored and then present

the new hybrid algorithm.

Local search is an effective method to improve solutions ob-

tained by metaheuristics algorithms and has been successfully

employed with ACO as well, e.g., see [14, 22, 26]. Our local

search method is based on three well-known neighborhood

structures: N1−insert, N1−exchange, and N2−opt. We assume two

routes π1 and π2 (π1, π2 ∈ π). N1−insert defines an insertion

move where a customer is removed from route π1 and inserted

into route π2. Figure 4a depicts the example where customer

c4 is removed from route 1 and inserted between customer c3
and customer c5 in route 2. N1−exchange exchanges the positions

of two customers within the same route or between two routes.

In Figure 4b, c4 replaces c5 in route 1 and c5 replaces c4 in

route 2. This method cannot reduce the number of routes but

may reduce the total distance. N2−opt removes two arcs in π1

and π2 and reconnects the two resulting paths. In Figure 4c,

the arc (c3, c5) is eliminated and c3 is reconnected to c0 in

route 1 whereas the arc (c4, c0) in route 2 is removed and the

arc (c4, c5) is constructed.

These neighborhood structures may contain infeasible so-

lutions. We therefore check the feasibility before applying an

operator to certain customers to ensure that each generated

solution is feasible.

It is difficult to decide which search operator to use when we

do not know how the solutions are composed. Thus, in many

algorithms, more than one search operator would be applied.

Some have been used in different phases of the algorithms,
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Fig. 3: Difference selection for pruning initialized pheromone compared to the original initialized pheromone distribution.

(a) N1−insert (b) N1−exchange (c) N2−opt

Fig. 4: The three neighborhood structures explored by the local search in our hybrid PACO.

e.g., see [14, 26].

Homberger and Gehring [13] proposed a hybrid meta-

heuristic that randomly selects a neighborhood structure

among {N1−insert, N1−exchange, N2−opt} and applies it. We have

adopted the same mechanism in PI-PACO.

The pseudo-code of the local search is given in Algorithm 2.

Figure 5 shows a flowchart of the complete hybrid PI-PACO.

VI. COMPUTATIONAL EVALUATION

We experimentally investigated the performance of the two

selection approaches in conjunction with the hybridization of

our algorithm with the local search method. In Table III, we

show the results obtained by PI-PACO (aggregated for each

problem type) and two state-of-the-art ACO algorithms [14,

26]. We set K = 5, τmax = 90, and γ = 0.1.

Comparing the results obtained by the two modified

pheromone initialization methods, we see that, in all six

problem types, the maximum selection approach is worse than

the difference selection approach that preserves the pheromone

on the edges according to their difference to the next-strongest

TABLE III: Comparisons between improved initialization

method and ACO-based algorithms.

Type Goal Chen and
Ting [14]

Sodsoon
and
Changyom
[26]

hybrid
PACO

hybrid
PI-PACO
maximum
selection

hybrid
PI-PACO
difference
selection

R1 f1 12.83 13.83 12.83 12.92 12.75

f2 1203.56 1259.19 1204.06 1205.11 1203.67
C1 f1 10 10 10 10 10

f2 828.76 838.12 828.61 828.60 828.55
RC1 f1 12.50 12.63 12.75 12.63 12.38

f2 1363.84 1436.58 1381.42 1380.78 1380.54
R2 f1 3.09 3.82 3.45 3.64 3.54

f2 932.23 980.98 1005.35 995.03 1006.38
C2 f1 3 3 3 3 3

f2 589.86 591.13 590.71 589.93 589.86

RC2 f1 3.75 4.5 4.13 4.38 4.13
f2 1079.81 1141.63 1113.59 1156.20 1109.8

pheromone. We also notice that the hybrid PI-PACO with

difference selection achieves better results than hybrid PACO

without pheromone initialization. This shows that the modifi-

cation to our initialization method is useful and can improve
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Algorithm 1 Pheromone Initialization

1: for ci, i = 1...n do

2:

PDi(x) =

{
1

In(
li+1

ei+1 )(x+1)
if ei ≤ x ≤ li

0 otherwise
(9)

3: for cj , j = 1...n do

4:

VE(i, j, bi,m) =

⎧⎪⎨
⎪⎩

0 if bj ≥ lj
di

di j
+ γ

(
tj

tj+1
− ej−bj

tj

)
if ej > bj

di

di j
+ γ

tj
lj−bj+1 if ej ≤ bj < lj

(10)

5:

τ
′

i j =

M∑
m=1

PDi(bi,m) ∗ VE(i, j, bi,m) ∗Δbi (11)

6:

τ0i j = max{ 1
n
, τ
′

i j} (12)

7: end for

8: end for

9: for ci, i = 1...n do

10: choose a. or b.

11: a. maximum selection of pheromone value

j = argmax {τk i|ci is in the domain of ck} (13)

τ0k i =

{
1
n

k �= j

τ0k i k = j (unchanged)
(14)

12: b. difference selection of pheromone value

j = argmax {τj k : ck ∈ domain of cj} (15)

p = argmax {τp k : ck ∈ domain of cp} (16)

x = argmax {τx k : (ck ∈ domain of cj) ∧ (x �= j)} (17)

y = argmax {τy k : (ck ∈ domain of cp) ∧ (y �= p)} (18)

τ0j i =

{
τ0k i if τj i − τj x ≥ τp j − τp y (unchanged)
1
n

otherwise
(19)

13: end for

Algorithm 2 The description of the local search.

Input:πib

Output:πib′

1: N∗= random{N1−insert, N1−exchange, N2−opt};
2: Generate N∗ of πib;

3: for π in N∗ do

4: if
(
f1(π) < f1(π

ib)
) ∨ [(

f1(π) = f1(π
ib)

) ∧ (
f2(π) < f2(π

ib)
)]

then

5: πib= π;

6: πib replaces π
′

in A;

7: end if

8: end for

9: πib′= πib;

the solution quality.

Our algorithm outperforms the hybrid algorithm by Chen

and Ting [14] on problem type C1 and achieves similar results

on problem type C2. This indicates that our method is good

for clustered problems. In problem types R1 and RC1, our

method achieves better values in the first objective function at

the cost of slightly longer travel distance. In problem types R2

and RC2, however, our algorithm needs half a vehicle more

on average. These results show that our method is weaker in

solving problems with wide time windows.

Fig. 5: The flowchart of hybrid PI-PACO.

Our algorithm is similar to the MMAS-VRPTW [26] but

outperforms it on all except R2 instances in terms of the

distance, and scores equally in C1 instances in terms of the

number of vehicles. In summary, our algorithm has used a total

of 438.02 vehicles on average compared to 459.02 vehicles

used by the MMAS-VRPTW, and outperformed two state-of-

the-art ACO methods on the VRPTW.

VII. CONCLUSIONS

In this paper, we have addressed the VRPTW using an ACO

approach. Our contributions can be summarized as follows:

• We showed that pure PACO outperforms other ACO

algorithms on the VRPTW.

• We introduced a method to initialize the pheromone of

PACO and showed that this method outperforms pure

PACO.

• We improved this initialization procedure so that it could

create more useful tour fragments.

• We hybridized PACO with local search using three dif-

ferent search operators.

• We showed that this hybrid PACO with improved initial-

ization outperforms state-of-the-art hybrid algorithms and

pure PACO.
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Future research may focus on applying the proposed PI-PACO

approach to other problems, e.g., the Quadratic Assignment

Problem. Alternative local search algorithms may also be

explored to determine the best hybridization strategy. Fur-

thermore, the performance of PI-PACO may be investigated

on large-scale instances. In this case, the effectiveness of the

probability initialization method needs to be analyzed and

extraction of useful a priori information from a large instance

needs to be explored.
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[23] U. M. Yıldırım and B. Çatay, “A parallel matheuristic

for solving the vehicle routing problems,” in Computer-

based Modelling and Optimization in Transportation,

J. F. de Sousa and R. Rossi, Eds. Springer International

Publishing, 2014, vol. 262, pp. 477–489.

[24] M. M. Solomon, “Algorithms for the vehicle routing

and scheduling problems with time window constraints,”

Operations Research, vol. 35, no. 2, pp. 254–265, 1987.
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