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Abstract—We compare two iterative methods for solving the
Planar Single-Facility Location–Routing Problem (PSFLRP), in-
volving optimizing the continuous-valued location of a single
depot by iteratively solving instances of the Vehicle Routing
Problem (VRP). An Ant Colony Optimization (ACO) algorithm
is used for solving the routing problem, a procedure using
Weiszfeld’s algorithm and a simple Evolution Strategy (ES) are
applied to the overlying locational problem. Weiszfeld’s algorithm
is used to iteratively find the geometric median of the end-
points, i.e., each subtour’s first and last stop from the depot.
This approach is compared to a classical (1+1)-ES employing the
1/5-th success rule. The two methods are evaluated on common
instances of the PSFLRP, showing that for obtaining comparable
total lengths, the Weiszfeld’s-based procedure requires less VRP
evaluations (by the ACO algorithm) than the ES.

I. INTRODUCTION

In logistics, two important problems arise: Finding the location
of a facility, and finding the optimal routes for trucks that
deliver cargo from a facility to a number of customers. In
Computer Science, these problems are known as the Facility
Location Problem (FLP) and the Vehicle Routing Problem
(VRP).

In the FLP (for an overview, see [8]), the goal is to find the
optimal placement of facilities, such that the transportation cost
from the facility to a set of clients is minimized. Location
models can be split up in discrete and continuous models. In
the first case, the facilities consist of a discrete set of locations,
from which a subset has to be selected. In the second case,
the facilities can be located anywhere on a plane, increasing
freedom but also complexity. In the FLP, it is often assumed
that a full truckload is delivered to each client; per trip only
one customer is serviced.

In a real-world scenario, freight trucks usually carry goods for
multiple customers. Goods are picked up at a depot and have
to be dropped off at the customers. The problem of finding
optimal routes for the trucks is a well-known problem; the
Vehicle Routing Problem [6]. Many different variants of the
VRP have been studied, such as the Vehicle Routing Problem
with Time Windows, where each customer has to be visited
in a certain time window, or the case where multiple depots
exist, and each customer first has to be assigned to a depot.

In this paper, we only look at a basic variant that deals with
vehicles with a maximum capacity: the Capacitated Vehicle
Routing Problem (CVRP).

While usually considered separately, the Planar Location–
Routing Problem combines the FLP and VRP into one: Given
a set of customers and the distances between them, find the
optimal location of the depot, where trucks are allowed to
visit multiple clients on a trip. Even though this problem
combines short-term and long-term objectives (the routing of
trucks and the location of the depot, respectively), the location
of the depot can influence the routes of the trucks, creating
possibilities for reducing the total covered distance. As logistic
costs can consume a large portion of the budget of companies,
even a slight decrease can lead to considerable savings. An
overview of the recent research on Location–Routing problems
is given by Prodhon and Prins [13].

The rest of this paper is structured as follows: In Section
II we will present the problem in a more formal way. The
two compared approaches are explained in Section III and we
describe the experiments and obtained results in Section IV.

II. PROBLEM DEFINITION

The Planar Single-Facility Location–Routing Problem (PS-
FLRP) is a combination of two sub-problems, namely the
Vehicle Routing Problem and the Planar Facility Location
Problem. First we will explain these two problems and then
show how they are combined in the PSFLRP.

A. Facility Location Problem

In the classical unconstrained Facility Location Problem
(FLP), two sets are given: A set of customers C and a set
of potential facilities F . The goal is to find a subset of open
facilities Fopen ⊆ F , such that the total cost is minimized when
each customer is assigned the ‘nearest’ open facility. Opening
a facility i has a cost of fi, and a cost cij is associated with
assigning a customer j ∈ C to that facility. The objective is
to minimize the total cost T:

T =
∑

i∈Fopen

fi +
∑

i∈Fopen

min
j∈C

cij . (1)
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Fig. 1: Depot Locations in C1. The geometric median is the
point that minimizes the sum of distances to a set of points,
the arithmetic mean is the per-axis average of these points.
The best location found by the algorithms compared in this
paper is shown as well.

In the Planar (or continuous) FLP, the location of facilities
is not fixed. Instead of selecting from a discrete set of facility
locations, a facility can be located anywhere on a continuous
plane. This problem is more difficult, as F is no longer finite.

A special, simple instance of the Planar FLP is Weber’s
problem [21], which deals with finding exactly one point that
minimizes the sum of routing costs to a set of points. Weber’s
problem is one of the most studied problems in continuous
location theory. It allows for varying transportation costs by
assigning weights to each client. In the planar case, the cost
of assigning a customer to a facility can be represented by
the Euclidean distance between the customer and the facility,
reducing our problem to finding the geometric median, if all
clients are weighted equally.

The geometric median problem is defined as: Given a set
of n points X = {x0, x1, . . . , xn}, find the point GM that
minimizes the sum of distances to these points, i.e.,

GM = argmin
y∈R

2

n∑
i=1

‖xi − y‖2. (2)

Note that this is not necessarily the same as the arithmetic
mean of the set of points, which minimizes the sum of squared
distances to each point, see Figure 1 for a graphical overview
of one of the tested problems. For determining the geometric
median Weiszfeld’s algorithm is used, see Section III-B.

B. Vehicle Routing Problem

The CVRP can be represented as a complete, weighted,
directed graph G = (V,A, d). The vertices V are comprised
of a depot v0 and n customers, V = {v1, . . . , vn}. The arcs A
represent the routes between vertices and are assigned weights
dij , which are regarded as the distances between two vertices.
Furthermore, each customer {vi ∈ V |i �= 0} has a demand of
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Fig. 2: Influence of Depot Location. Plot of the total route
length change for varying depot locations in C1. Note that the
resulting figure is not a regular shape.

qi, a number that quantifies the volume of goods that have to
be delivered. The quantity of goods at the facility v0 is set
to 0, and each customer has to be visited exactly once by one
vehicle. A tour is a solution to the VRP, consisting of multiple
subtours, a delivery run made by a single truck that starts and
ends at the facility.

We consider a fleet of homogeneous trucks with a given
maximum capacity. Each truck starts at the depot and visits
customers in order to deliver goods. The total demand of all
customers that a truck visits in one subtour may not exceed the
maximum capacity. A feasible solution Z (where each client
is visited exactly once) is constructed, such that zij = 1 if
vertex vj is visited after vi in the solution representation, and
zij = 0 otherwise. The aim is to find the route that minimizes
the total travelling distance D of the trucks,

D =

n∑
i=0

n∑
j=0

zij · dij . (3)

C. Planar Location–Routing Problem

In the FLP, it is assumed that a truck returns to the depot after
it has visited a customer. In real-world scenarios, trucks do not
always deliver on a single-customer trip basis, but carry goods
for multiple customers. This is known as Location–Routing:
The study of solving locational problems such that routing
considerations are taken into account [15]. Trucks are allowed
to stop at different customers before returning to the depot,
as they are allowed in the VRP, and are still constrained by a
maximum load that cannot be exceeded during a run.

In this paper, we consider the PSFLRP, where only a single
facility is considered. The Euclidean distance is used to
express the distances dij between vertices. There are some
differences to the Planar FLP: No costs for opening a facility
are considered, leaving only transportation costs. This allows
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us to use some of the benchmark problem sets from the VRP,
without having to generate artificial costs for opening a facility.
Furthermore, facilities are assumed to be uncapacitated. Incor-
porating a facility cost in our algorithm would be relatively
simple, as we can add the cost of a facility to the cost of the
routes.

In Figure 2, we see the influence of the depot location
on the total route length. Because our VRP-solver is non-
deterministic, the figure shows the minimum of 10 runs
computed over a grid, centered close to the presumed optimal
location of the depot. The resulting landscape is irregular, due
to the fact that the order in which clients are visited can change
depending on the location of the depot.

III. APPROACH

Both compared algorithms consist of two phases, solving the
routing problem and subsequently improving the solution by
moving the depot location (solving the location problem).
These phases are iteratively executed for a maximum number
of iterations. The routing problem is solved with an Ant Colony
Optimization algorithm. Two approaches for the overlying lo-
cation problem are compared: A method that uses Weiszfeld’s
algorithm (taken from Salhi and Nagy [15]) for determining
the geometric median and a classical (1+1) Evolution Strategy
(ES). This comparison allows us to investigate whether evolu-
tionary algorithms can compete with heuristical methods such
as Weiszfeld’s algorithm. (1+1)-ES is chosen because of its
simplicity and relatively fast convergence speed.

A. Ant Colony Optimization

In order to solve the VRP, we use an Ant Colony Optimization
(ACO) algorithm. Bullnheimer et al. [2] were the first to use
ACO for solving VRPs. ACO is derived from the way ants
navigate the terrain to find potential food sources. In nature,
ants leave a trail of pheromones on paths between the nest
and the food sources. Other ants are more likely to follow
strong pheromone trails, leaving even more pheromones, in-
creasing the ‘strength’ of frequently chosen paths. Further-
more, pheromone evaporates, decreasing the probability that
infrequently walked paths are chosen.

In the ACO algorithm, solutions are created by ants that
walk around probabilistically, based on the pheromones on
route segments. Once a route has been created, the route of
each truck (i.e., each subtour) is optimized by a local search
procedure. Finally, the algorithm reinforces the pheromone on
arcs that were selected, and decreases pheromone on arcs that
were not. These steps are shown in Algorithm 1.

Algorithm 1 Basic ACO algorithm

Initialization
for Number of iterations do

For each ant, generate a new solution (Section III-A1)
Improve solutions with local search (Section III-A2)
Update pheromone information (Section III-A3)

1) Generation of Solutions: In many versions of ACO ap-
plied to the VRP (see, e.g., [2]), solutions are constructed
sequentially. In planning routes, ants choose cities to visit
until the maximum capacity of the truck has been reached.

Each ant starts at a different initial city and builds its route
from there in order to diversify the search. However, this way,
ants were likely to start in the same cities for the remaining
subtours, thereby creating solutions that are similar for all but
the first subtour. Doerner et al. [9] present a different way
of creating routes called SavingsAnts, which is based on the
Savings algorithm [5].

In the Savings algorithm, first presented by Clarke and Wright
[5], tours are initialized by assigning each customer to a sepa-
rate subtour. Subsequently, for each combination of customers
vi and vj , the savings value sij is calculated,

sij = di0 + d0j − dij , (4)

where v0 is the location of the depot. The savings value
represents the costs that are saved by visiting client vj
after vi, as a vehicle no longer has to cover the distances
di0 and dj0, but instead travels the distance dij between
nodes i and j. Note that this value cannot be negative when
using Euclidean distances due to the triangle inequality. In
the original Savings algorithm, the savings values are added
to a sorted list. Subtours are then combined according to this
list, starting with the highest savings, until no more feasible
combinations exist. A combination of subtours (v0, . . . , vi, v0)
and (v0, vj , . . . , v0) becomes
(v0, . . . , vi, vj , . . . , v0).

In the SavingsAnts algorithm, subtours are combined in a
similar way. However, instead of only the savings values,
pheromone information is also taken into account. τij denotes
the amount of pheromone on the edge between node vi and vj .
A sorted list is created, this time consisting of the following
values ξ:

ξij = ταij · sγij , (5)

where the parameters α and γ represent the relative influence
of the pheromones and the savings, respectively. In a following
decision step, each ant probabilistically selects one of the k
highest values in the list, and combines the two subtours. The
probability pij of combining customers vi and vj is computed
as follows:

pij =

⎧⎪⎨
⎪⎩

ξij∑
(h,l)∈Ωk

ξhl
if ξij ∈ Ωk

0 otherwise

, (6)

where Ωk represents the list of the k maximum values. In
one iteration of the ACO algorithm, we create m solutions,
equal to the number of ants. As in the Savings algorithm, ants
combine subtours, until no more feasible combinations exist
with respect to capacity constraints.

2) 2-opt: The 2-opt heuristic [7] is a local search method
which is applied to each solution obtained by the ants in
the previous step, before updating the pheromones. The 2-opt
algorithm exchanges two edges with two new ones until no
more improvements are possible. When finished, the result is
called a 2-optimal tour. The 2-opt algorithm is applied to each
subtour, removing all crossing paths, which are always longer
when using Euclidean distances as a measure.
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TABLE I: Comparison of VRP-Solvers. The minimum tour lengths are given of the best known solutions from literature, the
ACO algorithm applied in this paper and the ACO approach by Doerner et al [9].

Instance Best known
solution

Proposed method
(ACO)

Deviation from
best known (%)

Doerner et al. [9] Deviation from
best known (%)

C1 524.61 [20] 524.61 0.00 524.61 0.00
C2 835.32 [20] 842.15 0.82 838.60 0.39

C3 826.14 [20] 834.14 0.97 838.38 1.48

C4 1028.42 [20] 1049.12 2.01 1040.86 1.21

C5 1291.45 [14] 1352.60 4.73 1307.78 1.26

C11 1042.11 [20] 1044.65 0.24 1043.89 0.17

C12 819.56 [20] 819.56 0.00 819.56 0.00
Avg. dev. (%) 1.25 0.86

E-n22-k4 375 [11] 375 0.00 - -

E-n23-k3 569 [11] 569 0.00 - -

E-n30-k4 - 505 - - -

E-n33-k4 835 [11] 840 0.60 - -

F-n45-k4 724 [11] 724 0.00 - -

F-n72-k4 237 [11] 242 2.11 - -

F-n135-k7 1162 [11] 1173 0.95 - -

Avg. dev. (%) 0.61 -

3) Pheromone Update: In the original SavingsAnts algorithm
(see [9]), a rank-based pheromone update scheme is used.
Instead, the update strategy devised in the MAX-MIN Ant
System [19] by Stützle and Hoos is used.

In the MMAS, pheromones are placed as follows:

• Only one ant is allowed to place pheromones on edges.
This can either be the iteration-best ant, the ant that
produced the best solution in this iteration, or the
global-best ant, the ant that found the best solution
in the run so far;

• The range of pheromones is limited between the
values τmin and τmax;

• Pheromone trails are initialized to τmax.

The following pheromone update rule is applied,

τij(t+ 1) = ρ · τij(t) + Δτ best
ij , (7)

where τij(t) represents the amount of pheromone on the edge
between vertex i and j at time t, ρ represents the pheromone
evaporation rate and Δτ best

ij = 1/fbest, if node vj is visited

after node vi, and Δτ best
ij = 0 otherwise. fbest is the fitness of

either the iteration-best or the global-best ant.

After updating the pheromones, the values of τ are clamped
between τmin and τmax in order to prevent the search from
stagnating. Otherwise, it can occur that the pheromone on one
edge is much higher than on all the others, causing the ant to
pick this edge with a very high probability. This again increases
the probability that this edge is chosen, as the ant will lay down
more pheromones. By bounding the pheromone levels of infre-
quently and frequently covered edges, pheromone differences

cannot become too high and search stagnation is prevented
[19].

For the choice between the iteration-best and the global-best
solution, we use a similar scheme as in [19], where a mixed
strategy is applied. The frequency of using the global-best
changes throughout a run of the algorithm. This frequency
determines in which iteration i the global-best instead of the
iteration-best is used.

• 1 ≤ i < 15, global-best is not used.

• 15 ≤ i < 30, global-best is used every 5th iteration.

• 30 ≤ i < 50, global-best is used every 3rd iteration.

• 50 ≤ i < 75, global-best is used every 2nd iteration.

• i ≥ 75, global-best is used in every iteration.

4) Parameters: We choose the relative influence of both the
pheromone information α = 3 and the savings values γ = 3.
The number of ants m is set to 10, the pheromone evaporation
rate ρ is set to 0.98. The number of iterations is fixed at 150.

In order to show that the ACO solver is comparable with other
algorithms, results are presented in Table I. The presented
algorithm shows similar results to the approach from Doerner
et al. [9] on the small test cases, but falls short on the larger
ones. This can be explained by the fact that in their approach
the amount of iterations scales with the number of clients,
while in the proposed ACO a fixed number of iterations is
used.
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TABLE II: Comparison of Multiple PSFLRP Algorithms. The compared algorithms perform better than known solvers so far,
although better (pure) VRP solutions are known for some problem instances.

Instance Best
solution

(1+1)-ES
(minimum)

Weiszfeld’s-
based

(minimum)

Manzour-
al-Ajdad et

al. [12]

Schwardt
and

Fischer
[17]

Schwardt
and

Dethloff
[16]

(1+1)-ES
(mean)

Weiszfeld’s-
based

(mean)

C1 521.41 521.41 521.41 538.5 522.5 521.4 521.63 521.47

C2 ∗835.82 835.82 835.83 849.8 879.0 888.8 838.77 838.48

C3 825.60 829.31 825.60 858.8 835.6 837.7 831.46 828.45

C4 ∗1044.69 1044.69 1045.42 1088.2 1058.4 1068.8 1047.95 1047.36

C5 ∗1330.60 1333.51 1330.60 1354.8 1344.0 1363.5 1339.11 1336.81

C11 895.70 897.23 895.70 902.7 905.7 907.4 898.31 896.37

C12 818.65 818.65 818.65 821.6 828.9 827.0 818.65 818.65
E-n22-k4 374.66 374.66 374.66 374.7 374.7 374.7 374.66 374.66
E-n23-k3 488.22 488.24 488.22 488.8 503.1 509.3 488.58 488.22
E-n30-k3 498.63 498.63 498.66 498.7 512.3 506.8 498.65 498.66

E-n33-k4 480.11 480.11 480.11 483.4 480.3 481.0 480.11 480.11
F-n45-k4 719.74 719.74 743.20 727.8 733.6 – 721.32 743.21

F-n72-k4 216.58 216.58 216.58 217.5 232.5 – 217.59 216.58
F-n135-k7 1151.88 1155.48 1151.88 1166.3 1216.4 – 1171.68 1154.07

∗ A better VRP solution (i.e., with the original depot) is known (see Table I).

B. Weiszfeld’s-based Procedure

The first approach for tackling the PSFLRP (taken from Salhi
and Nagy [15]) is based on Weiszfeld’s algorithm. Given a
solution for a VRP instance, the location of the depot only
influences the distances between the facility and the end-points
of the solution, if all subtours are kept the same. The end-points
are the first or last customers a truck visits in each subtour,
before leaving/returning to the facility (that is, E = {vi ∈
V |z0i = 1 ∨ zi0 = 1}).
Weiszfeld’s algorithm [22] can be used to find the geometric
median, if all points are weighed equally. The geometric
median is the point that minimizes the sum of Euclidean
distances to a set of points J . The algorithm starts at a given
coordinate, moving it to a new point (x, y) given by the
following formula:

x =

∑
j∈J(wjxj/d0j)∑
j∈J(wj/d0j)

, y =

∑
j∈J(wjyj/d0j)∑
j∈J(wj/d0j)

, (8)

where xj and yj indicate the coordinates of node j. This is
iteratively executed until the algorithm converges or the maxi-
mum number of evaluations is reached. One of the drawbacks
of the algorithm is that it does not converge well when the
initial point is placed at the location of an element of the set
of points. If this occurs, we set the distance between the two
points to a small value ε to avoid dividing by zero.

The Weiszfeld’s-based procedure for solving PSFLRP, given in
Algorithm 2, is used as follows. First, the geometric median of
all customers is computed with Weiszfeld’s algorithm, where
equal weights wj = 1 are assigned to all customers. This
gives us an initial point for the depot. Subsequently the ACO
algorithm described in Section III-A is run to compute the

routes given the depot location and the set of customers. From
the end-points of the initial tour, the new location for the
facility is computed using Weiszfeld’s algorithm (customers
are weighed equally, setting all wj = 1 and taking J = E).
Finally, the new found facility location is used in the next
iteration of the algorithm.

Algorithm 2 Weiszfeld’s-based Procedure.

Initialization
for Number of iterations do

Generate a solution for the VRP (Section III-A)
Select end-points of solution (Section III-B)
Recompute facility location

Because ACO is non-deterministic, the solutions (and therefore
the end-points) that are returned by the ACO are not always the
same. We adopt the end-points of the solution returned by the
last iteration of the ACO algorithm, instead of the end-points
of the best tour ever found. In a way, the non-deterministic
nature of the ACO algorithm is used to decrease the chance
of getting stuck in a local minimum.

C. Evolution Strategy

A classical (1+1)-Evolution Strategy (ES) [18] is used as a
comparison to the Weiszfeld’s-based procedure. Pseudocode
is given in Algorithm 3.

The algorithm is initialized in the same way as the Weiszfeld’s-
based procedure, by computing the geometric median of all
clients with Weiszfeld’s algorithm to determine the initial
parent. The (1+1)-ES works as follows: In each iteration one
offspring is generated from a single parent, based on a normal
distribution. The σ of this distribution is dependent on the
success rate of the algorithm. For optimal convergence, success
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should be achieved once every five iterations. If the success
rate is too low, the value of σ is decreased, which causes the
search to focus more on solutions that are close to the current
point. This should increase the success rate. If the success rate
is too high, the value of σ is increased, taking larger steps
towards the presumed optimum.

The algorithm runs for a fixed maximum number of iterations.
The dimensionality of the solution to the PSFLRP; n = 2 is
used to set how often σ is updated. The current success rate
ps is calculated over intervals of 10 · n = 20 trials. c is set to
0.85 following Schwefel [18].

Algorithm 3 (1+1)-ES algorithm, using 1/5-th success rule

Initialize and evaluate initial parent
while not terminated do

Mutate parent into child
Evaluate child
If child is better, make it the new parent
if t mod n = 0 then

if ps > 1/5 then
σ(t) = σ(t− n)/c

if ps < 1/5 then
σ(t) = σ(t− n) · c

if ps = 1/5 then
σ(t) = σ(t− n)

else
σ(t) = σ(t− 1)

t = t+ 1

IV. EXPERIMENTS

Weiszfeld’s-based procedure, and (1+1)-ES are applied to
the same set of well-known problem instances as used by
Manzour-al-Ajdad et al. in [12] (note that their naming of
instances does not correspond with the naming in this paper).
The instances C1–C12 are taken from Christofides, Min-
gozzi and Toth [4], the E-instances are from Christofides and
Eilon [3], and the F-instances are taken from Fischer [10].
These problem instances are commonly used to test algorithms
for VRP, whereas in this paper the optimal depot location is
searched for by the algorithms instead of using the one given in
the instances. The problem instances contain a varying number
of customers, as well as different distributions in order to test
the algorithms. In Table III, these values are presented for each
of the problem instances. Both proposed methods were run for
100 iterations of the ACO algorithm.

A. Results

In Table II, a comparison between the two proposed algorithms
and methods presented by other papers on the same subject
is shown. Reported values are the minimum and mean over
10 runs. As both tested methods use the ACO algorithm to
solve the routing problem, we see that the Weiszfeld’s-based
procedure and the Evolution Strategy show very comparable
minimum results. Even though the ES is only run for a limited
number of evaluations, it can still achieve similar total tour
lengths to the Weiszfeld’s-based procedure. Looking at the
mean values, we see that the Weiszfeld’s-based procedure
usually performs better, though marginally.

TABLE III: Tested Problem Instances.

Instance Number of
customers

Distribution of
customers

C1 50 U

C2 75 U

C3 100 U

C4 150 U

C5 199 U

C11 120 C

C12 100 C

E-n22-k4 21 S

E-n23-k3 22 S

E-n30-k3 29 S

E-n33-k4 32 S

F-n45-k4 44 S/R

F-n72-k4 71 S/R

F-n135-k7 134 S/R

U: uniformly distributed, C: clustered, S: scattered, R:
real-world problem data.

In the plot in Figure 3, the convergence of the two methods
on the E-n33-k4 test problem is compared. The averages over
10 runs of both algorithms are presented, keeping track of the
shortest route length found so far. Only the first 60 iterations
are shown, since both algorithms have then converged to the
common best found, with length 480.11. We see that the
Weiszfeld’s-based procedure converges faster than the ES.

Comparing Table I and Table II, we see that in most cases the
results are better than the given location in the original test
problems, but the analyzed algorithms do not always beat the
minimum length of the best VRP-solvers. This is due to the
fact that the ACO algorithm we use is not as good as some of
the current VRP-solvers (see Table I), and the fact that usually
only a slight decrease in route length is achieved by placing
the depot at a different location.

V. CONCLUSIONS AND OUTLOOK

We compare two iterative approaches for solving the Planar
Single-Facility Location–Routing Problem, that is, the problem
of finding the location of a single depot in a planar landscape,
such that the total distance travelled by trucks for servicing
all clients is minimized. For each candidate depot location, it
requires determining the total length of the route that visits
all clients. This underlying problem, known as the Vehicle
Routing Problem (VRP), is solved using an Ant Colony Opti-
mization (ACO) algorithm, a non-deterministic method derived
from the way in which ants find food sources in nature. The
overlying locational problem is solved using a Weiszfeld’s-
based procedure, derived from work by Salhi and Nagy [15],
and a classical (1+1)-Evolution Strategy (ES) employing the
1/5-th success rule [18].

The Weiszfeld’s-based procedure uses Weiszfeld’s algorithm
at the heart for computing the geometric median, i.e., the
point that minimizes the total distance to a given set of
points, the end-points, of a VRP solution that is supplied by
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Fig. 3: Comparison of Convergence. The convergence of (1+1)-ES and Weiszfeld’s-based procedure on E-n33-k4, illustrating that
Weiszfeld’s-based procedure converges faster, while the ES eventually obtains similar solution quality. Values are the averages
over 10 runs of the shortest length found so far per algorithm.

the ACO algorithm. The end-points of a solution are those
travelled to directly after or before stopping at the depot.
Given these end-points, the geometric median provides the
optimal depot location, after which the new depot location
gives rise to a new VRP instance. Solving this new instance,
using the ACO algorithm, can result in a different set of end-
points, thus calling for another iteration of the Weiszfeld’s-
based procedure, until convergence. As comparison method, a
steady state (1+1)-ES, i.e., generating a single new solution
per iteration, is used. Both methods are run for a budget of
100 VRP evaluations by the ACO algorithm.

It is shown that the Weiszfeld’s-based procedure converges
faster, i.e., using less VRP evaluations, to a final solution than
the (1+1)-ES. However, judging from the final results obtained
after the full evaluation budget, it does not strictly outperform
the ES. The ES is an inherently non-deterministic method,
whereas the Weiszfeld’s-based procedure is deterministic apart
from the non-determinism introduced by the ACO algorithm.

Employing a more advanced non-deterministic optimization
algorithm, such as the state-of-the-art active CMA-ES [1], may
lead to outperforming the Weiszfeld’s-based procedure on the
tested evaluation budget. However, because of the relatively
small differences between the two compared methods, the
routing phase of the algorithm seems to be the most impactful
on the quality of the final solution. We believe that future work
should be focused on implementing a different routing-problem
solver, such as the Robust branch-and-cut-and-price algorithm
presented by Fukusawa [11]. This would allow for an even
better comparison between the location-problem solvers.
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