
An Integrated Matching and Partitioning Problem
with Applications in Intermodal Transport

Erwin Pesch, Dominik Kress, Sebastian Meiswinkel
University of Siegen

Deptartment of Management Information Science

Kohlbettstr. 15, 57068 Siegen, Germany

{erwin.pesch, dominik.kress, sebastian.meiswinkel}@uni-siegen.de

Abstract—We introduce a combination of the problem of
partitioning a set of vertices of a bipartite graph into disjoint
subsets of restricted size and the Min-Max Weighted Matching
Problem. The resulting problem has applications in intermodal
transport. We propose a mathematical model and prove the
problem to be NP-hard in the strong sense. Two heuristic frame-
works that decompose the problem into its partitioning and
matching components are presented. Additionally, we analyze
a basic implementation of tabu search and a genetic algorithm
for the integrated problem. All algorithms outperform standard
optimization software. Moreover, the decomposition heuristics
outperform the classical metaheuristic approaches.

I. INTRODUCTION

In this paper we consider an integrated matching and

partitioning problem that is motivated by real world problems

arising in intermodal transport. Consider, for example, a rail-

road terminal, that mainly serves as an interface in intermodal

transport. Here, gantry cranes transship containers between

trains and trucks. A typical layout of a rail-road terminal

(yard) is schematically depicted in Fig. 1. This yard was

presented in details in [1]. Freight trains are parked on

parallel transhipment tracks of the yard. Trucks arrive on

parallel truck lanes, which are usually separated into a driving

lane and a parking lane. In the most modern transshipment

yards or MegaHubs there additionally is a fully automated

sorting system. Such a sorter consists of shuttle cars that can

receive containers close to their initial positions from inbound

trains and move them alongside the yard to their target

positions. Usually, the yard area is subdivided horizontally

into slots of equal size measured in units of the length of

a standard railcar (or any other unit). The resulting grid is

used to identify the coordinates of any given container in

the yard and the coordinates of all parking slots of trucks.

The area of the rail-road terminal is divided into several

subareas according to the number of cranes (see [2]). A crane

is assigned to each area and each crane operates only in the

assigned area. Any container transport between subareas is

performed using the sorter.

We will make the following simplifications. First, we

only consider loaded moves, i.e., moves of cranes carrying

containers, which is an assumption that proved to be realistic

in previous research. Second, a container travelling through

the sorter involves two cranes where the first crane delivers

Sorter

Trains
with cars
carrying
containers

Road�with�
parking�slots

1st�crane�area 2nd�crane�area 3rd�crane�area

Fig. 1. Schematic layout of a rail-road yard

the container to the shuttle car while the second one picks

it up again. We drop this assumption and consider only

one crane operating in the area from which the container

is delivered to the sorter. We will assume the number of

containers to be less or equal to the number of parking slots.

Let the completion time of train operations be the moment

when the last container of the train is transhipped on the

truck. Each train has a specified due date. The problem is

to schedule container transhipment operations so that the

maximum lateness is minimized. Then, given the above

simplifications, the described situation within a rail-road

terminal can be modelled as a DEDICATED VARIATIVE

JOBS Problem, which is defined as follows (see [3]). Set

J of n dedicated jobs is to be processed on m parallel

machines. The job set is partitioned in advance into mk
subsets Jlz, l = 1, . . . ,m, z = 1, . . . , k, and all jobs from

the set ∪k
z=1Jlz are assigned to machine l. Each job j has a

due date dj and for all j ∈ ∪m
l=1Jlz the due date is the same,

i.e., dj = Dz . Processing times of jobs are interconnected

and they are the subject of the decision making. The choice

of the particular processing times is as follows. We are given

a complete bipartite graph G = G(J, V,A) with bipartitions

J and V , n = |J | ≤ |V |, and edge set A. For each j ∈ J
and each v ∈ V, edge (j, v) ∈ A has a weight c(j, v).
Each c(j, v), v ∈ V, is a possible processing time for job

j. If we have chosen c(j, v0) as the processing time for

some job j then none of c(j′, v0) may be chosen as the

processing time for job j′ �= j. Thus, any feasible choice of

the processing times for the jobs should provide a maximum

(by inclusion) matching for graph G. The goal is to choose

a processing time for each job in the feasible way and to

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.245

1758

construct a schedule S that minimizes maximum lateness

Lmax(S) = maxj∈J Lj(S) = maxj∈J(Cj(S) − dj), where

Cj(S) is the completion time of the job j in the schedule

S. To define a particular schedule, we should choose the

processing time for each job and construct a sequence of

jobs for each machine.

In terms of the Dedicated Variative Jobs Problem, the

described above situation within a rail-road terminal can be

modelled as follows. We have m cranes and k trains. Set J
is the set of all containers to be transhipped. Subset Jlz, l =
1, . . . ,m, z = 1, . . . , k, is the subset of all containers that are

situated on the z-th train in the l-th crane zone. Set V is the

set of parking slots of the trucks. The positions of containers

and parking slots are predefined and known. Moreover, the

duration of transporting the particular container to the defined

parking slot is known. These transportation times define the

weights of the edges. Due date Dz, 1 ≤ z ≤ k, corresponds

to the containers of the z-th train.

When we assume the trains in the rail-road terminal to

arrive (and leave) in bundles, and thus aim at workload

balancing of the gantry cranes, the above mentioned real-

world problem can be modelled as the so called MIN-

MAX WEIGHTED MATCHING Problem, that has recently

been introduced in [4]. This problem can be described

as follows. There is a complete weighted bipartite graph

G = G(U, V,E) where U and V are the bipartitions and

E is the set of edges. Each edge e = (u, v) ∈ E, u ∈
U, v ∈ V, has a rational weight c(e). Set U is partitioned

into m subsets U1, U2, . . . , Um, the so-called components.

For any maximum matching Π, we define the weight of

component Uk as the sum of the weights of those edges

of the matching with a vertex belonging to this compo-

nent: c(Uk,Π) =
∑

u∈Uk,(u,v)∈Π c(u, v). The value of Π is

the maximum of the weights of the components: c(Π) =
maxk∈{1,...,m} c(Uk,Π). The problem is to find a maximum

matching of minimum value.

In terms of the Min-Max Weighted Matching Problem,

the rail-road terminal example is modelled as follows. Set U
denotes the set of all containers to be transshipped. Subset

Uk is the set of all containers that are located in the k-th

crane area. The set of parking slots is denoted by V . The

transportation times define the weights of the corresponding

edges. The problem is to balance the workload over the

cranes.

Given the strongly NP-hard Min-Max Weighted Matching

Problem, the main focus of this paper lies on relaxing the

assumption of the components being fixed in advance. In

terms of the considered problem at rail-road terminals, this

corresponds to considering the decision on the crane areas

(i.e. the partitioning decision) as part of the problem (which

becomes more adequate when considering crossover cranes

that are allowed to pass one another). We will refer to

this problem as the PARTITIONING MIN-MAX WEIGHTED

MATCHING Problem. It has first been introduced in [5].

Besides the rail-road terminal case, another application

of Partitioning Min-Max Weighted Matching arises at small

to medium sized sea ports where containers are handled

vessel

quay crane

reach stacker

temporary storage area

long-term storage area

Fig. 2. Schematic layout of a reach stacker based terminal (see [5])

by reach stackers as represented in Fig. 2. These terminals

can include large long-term storage areas and additional

temporary storage areas (or marshaling-areas, [6], [7]). The

latter areas aim at improving the performance of the terminals

by inducing short turnaround times of vessels when distances

to long-term storage areas are relatively large. When a vessel

arrives at a berth at the terminal, containers are unloaded by

quay cranes and are then stored in a temporary storage area

that is located next to the berth. Containers that leave the

terminal by ship are moved to the temporary storage area

during previous idle times. An application of Partitioning

Min-Max Weighted Matching arises, when considering the

process of emptying or refilling the temporary storage area

using reach stackers during idle times. We assume the ve-

hicles to be “fast” if they are unloaded and “slow” if they

are loaded. This is a common assumption when considering

container movements [2] and is reasonable when noting that

“reach stackers [in comparison to straddle carriers] are less

stable in the forward direction as the machines will fall

forward when breaking in an emergency, particularly if the

load is being carried high for visibility reasons” [8]. We can

then restrict ourselves to considering laden movements of

the vehicles only. We are faced with the problem of assigning

each container in the temporary storage area to an empty slot

in the long-term storage area (or vice versa) and assigning

the corresponding container movements to a limited number

of available vehicles. Naturally, the objective is to perform

all movements as fast as possible.

This paper proceeds as follows. In Sections II and III

(see also [5]), we present a detailed problem description

along with a mathematical model of Partitioning Min-Max

Weighted Matching and a proof of the problem’s NP-

hardness, respectively. Section IV is concerned with describ-

ing heuristic approaches for solving Partitioning Min-Max

Weighted Matching. On the one hand, we are concerned

with heuristics that decompose the problem into its matching

and partitioning components. On the other hand, we consider

classical metaheuristic approaches for the integrated problem.

1759

The heuristics are analyzed in a computational study in

Section V. The paper closes with a summary in Section VI.

II. PROBLEM DEFINITION

Let G(U, V,E) be a weighted bipartite graph with bipar-

titions U and V and edge set E. The elements of U and V
are indexed i = 1, . . . , n1 and j = 1, . . . , n2, respectively.

Assume n1 ≤ n2. A weight c(e) = cuv ∈ Q+
0 is associated

with each edge e = (u, v) ∈ E of G. Define a matching as a

set M ⊆ E of pairwise nonadjacent edges and a maximum

matching as a matching having the largest possible size |M |
amongst all matchings on G. Throughout the paper, we will

assume that, for any given bipartite graph, there exists a

maximum matching Π with |Π| = n1. As in [4], given a

partitioning of U into m disjoint subsets, U1, U2, . . . , Um,

the value of a maximum matching Π is defined to be c(Π) :=
maxk∈{1,...,m}{

∑
u∈Uk,(u,v)∈Π cuv}. Then Partitioning Min-

Max Weighted Matching can formally be defined as follows:

Find a partitioning of the vertex set U into m (potentially

empty) disjoint subsets, U1, U2, . . . , Um, with at most ū
elements in each subset, and a maximum matching Π on G,

such that the value of Π is minimum amongst all maximum

matchings over all possible partitionings of U .

We define the following binary variables:

xij :=

{
1 if (i, j) ∈ Π,

0 else,
∀ (i, j) ∈ E (1)

and

yik :=

{
1 if i ∈ Uk,

0 else,
∀ i ∈ U, k ∈ {1, . . . ,m}. (2)

Then a nonlinear mathematical model for Partitioning Min-

Max Weighted Matching is as follows:

min
x,y

max
k∈{1,...,m}

⎧⎨
⎩
∑
i∈U

∑
j∈V

cijyikxij

⎫⎬
⎭ (3)

s.t. ∑
j∈V

xij = 1 ∀ i ∈ U, (4)

∑
i∈U

xij ≤ 1 ∀ j ∈ V, (5)

m∑
k=1

yik = 1 ∀ i ∈ U, (6)

∑
i∈U

yik ≤ ū ∀ k ∈ {1, . . . ,m}, (7)

xij ∈ {0, 1} ∀ (i, j) ∈ E, (8)

yik ∈ {0, 1} ∀ i ∈ U, k ∈ {1, . . . ,m}. (9)

The objective function (3) minimizes the value of the

maximum matching over all possible partitionings and all

maximum matchings. Constraints (4)–(5) are well known

maximum matching constraints (recall that n1 ≤ n2). Con-

straints (6) enforce every vertex u ∈ U to be an element

of exactly one partition Uk, k ∈ 1, . . . ,m. Constraints (7)

restrict the number of vertices in each partition to be at most

ū. The domains of the variables are defined by (8)–(9).

Model (3)–(9) can easily be linearized by introducing

additional variables zijk ≥ 0 for all i ∈ U , j ∈ V and

k ∈ {1, . . . ,m}:

min
x,y

c (10)

s.t.

constraints (4)–(9),

c ≥
∑
i∈U

∑
j∈V

cijzijk ∀ k ∈ {1, . . .,m}, (11)

zijk ≥ yik + xij − 1 ∀ i ∈ U, j ∈ V, k ∈ {1, . . .,m},(12)

zijk ≥ 0 ∀ i ∈ U, j ∈ V, k ∈ {1, . . .,m}.(13)

III. COMPUTATIONAL COMPLEXITY

In [3] the authors proved that problem Dedicated Variative

Jobs is NP-Hard even if m = 1 and finding an approxi-

mate solution to problem Dedicated Variative Jobs with an

approximation ratio less than 2 is strongly NP-hard problem.

Moreover Min-Max Weighted Matching is NP-hard in the

strong sense and finding an approximate solution to problem

Min-Max Weighted Matching with an approximation ratio

less than 2 is strongly NP-hard, see [4]

Note that Partitioning Min-Max Weighted Matching is

not a straight forward generalization of Min-Max Weighted

Matching in the sense that, given an instance I of Min-Max

Weighted Matching, we need only “copy” the corresponding

bipartite graph, fix a set of Partitioning Min-Max Weighted

Matching parameters to specific values, and solve the result-

ing Partitioning Min-Max Weighted Matching instance to re-

ceive an optimal solution to I . More generally, it is not trivial

to construct an instance of Partitioning Min-Max Weighted

Matching that (when solved to optimality) is guaranteed to

result in the partitioning given in I and thus to provide an

optimal solution to I . Thus we cannot simply conclude that

Partitioning Min-Max Weighted Matching is NP-hard from

the NP-hardness of Min-Max Weighted Matching.

A formal proof of strong NP-hardness of Partitioning Min-

Max Weighted Matching, which we will now provide, is

more naturally based on a reduction of a classical partitioning

problem than on a matching problem.

We will consider the decision problem related to Partition-

ing Min-Max Weighted Matching:

Definition 1 (PARTITIONING MIN-MAX WEIGHTED

MATCHING - D). Given a weighted bipartite graph as
defined in Section II. Does there exist a partitioning of the
vertex set U into m (potentially empty) disjoint subsets,
U1, U2, . . . , Um, with at most ū elements in each subset,
and a maximum matching Π on G, such that the value of Π
is no larger than a given ω ∈ Q+?

The proof is based on a reduction of the strongly NP-

complete 3-PARTITION Problem [9]:

Definition 2 (3-PARTITION). Given a set A of 3k elements,
a bound B ∈ Z+, and sizes s(a) ∈ Z+ for all a ∈ A such

1760

that B/4 < s(a) < B/2 and such that
∑

a∈A s(a) = kB. Is
there a partitioning of A into k disjoint subsets A1, . . . , Ak

such that, for 1 ≤ i ≤ k,
∑

a∈Ai
s(a) = B?

Theorem 1. Partitioning Min-Max Weighted Matching-D is
NP-complete in the strong sense.

Proof: Obviously Partitioning Min-Max Weighted

Matching-D ∈ NP because for any partitioning and maxi-

mum matching it can be checked in polynomial time if the

corresponding value is no larger than ω.

Now consider an arbitrary instance I of 3-Partition and

construct a complete bipartite graph G as an instance J of

Partitioning Min-Max Weighted Matching-D with U = A
and vertex set V such that |V | = |U |. Furthermore, for each

u ∈ U , define the weights of all edges incident to u in G to

be equal to the corresponding element’s size s(a), a ∈ A. Set

m = k, ū = 3, and ω = B. Now note that, given an arbitrary

partitioning U1, . . . , Um of U , every maximum matching has

the same value. We are left with the task of showing that

there exists a partitioning U1, . . . , Um of U and a maximum

matching Π with a value of no more than ω if and only if

the answer to I is yes (we will say that I “has a solution” if

its answer is yes and call a corresponding partitioning of A
a “solution”).

Suppose we are given a solution A1, . . . , Ak to I . Con-

struct a partitioning U1, . . . , Um of U such that subset Ui

contains all vertices that correspond to elements of Ai for all

i = 1, . . . ,m, and consider any maximum matching on G. It

is immediately implied that the value is ω.

Suppose we are given a partitioning U1, . . . , Um of U and

a maximum matching Π such that its value is no more than

ω. As ū = 3 and |U | = 3m, we necessarily have |Ui| = 3
for all i = 1, . . . ,m. Now note that, as the sum of the edge

weights of any maximum matching on G equals mω and the

value of Π is at most ω, we have
∑

u∈Ui,(u,v)∈Π cuv = ω for

all i = 1, . . . ,m. Hence, the subsets of A that correspond to

the given partitioning of U establish a solution to I .

We conclude:

Corollary 1. Partitioning Min-Max Weighted Matching is
NP-hard in the strong sense.

IV. HEURISTIC AND METAHEURISTIC APPROACHES FOR

SOLVING PARTITIONING MIN-MAX WEIGHTED

MATCHING

Partitioning Min-Max Weighted Matching can be consid-

ered as a combination of a matching and a partitioning prob-

lem. Hence, a natural way of constructing heuristics for Par-

titioning Min-Max Weighted Matching is to decompose the

problem into its matching and partitioning components, solve

the resulting problems separately (either exact or heuristi-

cally), and combine the resulting solutions to a solution of

Partitioning Min-Max Weighted Matching. Obviously, we can

construct different heuristics by changing the order of solving

the separate stages. We will consider such “decomposition

approaches” in Section IV-A. For details, see [5].

On the other hand, one can try to solve Partitioning Min-

Max Weighted Matching directly (“integrated approaches”),

for example by applying metaheuristic approaches such as

tabu search [10], [11] or genetic algorithms [12]. In Section

IV-B we will briefly discuss how to adapt these approaches

to the Partitioning Min-Max Weighted Matching Problem.

A. Decomposition Approaches

Partition-Match heuristics assume that there is a vertex

weight associated with each element of vertex set U and, in

the first stage, partition U into no more than m components

with at most ū elements in each component, such that

the maximum weight of the components is as small as

possible. Here, the weight of a component is defined as

the sum of the weights of the vertices of the component.

When considering the objective of minimizing the maximum

weight of the components, we refer to this problem as the

RESTRICTED PARTITIONING (RP) Problem. Based on the

proof of Theorem 1, it is easy to see that RP is NP-hard

in the strong sense. In the next stage of a Partition-Match

heuristic, we drop the weights of the vertices. Given the

components resulting from the first stage, we now need to

determine a maximum matching of small value. Hence, we

are faced with an instance of Min-Max Weighted Matching.

Solving this problem results in a maximum matching, that

we may use for restarting the overall procedure by solving

RP with each vertex weight being equal to the weight of the

edge of the maximum matching that is incident to the very

vertex. Summing up, Partition-Match heuristics proceed as

follows:

1) Generate or modify vertex weights.

2) Partitioning stage: Solve the resulting Restricted Par-

titioning Problem.

3) Drop vertex weights.

4) Matching stage: Solve the resulting Min-Max

Weighted Matching Problem.

5) If there has been no improvement of the best known

solution for 20 iterations, then stop. Otherwise go to

step 1.

We initialize a Partition-Match heuristic by generating

vertex weights that are used for determining the first par-

titioning of the vertex set U . We tested several strategies

of generating these weights. As they all performed similarly

in computational tests, we decided on applying the average

weight of all edges incident to vertex u for each vertex u ∈ U .

Match-Partition heuristics first consider the classical prob-

lem of finding a maximum matching of minimum weight, i.e.

minimum sum of the weights of all edges of the matching,

which we refer to as the MIN-SUM WEIGHTED MATCHING

(MSWM) Problem. Hereafter, we proceed in analogy to our

approach in Partition-Match heuristics, i.e. by defining vertex

weights based on the maximum matching and solving RP.

Finally, we modify the edge weights of the bipartite graph

to restart the procedure by solving MSWM on the modified

graph:

1) Matching stage: Solve the (resulting) Min-Sum

Weighted Matching Problem.

2) Generate or modify vertex weights.

1761

3) Partitioning stage: Solve the resulting Restricted Par-

titioning Problem.

4) If there has been no improvement of the best known

solution for 20 iterations, then stop.

5) Modify edge weights and go to step 1.

Concerning the modification of edge weights in step 5,

we apply a simple transformation strategy, that increases

the weight of exactly one edge e ∈ E in each iteration.

The selection of edge e depends on the current solution of

the Partitioning Min-Max Weighted Matching input-instance:

Select the component with the largest weight. Among the

current edges of the matching that are incident to vertices of

this component, select the one with largest weight. Then,

set the weight of this edge to a large value (we set the

weight to 102 · cmax, where cmax is the largest edge weight

of the input graph, in our computational tests) to reduce the

probability that it will be part of the solution of the altered

MSWM instance. After λ iterations of the overall procedure,

restore the original edge weight of edge e. In preliminary

computational tests, we have seen that λ = 	0.1 · n1 · n2

is a reasonable value. Note that the perturbed edge weights

are only used for the matching problem in stage one. The

vertex weights assigned in stage two are based on the original

weights of the input graph.

We construct multiple variants of Partition-Match and

Match-Partition heuristics by combining different methods

of solving the corresponding subproblems:

• A heuristic algorithm for solving RP, denoted by RPH.

As RP is similar to the well known MULTIPROCES-

SOR SCHEDULING Problem, that has been extensively

studied in the literature (see, for example, the literature

review [13]), our approach adapts ideas presented in [14]

in its first stage that constructs a feasible solution to

RP. In a second stage, we apply a local search on the

obtained solution.

• The well known O(n3) Hungarian algorithm [15], [16]

for MSWM (where n := max{n1, n2}).
• An approximate algorithm by [4], denoted by BPS,

and a simple regret heuristic, denoted by REG, for

solving Min-Max Weighted Matching. Both methods

apply an additional local search stage, denoted by LS.

While [4] show BPS to be an adequate method for

solving Min-Max Weighted Matching alone, we imple-

mented the rather simple REG heuristic motivated by the

fact that, when calling a Partition-Match heuristic, we

have to solve multiple instances of Min-Max Weighted

Matching. Hence, in order to reduce running times of

the overall procedure, a simple heuristic seems to be

promising. Its name derives from the fact that it is based

on the regret principle (cf., for instance, [17]).

This results in two variants of the Partition-Match frame-

work, PMBPS (applying BPS and LS for solving Min-Max

Weighted Matching) and PMREG (applying REG and LS

for solving Min-Max Weighted Matching), and two variants

of the Match-Partition framework, combining the Hungarian

algorithm and RPH with (MP) and without (MPLS) an

additional local search stage.

B. Integrated Approaches

1) Tabu Search: Tabu search is a well known metaheuris-

tic due to Fred W. Glover [11]. We assume the reader to

be familiar with its basic concepts and refer to [10] for a

detailed introduction. In the context of Partitioning Min-Max

Weighted Matching, we apply tabu search in its basic form. In

order to do so, we define the neighborhood N(s) of a given

solution s of Partitioning Min-Max Weighted Matching to

consist of three disjoint sets N(s) = M(s) ∪· S(s) ∪· V (s).
Each set contains all feasible solutions that can be constructed

based on s by performing one specific type of transformation:

• M(s) contains all feasible solutions that can be con-

structed by applying a MATCH transformation. A

MATCH transformation alters a solution s by replacing

two edges, (ui, vj) and (uk, vl), that are part of the

maximum matching of s, with (ui, vl) and (uk, vj). The

edges are chosen such that ui is part of a component of

the partitioning of s with largest weight.

• S(s) contains all feasible solutions that can be con-

structed by applying a SWAP transformation. A SWAP

transformation alters the partitioning of vertex set U
in solution s by swapping two vertices from different

components. More precisely, we determine a partition

Umax of maximal weight in s and a partition Umin (with

Umin �= Umax) of minimal weight in s. Afterwards we

move one vertex ui ∈ Umax from Umax to Umin and

one vertex uj ∈ Umin from Umin to Umax.

• V (s) contains all feasible solutions that can be con-

structed by applying a MOVE transformation. Here, we

determine Umin and Umax as before and move one

vertex ui ∈ Umax from Umax to Umin.

2) A Genetic Algorithm: Genetic algorithms are well

known evolutionary search algorithms due to John H. Holland

[18]. As in Section IV-B1, we assume the reader to be

familiar with the basic concepts of genetic algorithms and

refer to [12] for an introduction. In this section, we will define

an appropriate representation of a solution of Partitioning

Min-Max Weighted Matching, as well as a mutation oper-

ator, a selection operator, and a crossover operator that our

implementation of a basic genetic algorithm for Partitioning

Min-Max Weighted Matching is based upon.

Our representation of a solution s of Partitioning Min-

Max Weighted Matching is based on fixed sizes |Uk| of

the components k = 1, . . . ,m of the partitioning and two

lists, LU and LV , containing a permutation of U and V ,

respectively. Let LU (i) denote the i-th element of LU .

The connection of the partitioning of s and the list LU is

Ui = {LU (j) |
∑i−1

k=1 |Uk| < j ≤ ∑i
k=1 |Uk|, j ∈ N},

i = 1, . . . , k. The maximum matching M of s is represented

by M = {(LU (i), LV (i))|i ∈ {1, . . . , n1}}. To overcome the

drawback of the sizes of the components of the partitioning

being fixed, one may restart the genetic algorithm several

times with different sizes that are determined randomly.

The initial population is generated randomly. The selection

operator randomly selects two individuals from the current

generation and adds the one with the smaller objective

function value to the subsequent generation. Afterwards this

1762

solution is mutated or crossed with an other solution with a

given probability until the desired population size is reached.

Given two solutions s1 and s2, the crossover operator

constructs two new solutions, s′1 and s′2. This is realized

by generating two random numbers 1 ≤ p1 < p2 ≤ n1

and proceeding as follows. Let LU1
and LV1

denote the

lists representing solution s1 and LU2 and LV2 the lists

representing s2. Then the list L′U1
representing the new

solution s′1 is

L′U1
(i) =

{
LU2

(i) if p1 < i ≤ p2,

LU1
(i) else.

(14)

The lists L′V1
, L′U2

and L′V2
are generated in the same

way. If necessary, a simple repair operation is performed

to obtain feasible solutions after having called the crossover

operator. The mutation operator randomly selects a pair of

elements in LU and interchanges these elements. Similarly,

an interchange operation is performed in LV .

V. COMPUTATIONAL RESULTS

In order to assess the performance of the algorithms intro-

duced in Section IV, we ran extensive computational tests.

All computational tests were performed on an Intel Core i7

mobile CPU at 2.8GHz and 8GB of RAM, running Windows

7 64bit. All algorithms were implemented in C ++ (Microsoft

Visual Studio 2010). We used IBM ILOG CPLEX in version

12.5 with 64bit.

In order to get a comprehensive overview of the per-

formance of our algorithms, we use different strategies of

generating instances. All instances are defined on bipartite

graphs with n1 = n2, since the case n1 �= n2 trivially

reduces to the case n1 = n2 by adding edges of zero weight.

We define n := n1 = n2. The first strategy of generating

instances is inspired by [4]. We refer to the instance sets

generated by this strategy as BPS70 and BPS80. We

generate n2 rational numbers uniformly distributed in the

interval [1, 1000] and a complete bipartite graph with vertex

sets U = {u1, . . . , un} and V = {v1, . . . , vn}. We sort the

numbers in non-decreasing order and denote the resulting

list by L. Hereafter, we consecutively assign these numbers

(as edge weights) to the edges in the following manner:

We start with vertex v1 and assign the first �0.8n� (in case

of BPS80) or �0.7n� (in case of BPS70) elements of

L to the edges (u1, v1), (u2, v1), . . . , (u�0.8n�, v1) (BPS80)

or (u1, v1), (u2, v1), . . . , (u�0.7n�, v1) (BPS70) and remove

them from L. For the remaining edges being incident to

vertex v1, we randomly choose and assign elements of

L. Once an element of L has been assigned, we remove

it from L. The procedure is repeated for all remaining

vertices v ∈ V , v �= v1. The second strategy of generating

instances constructs complete bipartite graphs and randomly

determines and assigns edge weights uniformly distributed

in the interval [1, 1000]. We refer to instances generated

by this strategy as RAND. Besides BPS70, BPS80, and

RAND, all of which are based on complete bipartite graphs,

we generate instances defined on non-complete (or sparse)

bipartite graphs with |E| = 	0.7n2
 or |E| = 	0.8n2
. We

refer to them as SPARSE70 and SPARSE80, respectively.

When generating the edges, we guarantee that there exists

at least one feasible solution for the resulting Partitioning

Min-Max Weighted Matching instance (cf. restrictions (4)).

Again, edge weights are determined randomly and uniformly

distributed in the interval [1, 1000].

For each strategy of generating instances, BPS70,

BPS80, RAND, SPARSE70, and SPARSE80, we con-

struct instances based on different parameter settings. We

vary the size of the bipartitions from 10 to 170, i.e. n =
10, 30, . . . , 170. Furthermore, we set m to 2, and (if larger

than 2) to �0.04n�, �0.08n� or �0.125n�. Similarly, we set ū
to 	 n

m
,
⌊⌈

n
m

⌉
+ 1

3

(
n− ⌈

n
m

⌉)⌋
, or n. For each combination

of parameters and each generation strategy, we construct five

Partitioning Min-Max Weighted Matching instances.

Let F ∗ be the value of the objective function (10) of the

best solution found by a specific heuristic. Then, we rate the

quality of this heuristic with the ratio F∗
F best , where F best is

the best objective function value among the objective function

values of the solutions obtained by any of the heuristics

and the best solution found by CPLEX (model (10)–(13);

preliminary tests proved CPLEX to perform better for the

linearized model than for directly feeding it with model (3)–

(9)) within a time limit of 180 seconds. Concerning the

performance of CPLEX, only instances with a size of n = 10
could be solved to optimality within this time limit. In general

we found the objective function values to be not competitive

when compared with the ones determined by the heuristics,

which was especially obvious for RAND, SPARSE70, and

SPARSE80 instances. The results for BPS70 and BPS80
instances were better. However, the objective function values

determined by CPLEX were (on average) still up to 600%
larger than the ones determined by the best heuristic.

A. Decomposition Approaches

As described in Section IV-A, we implemented REG to

solve Min-Max Weighted Matching mainly in order to speed

up Partition-Match heuristics in comparison to using BPS.

This motivation is illustrated in Fig. 3, which compares the

average runtimes of REG and BPS on the RAND instances

where the partitioning has been fixed randomly with an

additional lower bound on the size of each partition. For each

n, the figure depicts the average runtimes over the results of

all parameter settings. As to be expected, the corresponding

solution qualities are better for the BPS heuristic, see Fig. 4.

For this figure, F best is set to the best objective function

value among both heuristics.

Unfortunately, the same effects arise when embedding

REG and BPS into the Partition-Match framework, i.e.

PMREG is not competitive in terms of solution quality.

Except for PMREG, however, all heuristics perform very

well, even for large values of n; for details see [5]. We

find that both, MP and MPLS , outperform PMBPS in

terms of solution quality. However, PMBPS still performs

at a high level. While, for all heuristics, runtimes increase

roughly quadratically in n, we find that PMBPS requires by

far the most computational effort (resulting from the effect

1763

10 30 50 70 90 110 130 150 170

0

0.5

1

1.5

n

R
u
n
ti

m
e

in
s

BPS

REG

Fig. 3. Runtime comparison of REG and BPS on RAND instances

10 30 50 70 90 110 130 150 170

1

1.2

1.4

1.6

n

S
o
lu

ti
o
n

q
u
al

it
y

BPS

REG

Fig. 4. Solution quality comparison of REG and BPS on RAND instances

seen in Fig. 3). This fact stands against the gap in qualities

of PMREG and PMBPS . PMREG, MP , and MPLS are

quite similar in terms of runtimes.

Based on these insights, it seems advisable to choose

the Match-Partition framework when facing an instance of

Partitioning Min-Max Weighted Matching. While MP and

MPLS perform equally well on the RAND, SPARSE70,

and SPARSE80 instances, MP seems to be less effective

for BPS70 and BPS80 instances. MPLS , however, does

not have this handicap. Even in the case of comparison with

optimal solutions, the quality ratio of MPLS is less than

1.0011. For all considered values of n, the runtime of MPLS

is smaller than 6 seconds. The average runtime for n = 170
is around 1.5 seconds. The influence of including LS on

runtimes is (on average) less than a second for all n and

all types of instances. Thus it is advisable to always apply

MPLS when facing a random instance of Partitioning Min-

Max Weighted Matching.

B. Integrated Approaches

As indicated in Section IV-B, we have implemented dif-

ferent versions of the considered metaheuristics. TABU1
and GA1 refer to the basic tabu search procedure and the

genetic algorithm as described in Section IV-B1 and IV-B2,

respectively. TABU5 corresponds to calling the tabu search

procedure starting from five different, randomly chosen solu-

tions, and returning the best solution. Similarly, GA5 returns

the best solution out of five runs of the genetic algorithm,

starting with different, randomly chosen initial populations

10 30 50 70 90 110 130 150 170

2

4

6

8

n

S
o
lu

ti
o
n

q
u
al

it
y

TABU5

TABU1

GA5

GA1

Fig. 5. Solution quality of metaheuristic approaches on RAND instances

10 30 50 70 90 110 130 150 170

2

4

6

8

10

n

S
o
lu

ti
o
n

q
u
al

it
y

MPLS

TABU5

TABU1

Fig. 6. Tabu search solution quality on RAND instances in comparison to
best decomposition approach MPLS

and sizes of components of the partitioning (see Section

IV-B2).

We ran comprehensive preliminary computational tests

to determine the remaining parameters for the tabu search

algorithm and the genetic algorithm. As a result of these

tests we set the length of the tabu list to max(5, n1

10) and the

stopping criterion to 500 iterations without improvement for

the tabu search procedure. For the genetic algorithm we set

the population size to 10, the crossover probability to 0.6,

the mutation probability to 1
2 n1

, and the stopping criterion

to 500 iterations without improvement.

Fig. 5 gives an overview of the performance of the con-

sidered metaheuristics solely based on the RAND instances.

Note that, in order to measure the quality of the algorithms,

F best in this case is set to the best objective function value

among the objective function values of the solutions obtained

by any of the integrated approaches. Clearly, TABU1 and

TABU5 outperform the genetic algorithms. Furthermore,

considering the best solution out of five runs seems to have

a similar impact, i.e. a significant improvement of solution

quality, in both metaheuristic frameworks.

It is an interesting question, whether the metaheuristic

approaches can provide high quality results when comparing

them with the best “decomposition approach”. As mentioned

in Section V-A, MPLS has proven to be most effective

out of these approaches when it comes to solving random

problem instances. Hence, in Fig. 6 we compare the solution

quality of TABU1 and TABU5 with MPLS on the RAND
instances. Unfortunately, tabu search seems to be inferior

1764

10 30 50 70 90 110 130 150 170

1.005

1.01

1.015

n

S
o
lu

ti
o
n

q
u
al

it
y

BPS70

BPS80

Fig. 7. TABU5 solution quality on BPS70 and BPS80 instances

10 30 50 70 90 110 130 150 170

0

10

20

30

n

S
o
lu

ti
o
n

q
u
al

it
y

CPLEX

TABU5

Fig. 8. TABU5 solution quality on RAND instances in comparison to
CPLEX

10 30 50 70 90 110 130 150 170

0

200

400

600

n

R
u
n
ti

m
e

in
s

MPLS

TABU5

TABU1

GA5

GA1

Fig. 9. Runtime comparison for RAND instances

when compared with MPLS .

However, when focussing on BPS70 and BPS80 in-

stances, TABU5 proves to be competitive, as can be seen

in Fig. 7. Additionally, it is worth mentioning that tabu

search will outperform IBM ILOG CPLEX 12.5. Fig. 8

illustrates this fact by comparing the performance of CPLEX

and TABU5 on the RAND instances.

Finally, in Fig. 9 we compare the runtimes of our meta-

heuristic approaches and MPLS on the RAND instances.

While runtimes increase roughly quadratically in n for all

heuristics, both tabu search and the genetic algorithm require

more computational effort than MPLS .

VI. SUMMARY

In this paper we have introduced an integrated matching

and partitioning problem, the Partitioning Min-Max Weighted

Matching Problem, with applications in intermodal transport.

We have presented a mathematical formulation of the prob-

lem and proven its strong NP-hardness. Moreover, we have

presented different heuristic and metaheuristic approaches

for solving Partitioning Min-Max Weighted Matching. More

specifically, we have implemented a tabu search and a ge-

netic algorithm for solving Partitioning Min-Max Weighted

Matching and we have found that tabu search outperforms

the genetic algorithm in terms of solution quality. How-

ever, heuristic approaches that make use of the structure

of the problem at hand by decomposing it into its match-

ing and partitioning subproblems, perform better than the

metaheuristic approaches under consideration. Nevertheless,

all heuristic approaches outperform a standard commercial

solver (CPLEX), which has shown to not perform competitive

in computational tests.

REFERENCES

[1] N. Boysen, M. Fliedner, F. Jaehn, and E. Pesch, “A survey on container
processing in railway yards,” Transport. Sci., vol. 47, no. 3, pp. 312–
329, 2013.

[2] N. Boysen and M. Fliedner, “Determining crane areas in intermodal
transshipment yards: The yard partition problem,” Eur. J. Oper. Res.,
vol. 204, no. 2, pp. 336–342, 2010.

[3] M. Barketau, E. Pesch, and Y. Shafransky, “Scheduling dedicated jobs
with variative processing times,” J. Comb. Optim., vol. in press, 2015.

[4] ——, “Minimizing maximum weight of subsets of a maximum match-
ing in a bipartite graph,” Discrete Appl. Math., vol. in press, 2015.

[5] D. Kress, S. Meiswinkel, and E. Pesch, “The partitioning min-max
weighted matching problem,” Eur. J. Oper. Res., vol. 247, no. 3, pp.
745–754, 2015.

[6] P. Preston and E. Kozan, “An approach to determine storage locations
of containers at seaport terminals,” Comput. Oper. Res., vol. 28, no. 10,
pp. 983–995, 2001.

[7] E. Kozan and P. Preston, “Genetic algorithms to schedule container
transfers at multimodal terminals,” Int. T. Oper. Res., vol. 6, no. 3, pp.
311–329, 1999.

[8] Isoloader. (2012) When to choose a straddle and when to choose a
forklift. [Online]. Available: http://www.isoloader.com/downloads/

[9] M. R. Garey and D. S. Johnson, Computers and Intractability – A
Guide to the Theory of NP-Completeness. New York: Freeman, 1979.

[10] F. Glover and M. Laguna, Tabu Search. Dordrecht: Kluwer, 1997.
[11] F. Glover, “Future paths for integer programming and links to artificial

intelligence,” Comput. Oper. Res., vol. 13, no. 5, pp. 533–549, 1986.
[12] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge: MIT

Press, 1996.
[13] B. Chen, C. N. Potts, and G. J. Woeginger, “A review of machine

scheduling: Complexity, algorithms and approximability,” in Handbook
of Combinatorial Optimization, Vol. 1, D.-Z. Du and P. M. Pardalos,
Eds. Boston: Kluwer, 1999, pp. 1493–1641.

[14] C.-Y. Lee and J. D. Massey, “Multiprocessor scheduling: Combining
LPT and MULTIFIT,” Discrete Appl. Math., vol. 20, no. 3, pp. 233–
242, 1988.

[15] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Nav. Res. Logist. Quat., vol. 2, no. 1-2, pp. 83–97, 1955.

[16] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Philadelphia: Siam, 2009.

[17] W. Domschke and A. Scholl, Grundlagen der Betriebswirtschaftslehre,
3rd ed. Berlin: Springer, 2005.

[18] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor:
University of Michigan Press, 1975.

1765

