
Constraint Handling Methods for Portfolio
Optimization using Particle Swarm Optimization

Stuart G. Reid
Department of Computer Science

University of Pretoria
South Africa

Email: stuartgordonreid@gmail.com

Katherine M. Malan
Department of Computer Science

University of Pretoria
South Africa

Email: kmalan@cs.up.ac.za

Abstract—Given a portfolio of securities, portfolio optimiza-
tion aims to optimize the proportion of capital allocated to each
security such that either the risk of the portfolio is minimized for
a given level of expected return, expected return is maximized for
a given risk budget, or the risk-adjusted expected return of the
portfolio is maximized. Extensions to the portfolio optimization
problem can result in it becoming more difficult to solve which
has prompted the use of computational intelligence optimization
methods over classical optimization methods. The portfolio opti-
mization problem is subject to two primary constraints namely,
that all of the capital available to the portfolio should be allocated
between the constituent securities and that the portfolio remain
long only and unleveraged. Two popular methods for finding
feasible solutions when using classical optimization methods are
the penalty function and augmented Lagrangian methods. This
paper presents two new constraint handling methods namely,
a portfolio repair method and a preserving feasibility method
based on the barebones particle swarm optimization (PSO)
algorithm. The purpose is to investigate which constraint handling
techniques are better suited to the problem solved using PSO. It
is shown that the particle repair method outperforms traditional
constraint handling methods in all tested dimensions whereas
the performance of the preserving feasibility method tends to
deteriorate as the dimensionality of the portfolio optimization
problem is increased.

I. INTRODUCTION

Harry Markowitz famously established the basis of port-
folio optimization in his seminal article, Portfolio Selection,
in 1952 [1]. Subsequently, the portfolio optimization problem
has been extended in order to make it more realistic [2] and
robust [3]. Such extensions can result in the portfolio optimiza-
tion problem becoming more difficult to solve [2][4] which
in turn has prompted the use of computational intelligence
optimization methods over classical optimization methods [5].
Various computational intelligence paradigms have been used
to solve realistic and robust portfolio optimization problems
[5]. In particular, swarm intelligence algorithms such as parti-
cle swarm optimization (PSO) [6][7][8][9][10] and ant colony
optimization [11] have shown good results on these problems.

The specification of the portfolio optimization problem
by Markowitz defined two constraints. The first constraint
was a hard equality constraint which specified that all of the
capital available to the portfolio and no more than that should
be allocated between the constituent securities. The second
constraint was a boundary constraint which specified that the

portfolio was long only. Mathematically speaking this means
that the proportion of capital allocated to each security must
be positive. Two popular methods for finding feasible solutions
when using classical optimization methods are the penalty
function and augmented Lagrangian methods [12]. This paper
presents two new constraint handling methods which are poten-
tially better suited to computational intelligence optimization
methods namely, a portfolio repair method and a preserving
feasibility method for the barebones PSO algorithm.

Related studies in the use of PSO for portfolio optimization
[6][7][8][9][10] have focused on the good performance of PSO
in contrast to other algorithms, such as genetic algorithms. The
contribution of this paper is to investigate different constraint
handling approaches using the same PSO algorithm. Instead of
implementing a single constraint handling method, the standard
barebones PSO algorithm is implemented with four different
constraint handling approaches. In this way, the effect of the
constraint handling technique on performance is isolated from
the effect of the optimization algorithm.

The remainder of this paper is structured as follows.
Section II defines the portfolio optimization problem. Section
III introduces the barebones particle swarm optimization algo-
rithm. Section IV defines the three constraint handling tech-
niques. Section V describes the experiments conducted in this
study. Section VI presents the results obtained through those
experiments and lastly, Section VII concludes and suggests
related future research topics.

II. PORTFOLIO OPTIMIZATION

A portfolio, P , consists of capital, n securities, S1, . . . , Sn,
and n weights, w1, . . . , wn, where weight wj represents the
proportion of capital which is allocated to security Sj . For
any given security, Sj , the expected return of that security,
E(Rj), is equal to its mean historical return and the risk of that
security, σj , is equal to the standard deviation of its historical
returns. Using modern portfolio theory [1] the expected return
and risk for the portfolio are calculated as follows,

E(RP) =

n∑
j=1

wjE(Rj) (1)

σP =

√√√√ n∑
j=1

w2
jσ

2
j +

n∑
j=1

n∑
k=1,k 6=j

wjwkσjσkρjk (2)

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.246

1766

where ρjk is the correlation coefficient between the historical
returns of securities Sj and Sk. Portfolio optimization has as
its objective to optimize the weights of the portfolio such that
either (A) the risk of the portfolio, σP , is minimized for a
given level of expected return; (B) expected return, E(RP),
is maximized for a given risk budget; or (C) the risk-adjusted
expected return of the portfolio is maximized. One measure of
risk-adjusted return is the Sharpe ratio [13], SRP . The Sharpe
ratio divides the units of expected excess return above the risk-
free rate of return, Rf , generated by the portfolio by the units
of risk required to obtain those expected excess returns,

SRP =
E(RP)−Rf

σP
. (3)

The objective function for the portfolio optimization problem
when optimizing objective (C) can be expressed as the follow-
ing minimization function,

min f(w) where f(w) = −SRP (4)

s.t.
n∑
j=1

wj = 1.0 and (5)

wj ≥ 0.0 ∀ j ∈ {1, . . . , n}. (6)

The constraints are interesting because they cause all of the
feasible solutions to exist within an (n − 1)-dimensional
simplex inside the n dimensional search space.

As such, the feasible search space is a single point when
n = 1, a straight line when n = 2 (see Figure 1), a triangular
hyperplane when n = 3 (see Figure 2) and a tetrahedron when
n = 4. In general when n ∈ Z the feasible search space is an
(n− 1)-dimensional standard simplex defined by,

w1, · · · , wn−1 ≥ 0 (7)
w1 + · · ·+ wn−1 ≤ 1 (8)
wn = 1− w1 − · · · − wn−1. (9)

The above statements assume that the two constraints are
strictly applied. In reality the constraints could be relaxed.
If the securities were sold short, meaning that the securities
were sold prior to being bought, this would result in a negative
weight and if the portfolio was leveraged, meaning that funds
in excess of the available capital were borrowed to invest in
the securities, this would result in a capital allocation greater
than 100% or 1. In these scenarios the feasible search space
would extend beyond the (n− 1)-dimensional simplex.

Fig. 1. When n = 2 the feasible space is a straight line (1-dimensional sim-
plex) between the points (w1, w2) = (1.0, 0.0) and (w1, w2) = (0.0, 1.0).

Fig. 2. When n = 3 the feasible space is a triangular hyperplane (2-
dimensional simplex) between the points (w1, w2, w3) = (1.0, 0.0, 0.0),
(w1, w2, w3) = (0.0, 1.0, 0.0), and (w1, w2, w3) = (0.0, 0.0, 1.0).

III. BAREBONES PARTICLE SWARM OPTIMIZATION

This section describes the standard barebones particle
swarm optimization algorithm for portfolio optimization.

A. Particle Swarm Optimization

The PSO algorithm is a population based search algorithm
originally inspired by the social behaviour of flocking birds
[14]. In a PSO, a swarm, X , of m particles is randomly
initialized. Each particle in the swarm, xi, is encoded as an
n-dimensional solution,

xi = (xij), ∀j = 1, 2, ..., n. (10)

For the portfolio optimization problem, each vector corre-
sponds to the weights assigned to the constituent securities
in the portfolio, that is,

xij = wj . (11)

In addition to its current weight vector, each particle, i,
maintains a reference to its personal best weight vector, yi.

For each iteration of the algorithm, the global best weight
vector, ŷ, is defined as the best of all the particles’ personal
bests. For each particle, the vector of weights is updated by
adding a velocity term, vi, to each weight, that is

xi(t+ 1) = xi(t) + vi(t+ 1) (12)

where, xi(t) is the weight vector associated with the portfolio
at time t, and vi(t+ 1) is the velocity vector update required
for xi at time t+ 1, computed as,

vij(t+ 1) = w.vij(t) + c1.r1j(t).[yij(t)− xij(t)]
+c2.r2j(t).[ŷj(t)− xij(t)] (13)

where w is the inertia weight; c1 and c2 are positive acceler-
ation coefficients to scale the contribution from the cognitive
component, r1j(t).[yij(t)−xij(t)], and the social component,
r2j(t).[ŷj(t) − xij(t)], respectively; vij(t) is the jth com-
ponent of the previous velocity calculated for xi; and lastly
r1j(t) and r2j(t) are uniformly distributed random numbers,
r1j(t), r2j(t) ∼ U(0, 1).
Formal proofs [15][16][17] have shown that each particle
converges to a point that is a weighted average between the

1767

personal best and neighbourhood best positions. If c1 = c2 then
each dimension of each particle converges to the midpoint, mp,
between the particle’s personal best position and the global best
position,

mpj(t) =
yij(t) + ŷj(t)

2
. (14)

This supports a simplification of the PSO proposed by
Kennedy called the barebones PSO [18] in which new parti-
cles’ positions are sampled from a Gaussian distribution with
mean equal to mpj(t) and with standard deviation equal to

σ =
∣∣yij(t)− ŷj(t)∣∣. (15)

In the barebones PSO, the position at time t+1 is then sampled
from the following Gaussian distribution,

xij(t+ 1) ∼ N
(
yij(t) + ŷj(t)

2
,
∣∣yij(t)− ŷj(t)∣∣). (16)

B. Barebones PSO

Algorithm 1 provides pseudo-code for the barebones PSO
which does not use any constraint handling methods. Note that
the Dirichlet distribution referred to in the initialization step
is described later in Section IV-D.

Data: Portfolio of simulated assets, P (0)
Result: Optimized portfolio, P (T)
Initialize swarm, X , consisting of m feasible particles
sampled from a flat Dirichlet distribution;
Initialize the personal best positions, Y , equal to the
initial positions for each particle, Y = X;
for t← 0 to T do

ŷ← y1
for i ← 1 to m do

if f(yi) < f(ŷ) then
ŷ← yi // Get global best position

end
end
for i ← 1 to m do

update xi using equation (16);
if f(xi) < f(yi) then

yi ← xi // Update personal best positions
end

end
end

Algorithm 1: Standard barebones particle swarm optimiza-
tion using no constraint handling method

The problem with this algorithm is that the PSO, more often
than not, converges on an infeasible solution. As such, con-
straint handling techniques are used in order to guarantee that
the PSO returns a feasible solution to the problem.

IV. CONSTRAINT HANDLING

This section defines the four constraint handling methods
considered in this paper namely the, particle repair, penalty
function, augmented Lagrangian, and preserving feasibility
methods. Each method works by augmenting the portfolio
optimization problem in such a way that the final solution
is either guaranteed or more likely to satisfy the constraints.

The particle repair method augments the particle weight vec-
tors, the penalty and augmented Lagrangian methods augment
the objective function, and the preserving feasibility method
augments the operators in the barebones PSO algorithm.

A. Particle Repair Method

The particle repair method works by normalizing the
maximum of each weight and a very small term, ε, in the
solution by the sum of the maximums of each weight and ε in
the solution for each particle,

xik =
max

(
xik, ε

)
n∑
j=1

max
(
xij , ε

) ∀ k ∈ (1, 2, ..., n). (17)

The use of the maximums guarantees that the constraint
handling method does not try to divide by zero in the unlikely
that event that each weight in the solution equals 0. Algorithm
2 provides pseudo-code for a barebones PSO which uses the
particle repair constraint handling technique.

Data: Portfolio of simulated assets, P (0)
Result: Optimized portfolio, P (T)
Initialize swarm, X , consisting of m feasible particles
sampled from a flat Dirichlet distribution;
Initialize the personal best positions, Y , equal to the
initial positions for each particle, Y = X;
for t← 0 to T do

ŷ← y1
for i ← 1 to m do

if f(yi) < f(ŷ) then
ŷ← yi // Get global best position

end
end
for i ← 1 to m do

update xi using equation (16);
repair xi using equation (17);
if f(xi) < f(yi) then

yi ← xi // Update personal best positions
end

end
end

Algorithm 2: Barebones particle swarm optimization using
the particle repair constraint handling method

B. Penalty Function Method

The penalty function method works by converting the con-
strained portfolio optimization problem into an unconstrained
optimization problem by adding terms to the objective func-
tion. These terms represent the degree to which the solution
violates the constraints [4]. For the portfolio optimization
problem two penalty functions are added to the objective
function. The first term relates to the equality constraint,
CE(xi), and the second term relates to the boundary constraint,
CB(xi). These functions are given by,

CE(xi) = 1.0−
n∑
j=1

xij (18)

1768

CB(xi) =

n∑
j=1

b(xij) (19)

where b(xij) =

{
|xij |, if xij < 0.0

0, otherwise.
(20)

The updated objective function becomes,

min Φ(xi, t) = f(xi) +µE(t)CE(xi)2 +µB(t)CB(xi)2 (21)

where µE(t) and µB(t) are time-dependent constraint penalty
coefficients for functions CE(xi) and CB(xi). These parame-
ters are typically initialized to 1.0 and then compounded at a
rate of g per iteration, in other words,

µE(t+ 1) = g × µE(t) and (22)

µB(t+ 1) = g × µB(t). (23)

The penalty terms are squared so that the resulting fitness
landscape is smooth. Whilst smoothing matters for gradient-
based search algorithms it may matter less for heuristic-based
search algorithms such as the Barebones PSO.

Algorithm 3 provides pseudo-code for a barebones PSO
which uses the penalty function constraint handling method.

Data: Portfolio of simulated assets, P (0)
Data: Penalty coefficients starting values, µE(0) and

µB(0)
Result: Optimized portfolio, P (T)
Initialize swarm, X , consisting of m feasible particles
sampled from a flat Dirichlet distribution;
Initialize the personal best positions, Y , equal to the
initial positions for each particle, Y = X;
for t← 0 to T do

ŷ← y1
for i ← 1 to m do

if Φ(yi, t) < Φ(ŷ, t) then
ŷ← yi // Get global best position

end
end
for i ← 1 to m do

update xi using equation (16);
if Φ(xi, t) < Φ(yi, t) then

yi ← xi // Update personal best positions
end

end
update µE(t) using equation (22);
update µB(t) using equation (23);

end
Algorithm 3: Barebones particle swarm optimization using
the penalty function constraint handling method

C. Augmented Lagrangian Method

The augmented Lagrangian method is similar to the penalty
function method except that only half the squared penalty term
minus the penalty term is added to the objective function for
each constraint [4]. The updated objective function becomes,

min Φ(xi, t)L = f(xi)
+ 1

2µE(t)CE(xi)2 − λE(t)CE(xi)
+ 1

2µB(t)CB(xi)2 − λB(t)CB(xi)
(24)

where λE(t) and λB(t) are time-dependent coefficients which
estimate the Lagrangian multiplier of the objective function.
These terms are updated each iteration as follows,

λE(t+ 1) = λE(t)− µE(t)CE(xi) (25)

λB(t+ 1) = λB(t)− µB(t)CB(xi). (26)

Algorithm 4 provides pseudo-code for a barebones PSO which
uses the augmented Lagrangian constraint handling methods.

Data: Portfolio of simulated assets, P (0)
Data: Penalty coefficients starting values, µE(0) and

µB(0)
Data: Lagrangian coefficients starting values, λE(0)

and λE(0)
Result: Optimized Portfolio, P (T)
Initialize swarm, X , consisting of m feasible particles
sampled from a flat Dirichlet distribution;
Initialize the personal best positions, Y , equal to the
initial positions for each particle, Y = X;
for t← 0 to T do

ŷ← y1
for i ← 1 to m do

if Φ(yi, t)L < Φ(ŷ, t)L then
ŷ← yi // Get global best position

end
end
for i ← 1 to m do

update xi using equation (16);
if Φ(xi, t)L < Φ(yi, t)L then

yi ← xi // Update personal best positions
end

end
update µE(t) using equation (22);
update µB(t) using equation (23);
update λE(t) using equation (25);
update λB(t) using equation (26);

end
Algorithm 4: Barebones particle swarm optimization using
the augmented Lagrangian constraint handling method

D. Preserving Feasibility Method

One implication of converting the constrained portfolio op-
timization problem into an unconstrained optimization problem
using either the penalty function method or the augmented
Lagrangian method is that the optimization algorithm must
search over an n dimensional fitness landscape rather than the
smaller (n− 1)-dimensional simplex.

The particle repair method overcomes this by translating
infeasible solutions into feasible solutions whereas the preserv-
ing feasibility method augments the barebones PSO’s update
operator such that the particles, once initialized within the
feasible region, never leave that region. This subsection intro-
duces a useful initialization strategy and then describes how
the feasibility of the swarm can be preserved by augmenting
the barebones PSO.

A convenient initialization strategy for a portfolio consist-
ing of two or more assets is to sample the starting weight

1769

vector for each particle from a Dirichlet distribution [19] of
order n ≥ 2. A Dirichlet distribution can be defined in terms of
the Gamma function, Γ, using the parameters α1, . . . , αn > 0
and n as follows,

Dir (xi;α1, · · · , αn) =
1

B(α)

n∏
j=1

x
αj−1
ij (27)

where B() is the multinomial Beta function, which can be
expressed in terms of the gamma function as follows,

B(α) =

∏n
j=1 Γ(αj)

Γ
(∑n

j=1 αj

) . (28)

Any Dirichlet distribution is convenient for portfolio optimiza-
tion because it has the following support,

xij ∈ (0, 1) and
n∑
j=1

xij = 1 (29)

meaning that every weight vector which could be sampled
from the distribution with a non-zero probability, satisfies the
constraints specified in the portfolio optimization problem.

Furthermore, when ai = aj ∀ i, j ∈ n, n the Dirichlet
distribution is said to be symmetric and the probability density
function for a random weight vector, xi, simplifies to,

Dir(xi;α) =
Γ(αn)

Γ(α)n

n∏
j=1

xα−1ij (30)

where α is referred to as the concentration parameter. α = 1.0
is a special case of the Dirichlet distribution which causes it
to be uniform over the (n−1)-dimensional simplex defined by
(7), (8), and (9). This is beneficial because all feasible weight
vectors have a uniform probability of being sampled,

Dir(xij ;α) = Dir(xik;α) ∀ j, k ∈ n, n (31)

meaning that when used for swarm initialization, the flat
Dirichlet distribution guarantees that the swarm will be un-
biased on average at iteration t = 0.

Another useful characteristic of the Dirichlet distribution
for portfolio optimization is that when α is set equal to
a particle position, α = xi, random vectors sampled from
the resulting Dirichlet distribution have a mean equal to xi
and a standard deviation proportional to xi meaning that the
Dirichlet distribution can be used to sample positions around
other positions which satisfy both the equality and boundary
constraints of the portfolio optimization problem.

Therefore by simply replacing the Gaussian distribution in
the barebones PSO update equation (16) with the Dirichlet
distribution where α = mp(t) as calculated using equation
(14), we arrive at a new feasibility preserving update equation
for the barebones particle swarm optimization algorithm,

xij(t+ 1) ∼ Dir
(
mp(t), n

)
. (32)

Algorithm 5 provides pseudo-code for a barebones PSO which
uses this preserving feasibility constraint handling method.

V. EXPERIMENT DESIGN

This section details the experiments and parameter config-
urations used to obtain the results presented in section VI.

Data: Portfolio of simulated assets, P (t)
Result: Optimized portfolio, P (t+ 1)
Initialize swarm, X , consisting of m feasible particles
sampled from a flat Dirichlet distribution;
Initialize the personal best positions, Y , equal to the
initial positions for each particle, Y = X;
for t← 0 to T do

ŷ← y1
for i ← 1 to m do

if f(yi) < f(ŷ) then
ŷ← yi // Get global best position

end
end
for i ← 1 to m do

update xi using equation (32);
if f(xi) < f(yi) then

yi ← xi // Update personal best positions
end

end
end

Algorithm 5: Barebones particle swarm optimization using
the preserving feasibility constraint handling method

A. Experiments Undertaken

Results were obtained by averaging the performance of
each algorithm on a portfolio of n simulated assets over
60 independent optimization runs. Results were obtained for
dimensions n = {4, 8, 16}. The specific parameter configura-
tions for the algorithms are tabulated below.

Algorithm Parameter Value
Swarm size (m) 30

Iterations 80
Independent runs 60

Minimum vector sum (ε) 1× 10−8

Constraint coefficient growth rate (g) 1.1
Equality constraint coefficient (µE(0)) 2.0

Boundary constraint coefficient (µB(0)) 2.0
Equality constraint multiplier (λE(0)) 0.5

Boundary constraint multiplier (λB(0)) 0.5

These parameters were selected through trial-and-error and one
of the suggested areas of further research is to conduct a more
exhaustive study over a wider set of parameter configurations.

B. Simulated Returns

The experiments were conducted using return sequences
simulated using a Geometric Brownian Motion stochastic
process (model). The Geometric Brownian Motion stochastic
process assumes that security prices evolve randomly accord-
ing to the following stochastic differential equation,

Si(t) = µSi(t)dt+ σSi(t)dW (t) (33)

where Si(t) is the price of security Si at time t, µ represents
the annualized drift of the security’s price over time, dt
represents time (in this paper we simulated daily returns), and
σW (t) represents a normally distributed Wiener process with
volatility σ. Solving this stochastic differential equation under

1770

Ito’s interpretation [20] we arrive at the following equation
which specifies the log returns of each each asset,

ri(t) = ln
Si(t)

Si(0)
=

(
µ− σ2

2

)
t+ σW (t). (34)

Because the Wiener process, W (t), is normally distributed we
can derive the probability density function from which log
return sequences for each asset can be sampled,

ri(t) ∼ N

((
µ− σ2

2

)
t, σ2t

)
. (35)

The relationship between a log return, ri(t), and an arithmetic
return, Ri(t), is given by the following equation,

Ri(t) = eri(t) − 1. (36)

Using this model it is possible to sample n return sequences
of length τ for each asset. From these return sequences the
the risk, σi, and expected return, E(ri), of each security were
calculated as was the correlation matrix. Given this information
and a weight vector the portfolio risk, σP , expected return,
E(rP), and Sharpe ratio, SRP , were calculated as per equation
(1), (2), and (3). The model was calibrated as follows,

Model parameter Value
Annualized volatility (σ) 0.125

Annualized drift (µ) 0.08
Instantaneous time (dt) 1

252 ≈ 0.00397
Total time in days (τ) 500

Figure 3 shows an example of 30 securities price paths
simulated using this model.

Fig. 3. Example security price paths simulated using Geometric Brownian
Motion for 30 independent securities.

VI. RESULTS

This section presents the results obtained in running the
experiments discussed in Section V. The results are plotted
in Figures 4 to 11. Although the algorithms were run for
250 iterations, only the first 80 iterations are plotted due
to insignificant changes beyond 80 iterations. In the graphs,
algorithm A1 represents the standard barebones PSO without
any constraint handling.

A. Results relating to constraint violations

1) Barebones PSO: Whilst the canonical barebones PSO is
able to find solutions with superior fitness values (see Figure
4) it does so by violating both the boundary and equality
constraints (see Figures 5 and 6). These results support the
argument that constraint handling methods are necessary when
using PSO for constrained portfolio optimization problems.

Fig. 4. Global best fitness for n = 16 averaged over 60 independent runs
for algorithms 1 to 5 for 80 out of 250 iterations.

Fig. 5. Global best boundary constraint violation for n = 16 averaged over
60 independent runs for algorithms 1 to 5 for 80 out of 250 iterations.

2) Penalty function constraint handling method: When
using the penalty function constraint handling method the PSO
initially violates both the boundary and equality constraints but
then starts to converge on the feasible region which causes the
violations to decrease over time (see Figures 7 and 8).

3) Augmented Lagrangian constraint handling method: As
with the penalty function method, when using the augmented
Lagrangian constraint handling method the PSO initially vi-
olates both the boundary and equality constraints before
converging on the feasible region. Relative to the penalty
function method the augmented Lagrangian method violates
the constraints more severely initially and then converges more
slowly towards the feasible region (see Figures 7 and 8).

1771

Fig. 6. Global best equality constraint violation for n = 16 averaged over
60 independent runs for algorithms 1 to 5 for 80 out of 250 iterations.

4) Particle repair and preserving feasibility constraint han-
dling methods: Neither the particle repair nor the preserv-
ing feasibility constraint handling methods violate either the
boundary or equality constraints (see Figures 7 and 8). This
indicates that when using these constraint handling methods
the particles in the swarm remain inside the feasible region.

Fig. 7. Global best boundary constraint violation for n = 16 averaged over
60 independent runs for algorithms 2 to 5 for 80 out of 250 iterations.

Fig. 8. Global best equality constraint violation for n = 16 averaged over
60 independent runs for algorithms 2 to 5 for 80 out of 250 iterations.

B. Results relating to performance

Figures 9 10 and 11 show the average global best fitness
for dimensions 4, 8 and 16, respectively. From these graphs it
can be seen that the particle repair constraint handling method
performed the best across all three dimensions followed by
the augmented Lagrangian and penalty function methods. The
figures also demonstrate that the performance of the preserving
feasibility constraint handling method deteriorated relative to
the other constraint handling methods as the dimensionality of
the problem increased. This may be caused by the Dirichlet
distribution being too narrow meaning that new positions
sampled from the distribution cannot reach more optimal areas
of the fitness landscape (see Figure 12).

Fig. 9. Global best fitness for n = 4 averaged over 60 independent runs for
algorithms 2 to 5 for 80 out of 250 iterations.

Fig. 10. Global best fitness for n = 8 averaged over 60 independent runs
for algorithms 2 to 5 for 80 out of 250 iterations.

VII. CONCLUSION AND FURTHER WORK

The feasible region of the fitness landscape for long-only
and non-leveraged constrained portfolio optimization problems
is an (n − 1)-dimensional simplex inside the n-dimensional
search space. Traditional constraint handling methods such as
the penalty function method and the augmented Lagrangian
method convert this constrained (n− 1)-dimensional problem
into an unconstrained n-dimensional problem by augmenting
the objective function. The drawback to this approach is that

1772

Fig. 11. Global best fitness for n = 16 averaged over 60 independent runs
for algorithms 2 to 5 for 80 out of 250 iterations.

Fig. 12. Global best fitness standard deviation for n = 16 averaged over 60
independent runs for algorithms 1 to 5 for 80 out of 250 iterations.

the optimization algorithm much search a larger dimensional
fitness landscape and is not guaranteed to produce a feasible
solution. To overcome this shortcoming we proposed the use
of either a new particle repair method or preserving feasibility
method which augment the particles and algorithmic operators
of the PSO rather than the objective function.

The results show that particle repair method performed
better than traditional constraint handling methods in all three
dimensions tested whereas the preserving feasibility method
deteriorated relative to the other methods as the dimension-
ality of the portfolio optimization problem was increased. It
was also shown that the augmented Lagrangian technique is
superior to the penalty function method despite the fact that the
use of the augmented Lagrangian technique results in relatively
higher initial constraint violation and slower convergence to the
feasible region. Lastly, it was shown that the PSO algorithm
when used without constraint handling methods violates both
the equality and boundary constraints meaning that constraint
handling is an important aspect of the constrained portfolio
optimization problem.

In conclusion, the particle swarm optimization algorithm
is only able find quality solutions to the constrained portfolio
optimization problem when constraint handling methods are
applied. Avenues for further research include a more com-

prehensive study of the augmented Lagrangian and penalty
function methods under different parameter configurations as
it is expected that algorithmic tuning may improve the per-
formance of these methods relative the particle repair method.
Additionally, a study into the reachability of the barebones
PSO when using the preserving feasibility method should be
undertaken.

REFERENCES

[1] H. Markowitz, “Portfolio Selection”, in Journal of Finance, vol. 7, pp.
77-91, 1952.

[2] A. Rudd and B. Rosenberg, “Realistic portfolio optimization”, in Port-
folio theory 25, pp. 21-46, 1979.

[3] F. J. Fabozzi, P. N. Kolm, and D. A. Pachamanova, “Robust portfolio
optimization”, in The Journal of Portfolio Management 33.3, pp. 40-48,
2007.

[4] M. R. Hestenes, “Multiplier and gradient methods”, in Journal of
optimization theory and applications 4.5, pp. 303-320, 1969.

[5] F. Busetti, “Metaheuristic Approaches to Realistic Portfolio Optimisa-
tion”, Masters thesis, Operations Research, University of South Africa,
2000.

[6] T. Cura, “Particle swarm optimization approach to portfolio optimiza-
tion”, in Nonlinear Analysis: Real World Applications, vol. 10, pp. 2396-
2406, 2009.

[7] H. Zhu, Y. Wang, K. Wang and Y. Chen, “Particle swarm optimization
(PSO) for the constrained portfolio optimization problem”, in Expert
Systems with Applications, vol. 38, no. 8, pp. 10161-10169, Aug. 2011.

[8] F. Xu, W. Chen and L. Yang, “Improved Particle Swarm Optimization for
Realistic Portfolio Selection”, in Proceedings of Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing,
pp. 185-190, 2007.

[9] G. Kendall and Y. Su, “A particle swarm optimization approach in
the construction of optimal risky portfolios”, in Proceedings of the
23rd IASTED International Multi-Conference Artificial Intelligence and
Applications, February 14-16, pp. 140-145, 2005.

[10] H. R. Golmakani and M. Fazel, “Constrained portfolio selection using
particle swarm optimization”, in Expert Systems with Applications, vol.
38, no. 7, pp. 8327-8335, 2011.

[11] K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss and C. Stummer,
“Pareto Ant Colony Optimization: A metaheuristic approach to multiob-
jective portfolio selection”, in Annals of operations research, vol. 131,
pp. 79-99, Oct. 2004.

[12] P. M. Pardalos, M. Sandström, and C. Zopounidis, “On the use of
optimization models for portfolio selection: A review and some com-
putational results”, in Computational Economics 7.4, pp. 227-244, 1994.

[13] W. F. Sharpe, “The sharpe ratio”, in The journal of portfolio manage-
ment 21.1, pp. 49-58, 1994.

[14] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory”, in Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, pp. 39-43, 1995.

[15] I. C. Trelea, “The particle swarm optimization algorithm: convergence
analysis and parameter selection”, in Information processing letters 85.6
pp. 317-325, 2002.

[16] F. Van Den Bergh, “An analysis of particle swarm optimizers”, PhD
Thesis, Department of Computer Science, University of Pretoria, South
Africa, 2006.

[17] F. Van Den Bergh and A. P. Engelbrecht “A study of particle swarm
optimization particle trajectories.”, in Information sciences 176.8 pp. 937-
971, 2006.

[18] J. Kennedy, “Bare bones particle swarms”, in Proceedings of the 2003
IEEE Swarm Intelligence Symposium, pp. 80-87, 2003.

[19] N. L. Johnson, S. Kotz, and N. Balakrishnan, “Continuous Multivariate
Distributions, volume 1, Models and Applications”, New York: John
Wiley & Sons, 2002.

[20] A. N Borodin and P. Salminen, “Handbook of Brownian motion – facts
and formulae”, Birkhäuser, 2012.

1773

