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Abstract—In this paper we introduce a simple model of multi-
market trading. An identical security trades on two independent
trading platforms. Prices and quotes are connected only by the
strategic behavior of traders. The experimental design varies the
degree to which traders monitor and act on information from
both markets. We report on the degree of integration between
the two markets as measured by the availability of arbitrage
opportunities and the percentage of volume that trade throughs
better quotes. Finally, we discuss the limits of integration with
respect to our modeling assumptions.

I. INTRODUCTION

The last day of open outcry trading for futures in Chicago
was July 6th, 2015 [1]. At the time, trading floor volume
had fallen to only 1% of total futures trading. The closing
of the trading floor in Chicago is symbolic of a tidal change
in financial markets in the United States and around the world.
All aspects of trading have been transformed by technology.
Understanding the resulting changes in market structure is of
critical importance to market participants and regulators.

Financial markets are no longer dominated by large quasi-
monopolistic exchanges. Instead, traders operate in a highly
competitive and geographically distributed multi-market sys-
tem. Both the buy- and sell-side of the markets monitor a
multitude of market feeds and information sources, which they
rely upon to manage their trading operations. The number
of venues increases the complexity of automated trading.
Whereas before brokers need only decide on how to trade
optimally in a single venue, now they must decide how best to
route orders to a large number of potential exchanges, which
may vary widely with respect to the trading platform, fees and
rebates, liquidity and transparency.

In this paper, we investigate a simple model of multi-
market trading in an attempt to establish a relationship between
basic market order routing and the relative integration of other-
wise independent markets. In the model, an identical security
trades on two independent but identical trading platforms.
Prices and quotes at the two venues are connected only by the
strategic behavior of traders. The experimental design varies
the degree to which traders act on information from both
markets. We study the integration of the two markets as mea-
sured by the existence of arbitrage opportunities. Finally, we
discuss the limits of integration with respect to our modeling
assumptions.

II. LIMIT ORDER BOOK

A fundamental ingredient of our model is the limit order
book. A limit order book is an implementation of a continuous
double auction. Traders may submit and cancel limit orders and
submit market orders to trade at the best available price. Limit
orders, which are instructions to buy or sell a certain quantity
of a security at a given price, are queued and executed in price-
time priority. Market orders execute immediately at the best
available price. The price of new limit orders is governed by
a minimum price increment known as the tick size. Quantities
are restricted to be a multiple of a specified lot size. The
number of lots available to execute at a specific price is the
market depth at that price. The state of limit order book at time
t can be given by the depth at each price, which is sufficient
to calculate the best bid and ask prices denoted b(t) and a(t),
respectively.
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Fig. 1. Limit order book diagram. A new limit order to buy arrives at price
b(t)− 2. A new market order to buy arrives and will execute at the the best
ask price, a(t).

Figure 1 contains a snapshot of a hypothetical limit or-
der book. The current price as defined by the mid-quote is
0.5(a(t) − b(t)). The spread is a(t) − b(t). A new market
order to buy executes at the best ask price a(t). The depth
available at that price will be reduced from two lots to one
lot. A new limit bid arrives at price b(t) − 2 increasing the
depth from seven lots to eight lots. The state of the limit order
book will evolve as new limit orders and market orders are
submitted and existing limit orders are canceled. In this paper,
we study a multi-market system in which the dynamics of two
independent order books are linked by the strategic behavior
of traders.
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III. MULTI-MARKET TRADING

Many countries have opened the door for competition in
their financial markets. It is increasingly common for securities
to trade on a number of local exchanges. Securities also trade
in other countries and in different currencies. Competition
among exchanges can benefit investors, but market fragmenta-
tion underlies a number controversial practices related to high
frequency trading and other strategies exploiting the specific
details of market structure [2]. Understanding how all of these
individual markets are linked together is critical for our ability
to assess the quality and function of the overall market [3].

In a multi-market setting, traders must determine how at-
tractive each venue is for trading. The optimal order execution
problem is widely studied. Originally formulated in a single
market, it has been extended to a multi-market setting where
the decision-maker must consider a number of additional
factors, such as price and depth, fees and rebates and execution
probability. Orders that are not appropriately routed may trade
through better prices. Order routing, however, is not the only
form of strategic behavior that links independent markets.
Some market participants specifically monitor markets for
the purpose of profiting from price dislocations, i.e arbitrage
opportunities. In fact, there have been calls to abandon the
continuous limit order book due to the inefficiencies arising
from inter-market arbitrage [4], [5].

An opportunity for instantaneous profit exists if there exists
a bid price greater than an ask price. The size of the arbitrage
opportunity is constrained by the depth available at each
price. In a two-market setting, markets may become locked
or crossed [6]. An arbitrage opportunity exists when markets
are crossed, i.e. b1(t) > a2(t) or b2(t) > a1(t). Markets are
locked if b1(t) = a2(t) or b2(t) = a1(t) (See Figure 2).

������ �	�

��

����

��	�

����

��	�

����

��	�
����

��	���	��	����� ��	��
�����

Fig. 2. A locked market occurs when the best bid in one market is equal to
the best ask in another market. Markets are crossed whenever the bid price in
one market exceeds that of an offer price in another market.

IV. MODEL

This paper employs the zero-intelligence method for in-
vestigating markets wherein the mechanics of the market are
carefully implemented and sophisticated models of strategic
behavior are replaced by simple models of aggregate order
flow. The approach highlights the effects of the market mech-
anism and provides a means for testing hypotheses regarding
the sources of certain stylized facts of financial time series. In
this model, we extend the idea of the mechanism beyond the
limit order book to include a simple implementation of order
routing. In other words, we treat the two-market system with
order routing as a single mechanism.

The model is based on a long line of literature that treats
the arrival of limit order book events as a statistical process.
Specifically, the model is an adaptation and extension of Smith
et al (2003) to two independent limit order books [7], [8]. Limit
orders and cancelations arrive independently at each market.
Market order also arrive independently at each market, but with
a certain probability are routed to the market with superior
quotes. The probability of a market order being routed away
from its“home market” is varied as part of the experimental
design.

The model of order flow is a major assumption and is cho-
sen due to a number of attractive features. First, it is simple to
describe and implement. Second, it performs admirably when
fit to data and even outperforms more complicated models in
its class [9], [10]. Finally, the model and its variations have
been widely studied.

The model has five parameters. First, a parameter v, which
governs the discrete set of prices relative to the opposite quote
at which new limit orders may arrive. The available prices for
new limit orders to buy are {a(t) − v − 1, . . . , a(t) − 1}.
The available prices for new limit orders to sell are {b(t) + 1,
. . . , b(t) + v+1}. New limits orders of unit quantity arrive at
each available price at a rate of � per unit time (making the
total limit order arrival rate 2v�). New market orders (also of
unit quantity) arrive on each side of the book in each market
at a rate of m per unit time. However, market orders may
be routed away from their “home” market to a market with
superior quotes with probability s. Outstanding limit orders
are canceled at rate c per unit time.

The model can be thought of a collection of birth-death
processes that are linked by the mechanics of the limit order
book and the mechanics of the order routing algorithm. When
a single order is left on either the buy or sell side of a market,
the cancelation and market rates are set to zero, which prevents
the book from becoming completely empty and ensures that
the set of available prices for new limit orders is well defined.
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Fig. 3. The percentage of volume that trades through as a function of the
probability that market orders are routed.
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Fig. 4. The percentage of volume in excess of what is routed that executes

at the best market, i.e. 100
(1−s)

2
− θ where θ is the percentage of volume

that trades through better quotes.
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Fig. 5. The percentage of time markets are crossed a function of the
probability that market orders are routed.

V. RESULTS AND DISCUSSION

Results are estimated by simulation using parameters v =
10, � = 1,m = 5, c = 0.2. The values of the parameters are
chosen according to Gatheral and Oomen (2010), who find that
they generate a price series with properties typical of a DJ30
stock [11]. The probability of “smart order routing” is varied
between 0.01 and 1 by increments of 0.01. As seen in Figure
3, market orders that trade through better quotes decreases
linearly, as expected. Figure 4 shows the percentage of volume
in excess of what is routed that executes at the best market.
Figure 5 and Figure 6 show the percentage of time that markets
are either crossed or locked as the probability that market
orders are routed varies. Interestingly, the percentage of time
that the market is in an arbitrage state drops quickly to below
25% with only approximately 30% of market orders routing to
the better quotes. However, even with all market orders being
routed optimally the markets are still either crossed or locked
over 15% of the time (8.5% crossed, 7% locked).
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Fig. 6. The percentage of time markets are locked as a function of the
probability that market orders are routed.
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Fig. 7. The density of bid-ask deviations conditional on being in a crossed
state (s = 1). A bid-ask deviation is defined as b1(t)−a2(t) or b2(t)−a1(t).

Figure 7 depicts the density of bid-ask deviations (defined
as b1(t) − a2(t) or b2(t) − a1(t)) conditional on the market
being in a crossed-state. Surprisingly, even with all market
orders being routed to the best quotes, bid-ask deviations are 5
ticks or greater approximately 6.5% of the time that the market
is in a crossed state. The mechanics of trading are such that
better market integration may only be achieved by the strategic
behavior of market participants employing limit orders.

Clearly market order routing is not the only form of strate-
gic behavior linking markets. Arbitrageurs actively seek to
exploit price dislocations. Market participants employing limit
orders, whether they be market makers or passive traders, also
monitor the state of the markets and modify their limit orders
accordingly. Future work includes extensions to the model
that also captures the aggregate behavior market participants
employing limit orders.
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