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Abstract—Bitcoin, as the foundation for a secure electronic
payment system, has drawn broad interests from researchers
in recent years. In this paper, we analyze a comprehensive
Bitcoin transaction dataset and investigate the interrelationship
between the flow of Bitcoin transactions and its price movement.
Using network theory, we examine a few complexity measures of
the Bitcoin transaction flow networks, and we model the joint
dynamic relationship between these complexity measures and
Bitcoin market variables such as return and volatility. We find
that a particular complexity measure of the Bitcoin transaction
network flow is significantly correlated with the Bitcoin market
return and volatility. More specifically we document that the
residual diversity or freedom of Bitcoin network flow scaled
by the total system throughput can significantly improve the
predictability of Bitcoin market return and volatility.

I. INTRODUCTION

Bitcoin is a peer-to-peer decentralized crypocurrency sys-
tem proposed by Satoshi Nakamoto[20]. Unlike a traditional
currency, Bitcoin relies on the cryptography to secure trans-
actions, and there is no single institution to control Bitcoin
transactions. Bitcoin transactions are broadcasted by clients
into a peer-to-peer system and get confirmed once they are
added to the ‘block chain’, a chain of blocks containing
all historical transactions since the Bitcoin’s inception. The
Bitcoin ledger, the ’block chain’, is publicly visible and is
stored in all Bitcoin clients to prevent the double-spending
issue. This publicly available transaction information provides
a unique opportunity to study the dynamic behavior of this
financial asset.

The Bitcoin transaction network can be described as a
network of transaction flows among all market participants.
Buyers and sellers (from the peer-to-peer system as well as
from the Bitcoin exchanges) of Bitcoin are the nodes of the
network, and the edges represent transactions among these
participants. Bitcoin transaction network therefore represents
all activities within the Bitcoin market, and they are recorded
in the ‘block chain’. The Bitcoin’s exchange rate is determined
primarily by supply and demand of the network, and users of
this virtual currency can spend Bitcoin on both virtual and
real goods and services. Our hypothesis is that as the network
flow of the Bitcoin transactions evolves over time, the flow
of these transactions should reflect its market value and its
volatility due to the information conveyed through the supply-
and-demand of the system. Hence, how to measure the flow

978-1-4799-7560-0/15 $31.00 © 2015 IEEE
DOI 10.1109/SSCI.2015.248

1778

Jinhyoung Kim
School of Systems and Enterprises
Stevens Institute of Technology
Hoboken, New Jersey 07030
Email: jkim18@stevens.edu

of supply-and-demand of this financial asset holds the key to
explaining its market prices.

Network analysis is a natural tool to understanding com-
plex social and economic phenomena. Like any financial mar-
ket transaction networks, there is always an amount associated
with the individual Bitcoin transactions at any point of time.
Therefore, it is natural to consider the Bitcoin transaction
networks as weighted rather than unweighted networks. Ecol-
ogists have developed a set of variables to quantify the growth
and development of ecological or economic flow networks
[24]; these variables have the potential to give quantitative
expression to many of the qualitative observations. However
the extent to which unweighted networks can be used to
describe the real world network flow problems is limited. In
real systems, flows have unequal sizes with sometimes ex-
traordinary differences [26]. And hence the question becomes
“What characterizes the flow among the vertices?”

In this study, we investigated two complexity measures
for weighted network in order to quantify the movements
of flows within a network as a time-series, and we aim to
reveal the inherent interrelationships between these network
complexity measures and the Bitcoin market variables. The
primary measures used in this study are the numbers of flows
and nodes, connectivity in flows per node, and the number
of roles as measured by nodes divided by connectivity. The
primary contribution of this paper is to document that there
exist persistent interrelationships between the Bitcoin trans-
action network flows and market quality measures, and this
discovery will be very valuable for quantifying risk dynamics
involved in a Bitcoin based electronic payment system in the
future.

The rest of this paper is organized as follows. Section
Il provides a literature review of the existing research on
network metrics and Bitcoin market. Section III presents the
Bitcoin market and the Bitcoin transaction data. It explains
the mechanism of the ‘block chain’ transactions. Section IV
describes the methodology to construct the Bitcoin transaction
flow network and the complexity measures for a flow network.
Section V introduces a prediction model of the Bitcoin market
using the network complexity measures. Section VI discusses
the performance of the predictive model. And section VII
concludes the findings and points to future research directions.
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II. LITERATURE REVIEW

Networks are well characterized both structurally and quan-
titatively by graph theory, which has more than 150 years of
extensive development and application ([17],[4].[4], [5], [6],
and [3]). Graph theory as a branch of discrete mathematics has
been brought to life to solve specific problems from different
areas of science. Quantifying centrality and connectivity helps
us identify portions of the network that may play interesting
roles. Researchers have been proposing metrics for central-
ity for the past 50 years. Centrality metrics are designed
to“characterize the importance of a vertex?” “Importance”
can be conceived in relation to a type of flow or transfer
across the network. This allows centralities to be classified
by the type of flow they consider important [5]. Centralities
are either Radial or Medial. Radial centrality measures count
walks which start/end from a given node. The degree and
eigenvalue centralities are the examples of Radial centralities,
counting the number of walks of length one or length infinity
[16]. Medial centralities count walks which pass through a
given node. The typical example is Freedman’s betweenness
centrality, the number of shortest paths which pass through a
given node [8].

The applications of flow networks are numerous in fields
such as ecology [1], [28], economics [13], and of course,
engineering ([19],[7], and [2]). It should be noted that although
weighted flow networks are identical in form to weighted di-
graphs, the convention in the literature is that digraph weights
represent costs or lengths, and thus larger weights on an edge
indicate lesser significance. In flow networks, larger weights
on a flow represent larger flows and thus greater importance.
Kauffman has related connectivity of boolean logic networks
to their stability ([10],[11]). May was one of the firsts to
argue that the stability of a complex system is related to
the connectance of a trophic web [15]; others disputed the
form of the relationship, but generally agreed that connectivity
relates to stability ([21],[9]). Ulanowicz and Zorach developed
a weighted flow network measure to quantify the complexity
of weighted networks [25]. They presented a consistent way
to generalize the measures of vertices, flows, connectivity, and
roles into weighted networks, and they argued that weighting
leads in the end to a more elegant and fruitful analysis of
networks in complex systems.

A number of studies have applied network analysis on the
Bitcoin public ledger. Reid and Harrigan studied anonymity of
the Bitcoin network and analyzed the topology of the two types
of networks: the transaction network and the user network [20].
These networks were constructed from Bitcoin transactions
occured between 1/3/2009 and 5/13/2012. In order to construct
a user network, they proposed a data pre-processing step to
identify a Bitcoin user as a node of the user network. To
improve the identification accuracy in the user network, the
authors used the external information where Bitcoin users
disclosed their public addresses online. They showed that it is
possible to map the Bitcoin public address to IP addresses and
then link them to the previous transactions. From the proposed
techniques, they investigated the alleged theft of Bitcoin in
the user network. Ron and Shamir constructed a Bitcoin
transaction network in the same way as the user network used
by Reid and Harrigan [22]. The authors calculated various
statistics such as distributions of addresses, the amount of

incoming Bitcoin, balances of a Bitcoin public addresses, the
number and size of transactions, and the most active entities.
They found that the majority of the minted Bitcoin are not
in use and a large number of tiny transactions exist. And they
noticed that hundreds of transactions transfer more than 50,000
Bitcoin(BTC) and found that most of these big transactions
are successors of the initial ones. Another interesting finding
is that transaction flows reveal certain distinct behaviors such
as long chains, fork merge, and binary tree-like distributions.
Ober et al. studied time-varying dynamics of the network
structure and the degree of anonymity [18]. Using data from
Bitcoin’s inception to 1/6/2013, the authors discovered that
the entity sizes and the overall pattern of usage became more
stationary in the last 12 to 18 months of the period in the study,
which reduces the anonymity set. The authors also showed
that the number of dormant coins is important to quantify
anonymity. Inactive entities hold many of these dormant coins
and thus further reduce the anonymity set. Kondor et al.
studied the structure of Bitcoin transaction network and its
time evolution [12]. They divided the lifetime of the Bitcoin
system into two phases based on network properties such
as degree distribution, degree correlation, and clustering. The
first phase in time, called initial phase, is characterized by
large fluctuation of network properties. During this phase,
Bitcoin is primarily used as an experiment rather than a real
currency. The second phase, called trading phase, shows more
stable network properties, and Bitcoin thus draws more public
attention and becomes a real currency. They also studied
wealth distribution over all Bitcoin public addresses and found
that the wealth distribution is quite heterogeneous during the
entire lifetime but become stable in the trading phase.

ITII. DATA

In this section, we describe the dataset used in this research.
We collected the historical Bitcoin transactions and Bitcoin
market prices. Both of them are available at the website
www.blockchain.info.

A. Bitcoin Transaction

This study covers a broad Bitcoin transaction history,
whereas previous studies only dealt with transactions occurred
when Bitcoin was not actively traded on exchanges. The
Bitcoin public ledger records all historical transactions in the
form of a chain of blocks. We collected blocks up to the block
number 336,859 which contain over 55 million transactions.
Our dataset covers all Bitcoin transactions from the Bitcoin’s
inception until 12/31/2014. Here, a Bitcoin transaction is
defined as the change in ownership of Bitcoin between the
public addresses. A single transaction consists of two parts,
the input and the output. An input of a Bitcoin transaction
specifies the public addresses and the amount of Bitcoin stored
in the associated public addresses. An output specifies the
public addresses and the amount of Bitcoin transferred into the
associated public addresses. A Bitcoin transaction may have
multiple addresses in both the input and the output. The Fig.
1 shows a real transaction with 2 addresses in the input and 2
addresses in the output. The amount of Bitcoin is represented
in Satoshi which is the smallest unit of the Bitcoin currency
recorded on the block chain. One Satoshi is a one hundred
millionth of a single Bitcoin i.e. 1 Bitcoin is equivalent to 108
Satoshi.
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Fig. 1: Bitcoin transaction # 2642247 generated at 1/1/2012
6:22:01
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Fig. 2: Bitcoin market prices in USD from 1/1/2011 through
12/31/2014

TABLE I: Basic statistics of the daily Bitcoin market price
return and volatility.

Max Min Mean S.D. Skewness
return 0.641853 | -0.478305 | 0.004767 | 0.063737 1.279526
volatility 0.192331 0.042228 0.063947 | 0.023509 | 2.138615

B. Bitcoin Market

Fig. 2 exhibits the time series of the Bitcoin market price
from 1/1/2011 through 12/31/2014. The first Bitcoin exchange,
Mt. Gox, was launched in July 2010 and Bitcoin was traded
under 5 USD before May 2011. It started to draw public
attention in 2013. It passed a price of $1000 all-time high on
November 28, 2013 and fell to around $400 in April 2014. The
price quickly rebounded to $600 and then steadily declined to
no more than $200.

Daily Bitcoin price return is defined as the log difference
between index values of two consecutive days. And we esti-
mate the Bitcoin price volatility using a GARCH(1,1) model.
In Fig. 3, we plot the time series of daily Bitcoin price
return and volatility. The basic statistics for the time series
are summarized in TABLE L

IV. METHODOLOGY
A. Bitcoin Network

We construct a Bitcoin transaction network for each day
during the sample period by following the methodology used
by Reid and Harrigan [20]. In Reid and Harrigan, a node of
network is defined as a group of Bitcoin public addresses
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Fig. 3: Daily Bitcoin market price return and volatility. Volatil-
ity is estimated from the GARCH(1,1) model. Sample period
is from 1/1/2011/to 12/31/2014.

TABLE II: The basic statistics of nodes and edges in the daily
Bitcoin flow network

The number of nodes and edges in the daily Bitcoin flow network

Max Min Mean std
The number of nodes 154673 6273 46628 32396
The number of edges 242916 | 8118 | 75601 50975

which are assumed to be owned by the same entity. Every
Bitcoin address of a node appearing in the input part of
a Bitcoin transaction and is involved with one address in
the same node through a Bitcoin transaction. This method
is justifiable because public addresses involved in the input
part of the same transaction should be owned by the same
entity before they can be used in a single Bitcoin transaction.
To identify the ownership of public addresses, we apply the
Union-Find algorithm to a set of 59,151,261 public addresses
and identify over 5 million entities. And we then assign a
user identification number to each entity. An edge of the
Bitcoin network indicates that there is a transaction between
two entities. Edge has a directionality from the entity on the
input side to the entity on the outputs side. Since there could be
multiple entities on the output side of a transaction, multiple
edges could occur as a result of a single transaction. If the
entity in the outputs is the same as the entity in the inputs,
we then will ignore this self-loop. A weight on an edge indi-
cates the amount of transferred Bitcoin through an associated
transaction. Since there could be multiple transactions from
one entity to another entity during a day, the weight on an
edge is the sum of weights from the multiple transactions.
Fig. 4 shows a processed Bitcoin transaction with a user ID
number and part of a Bitcoin transaction network. Before the
transaction #2642247, the user #1777953210 had 10.1429334
BTC in his public addresses. This user sends 10 BTC out of
10.1429334 he owes to the user #38667927. And the remaining
change of 0.1429334 BTC is kept by user #17779532.

TABLE 1I shows the basic statistics for the number of
nodes and edges in a daily Bitcoin transaction network.

B. Network Complexity

In this section, we introduce a couple of the network com-
plexity measures which are originally introduced by theoretical
ecologists. First, we introduce the concepts of the connectivity
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User ID number 11779532
Transferred Bitcoin:1429334
User ID number :1779532
Balance: 101429334

=

User ID number : 38667927
Transferred Bitcoin:100000000

10BTC 38667927

Fig. 4: The upper diagram shows the processed transaction
data with the user ID number and amount of transaferred
BTC between the user IDs. The lower diagram is the part
of Bitcoin transaction network reflecting the transaction in the
upper diagram.

and the number of roles of a network. Second, we examine the
complexity measures from information theory. Interestingly we
find that the connectivity and the number of roles in a network
is equivalent to the complexity measures from the information
theory.

1) Connectivity and the Number of Roles: In Ulanowicz
[26], the degree of the network complexity is quantified by
the concepts of connectivity and the number of roles of a net-
work. First, these two concepts are defined for an unweighted
network and are then extended into a weighted one. In the
unweighted network, the connectivity of a network is defined
as the average number of edges connected to a node. Let N, F,
and C be the number of nodes, the number of edges, and the
connectivity of a network respectively. Then the connectivity
can be defined as C = F/N. And the number of roles is
defined as the ratio of the connectivity of a network to the
number of nodes in the network. Let R = C/N = N2?/F be
the number of roles in a network. A role is, loosely speaking, a
specialized function defined as a group of nodes that take their
input from one source and pass them to a single destination. In
Fig. 5, the left network has the connectivity of 1 with 3 roles,
C =1 and R = 3. Intuitively, this makes sense because all
three nodes are playing a unique role in the network, taking
its inputs from one source and passing them onto another. The
right network in Fig. 5 has the connectivity of 3 with 1 role,
C = 3 and R = 1. This also makes sense because the 3
nodes are not distinguishable from each other, because they
receive from every other node and give to every other node
in the network. Even though we have some sense about the
two complexity measures from a special case, they do not
make much sense in general cases for an unweighted network.
Ulanowicz [25] extends theses complexity measures into a
weighted network. A weighted network is a network whose
edges among nodes have weights assigned to them. Because
the weight on an edge means the relative importance of an
edge, the weight on an edge plays an important role in defining
the connectivity of a node and consequently the connectivity
of a network. Thus we begin with the connectivity of a node.

1781

@e—(©

@W—©

Fig. 5: The left diagram shows the network with the connec-
tivity of 1 and 3 roles. The right diagram shows the network
with the connectivity of r and 1 role.

In Fig. 6, the node i receives SOBTC from each of the node
hl and the node /2 and sends 99 BTC and 1 BTC to the node
jI and the node j2 respectively. Intuitively, for the node i,
the input connectivity should be 2 and the output connectivity
should be close to 1 because 99% of total outflows flows out
through a single edge. Therefore, we need to weight each edge
pointing in(out) by the relative size of the weight on each edge
to the sum of weights on the edges pointing in(out). Among
various weighting schemes [25], the weighted geometric mean
is used and is proven to be the only one logically consistent
with the unweighted network to extend complexity measures
into the weighted network. Let T;; denote the magnitude of a
flow from a node i to a node j. Let T;. = > ¥ T;; denote the
total magnitude of outflows of a node i, T; = ) j T;; denote
the total magnitude of inflows of a node j, and T'. = >, . T};
denote the total magnitude of flows within a network. 7'. is
known as the total system throughput (TST). And we call
T;. and T; the output and input throughputs of a node i
respectively.

In- and Out- connectivity for vertex i are defined as
following:

IC(i) = H (%)TM/T‘: oci H (;ﬂ:)n_j/n, 0
h i : 2

And the connectivity of a vertex is the weighted geometric
mean of in- and out- connectivity of the vertex. The weight
for in-connectivity is the ratio of total inputs to total vertex
throughputs, and similarly for the weight to out-connectivity.

C(i) = IC(3) T 0C (i) T

Ti Thi/Ti.+T.s (1—‘2 Tij/Ti.+T.
_1;[( hi H

T,

(@3]

7. )

The effective network connectivity is the weighted geometric
means over all vertex connectivity. We weight the contribution
to the total connectivity from each vertex by its weight in the
system. The weight for connectivity of a vertex is the ratio of
total vertex throughput to twice the total system throughput.

:y(

»J

2 —Th;/2T.
Thy

ToT; ®)

C — H C(Z‘)(Ti'+T'i)/2T“

The effective number of flows of a weighted network is the
weighted geometric mean over all edges. The weight for each
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Fig. 6: Weighted Bitcoin transaction network illustrates the
need to weight size of each flow and each vertex in network.

TABLE III: Inputs, outputs, and total connectivity. weight for
each vertex. Graph Connectivity. Number of nodes, flows, and
roles.

node | In. Conn. Out. Conn. Conn. Weight Estimated measures

i 2 1.0576 1.4544 | 0.2849 Eff. # of nodes 3.9254
hl 1 2 1.4142 | 0.2849 Eff. # of flows 4.8593
h2 1 1 0.1425 | Eff. Connectivity | 1.2379

1.0284 | 0.2849

0.0028

Eff. # of roles 3.171

1
1
1

edge is the ratio of the size of the weight on the edge to TST.

=)

The effective number of vertices is calculated from the con-
nectivity formula, C = F'/N.
Ty, /T..

NH()

The effective number of roles is calculated from the formula,
R=N/C.
T
2=11(z7, o)

In TABLE III, the above mentioned network metrics for the
weighted network in Fig. 6 are calculated. Vertex i has 2 of
the in-connectivity and its out-connectivity is close to 1. And
vertex j2 only receives and sends 1BTC so that its weight is
negligible.

Thy/T..

“

TT ®)

Th;/T..

()

2) Complexity Measure from Information Theory: Informa-
tion theory (IT) is one approach to quantify information, and
its application can be invoked to measure the relative degrees
of the constraint and flexibility inherent in a system. IT begins
with the Boltzmann’s surprisal to quantify “Which is missing”.
The Boltzmann’s surprisal (s) of an event is estimated from
s = —klog(p) where s is one’s surprisal at seeing an event
that occurs with probability p. However, Boltzmann’s surprisal
measures the absence, not presence of an event. For the small
probability that an event occurs, the corresponding surprisal
s has large magnitude, which means the event in question is
not likely to occur. The product of the measure of presence of
an event i (p;) by the magnitude of its absence (s;) yields a
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quantity that represents the indeterminacy (h;) of the event in
question.

hi = @)

It is helpful to reinterpret equation [7] as it relates to evolu-
tionary change and sustainability. h; represents the capacity
for event i to be a significant player in a system change or
evolution. Regarding the entire ensemble of events, one can
aggregate all the indeterminacies to create a metric of the total
capacity of the system subject to change.

H= Zhi =k Zpilog(m)
i i

MacArthur applied the above well known Shannon’s infor-
mation measure to the flows in an ecosystem network as an
important tool to define the system diversity and stability [14].

1= (Rl

Later Rutledge et al. were able to decompose MacArthur’s
index into two complementary terms using the notion of
conditional probability [23]. Taking (7;;/T..) as the estimate
of the unconditional probability that a flow occurs from i to j,
(T3;/T.;) then becomes the estimator of the conditional prob-
ability that any quantum of flow continues on to component j,
given that it had originated from component i. This allows H
to be decomposed into two parts.

—kpilog(p;)

®)

€))

H=AMI + H, (10)
where
J
(11)

T,

)

T.T.

and H.=k & log

The overall complexity of the flow structure, as measured
by MacArthur’s index, can be decomposed into two parts,
AMI and He. AMI is called the average mutual information
inherent in the flow structure. AMI measures how orderly and
coherently the flows are connected, while H. measures the
residual diversity or freedom in the network. It is interesting
to see that the complexity measures developed in IT are
equivalent to the connectivity and the number of roles defined
in the previous section. MacArthure’s index is equivalent to
the logarithm of the number of flows in the weighted network.
AMI and Hc are equivalent to the logarithm of the number of
roles and the connectivity respectively. Equation [12] shows
this equivalence between the two complexity measures.

F
H=k-log(F) = k-log(6 : C)
=k-log(R)+k-log(C) = AMI + Hc

(12)

We adopt these complexity measures and apply them to
the Bitcoin transaction network. The flow is defined as the
amount of transferred Bitcoin. The above three quantities tell
us the complexity, order and freedom in the whole network,
from which we can find out how the diversity or freedom is
changing through the entire network.
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Fig. 7: The three network complexity measures: Scaled

MacAthur’s index in blue, scaled AMI in green, and scaled
Hc in red. All time series range from 1/1/2013 to 12/31/2014.

TABLE IV: The basic statistics of the complexity measures

Max Min Mean S.D.
S. MacAthur || 3.046-10T° | 1.564-10™ | 1.379-10™° | 2.274-10%°
Scaled AMI 3.031-10T% | 1.209-10™ | 1.283-10™° | 2.260-10'°
Scaled He 3.477-10" | 2.376-10™ | 9.614-10™% | 4.368-10T

In addition to the above network complexity measures, we
take account of the amount of transferred Bitcoin during a day.
We scale the above equality among the complexity measures
by the amount of transferred Bitcoin during a day and have
the additional set of three complexity measures. The followings
are the equations of the scaled complexity measures.

Ti;T.
Scaled MacAth dex = T;l 13
cale acAthur index = ZJ W Og(T Tj> (13)
Scaled AMI = — ZTZJlog( TT) (14)
i, 7
Scaled ch—ZTMog(%) (15)

iJ

The scaled AMI measures how well the network is progressing
and how the medium is flowing within the network. The scaled
Hc measures how diversified the source and the destination
of the flow is. The equality among the three complexity
measures suggests that the increase in the scaled AMI comes
at the expense of the scaled He. In Fig. 7, we plot the time
development of three complexity measures.

V. MARKET VARIABLES PREDICTION MODEL

In this section, we use the complexity measures to fore-
cast Bitcoin market price and volatility. We employ vector
autoregression (VAR) to observe the evolution and the interde-
pendencies between the network complexity and market price.
In order to test predictability of these network variables, we
test Granger-Causality relationship between market variables
such as return and volatility and network complexity defined
in section IV. We perform Granger causality analysis for each
pair of market variable and complexity measure and discuss
the results.
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TABLE V: The result of the augmented Dickey Fuller(ADF)
test for a unit root

Time series ADI.: . . .95% Order 9f
test statistics | critical value | Integration
Scaled MacAthur’s Index -3.134 -2.8642 1(0)
Scaled AMI -3.2297 -2.8642 1(0)
Scaled Hc -3.4365 -2.8642 1(0)
Return -9.7597 -2.8642 1(0)
Volatility -3.7102 -2.8642 1(0)

TABLE VI: Selected lag order for the VAR model of each pair
of the market variable and complexity measure.

Complexity measure Scaled MacAthur Scaled AMI Scaled Hc

Market variable return ‘ volatility | return ‘ volatility | return ‘ volatility

Lag order 18 | 9 17 ] 7 15 ] 2

A. Vector Autoregression

Vector autoregression was introduced as a technique to
characterize the joint dynamic behavior of a collection of
variables without requiring strong restrictions of the kind
needed to identify underlying structural parameters. In our
analysis, a VAR system contains a pair of a market variable
and a complexity measure. Each variable is expressed as a
linear function of n lags of itself and the others, plus an error
term. Our VAR system takes the following form:

M; =a+ Z ay My + Z B1iCi—i + €1y
i=1 i=1

Cy=b+ Z aiMy_; + Z B2iCi—i + €24

i=1 i=1

(16)

where M, and C} are market variable and complexity measure
respectively, and €;; and eg; are the noise terms.

Before implementing VAR, all time series are tested for
stationarity with Augmented Dickey Fuller (ADF) test. TABLE
V shows that MacArthur’s index and AMI are stationary at the
first order difference and the other time series are stationary
at the ordinary level 1(0).

B. Order Selection and Model Estimation

To check for the adequacy of the estimated vector au-
toregression models, vector autoregression lag order selection
criteria are used to choose the appropriate model orders. We
employ Akaike Information Criteria (AIC). TABLE VI shows
the lag order that has the minimum AIC value for each
combination of market variable and complexity measure. After
choosing lag order to define VAR model, we estimate all
combinations of market variable and complexity. In TABLE
VII, we list the estimated coefficients of VAR model for a
pair of volatility and system overhead. Most of coefficients
are statistically significant.

VI. DISCUSSION

A. Granger-Causality Test Results

The Granger causality test is a hypothesis test to determine
whether one time series is useful in forecasting another. The
complexity of the Bitcoin network C; is said to Granger cause
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Fig. 8: AIC value over time lag order. In upper panel, AIC
values from the VAR model for the pair of Bitcoin return and
the network complexity measure. In lower panel, AIC values
from the VAR model for the pair of Bitcoin volatility and the
network complexity measure.

TABLE VII: The result of VAR estimation for the pair of
volatility and the scaled Hc via the maximum likelihood. L1
of a time series means time lag 1, and L2 means time lag 2.
* and ** denote the significant parameters at the 95 and 99
percent significance level, respectively.

Estimated Coefficient Estimated Coefficient

for the equation of the scaled Hc | for the equation of volatility
const 26063394205790** -0.001531*%*
L1.the scaled Hc 0.672516%* -0.0000007%*
L1.volatility 96542732256270 0.4805487*
L2.the scaled Hc -0.060770 0.000000%*
L2.volatility 99015491314371 0.492765%*

the market variable M; if it can be shown that the values of C}
provide a statistically significant information about the future
values of M;. We conduct the bivariate Granger-Causality test
for all pairs between the network complexity measures and
market varialbes. In table VIII, the test hypothesis and the
result of the bivariate Granger-Causality tests are described.
Overall, we find that there exits a strong Granger causality
relationship between the scaled Hc and the market variables.
Judged by the F-stats, the 95% critical value, and the p-value,
we conclude that the Granger causal relationship is mutual
between the scaled Hc and return as well as between the
scaled Hc and volatility. The interpretation of this result is
that the residual diversity or flow freedom measured by the Hc
complexity measure Granger causes Bitcoin market return and
volatility change, and this causal relationship also has reversal
effect. We will further interpret the mutual impact through the

TABLE VIII: The result of th bivariate Granger Causality Test
for each pair of the market variables and complexity measures.
Note: ‘Mac. idx. stands for ‘MacAthur’s index’, and Vol.
stands for ‘volatility’ of Bitcoin price, and Rej. stands for
‘reject null hypothesis’.

95%
Null Hypothesis F-stats critical p-value

value
Scaled Mac. id. doesn’t Granger cause return. 0.5714 1.6088 0.922
Return doesn’t Granger cause scaled Mac. idx. 0.0000 : 1.000
Scaled Mac. id. doesn’t Granger cause vol.(Rej.) 3.0234 1.8842 0.001%#*
Vol. doesn’t Granger cause scaled Mac. idx. 0.0000 : 1.000
Scaled AMI doesn’t Granger cause return. 0.5920 1.6276 0.900
Return doesn’t Granger cause the scaled AMI. 0.0000 . 1.000
Scaled AMI doesn’t Granger cause vol. 0.5799 20138 0.773
Vol. doesn’t Granger cause the scaled AMI. 0.0001 i 1.000
Scaled Hc doesn’t Granger cause return.(Rej.) 2.3730 16711 0.002%%*
Return doesn’t Granger cause scaled He.(Rej.) 3.8257 ) 0.000%*
Scaled Hc doesn’t Granger cause vol.(Re;j.) 96.7228 29998 0.000%*
Vol. doesn’t Granger cause scaled Hc.(Rej.) 6.6701 i 0.001%**

analysis of the VAR output next.

B. Impulse Response Function Analysis

Now we analyze the impulse response function (IRF) of
VAR analysis output. In general, an impulse response refers
to the reaction of any dynamic system in response to some
external change. In Fig. 9, we plot IRF from the VAR system
containing the Bitcoin market variables (return and volatility)
and the scaled Hc. We find that when there is an impulse on
the scaled Hc, volatility increases sharply in one day and then
keeps increasing afterward, and overall the scaled Hc keeps
positive response. Similarly, when there is an impulse on the
scaled Hc, the return increases sharply in one day and then
continues to increase with a rather flat rate. However, on the
third day, there exists a return to Hc reverse impact. It seems
evident that the Grander causal relationship between the return
and the scaled Hc is not monotonic as it is the case between
the volatility and the scaled Hc.

VII. CONCLUSION

We empirically study the Bitcoin transaction data from
its inception to 12/31/2014, and we propose two network
flow measures to quantify the dynamics of the entire Bitcoin
transaction system. We constructed a VAR model to examine
the dynamic relationship between network flow complexity
and Bitcoin market variables. And we find that the network
flow complexity Hc is statistically significant in forecasting
the Bitcoin market return and volatility. After we take the total
amount of transferred Bitcoin during a day into our consider-
ation, we find that the causality relation between the volatility
and the Hc complexity is more pronounced. Furthermore, the
causality between this scaled complexity measure and the
return is also proved to be statistically significant. We argue
that the residual diversity or the freedom of Bitcoin network
flow scaled by the total system throughput can significantly
improve the predictability of Bitcoin market variables.
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