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Abstract—We revisit the problem of optimally hedging a Euro-
pean contingent claim (ECC) using a hedging portfolio consisting
of a risky asset that can be traded at pre-specified discrete times.
The objective function to be minimized is either the second-
moment or the variance of the hedging error calculated in the
market probability measure. The main outcome of our work is
to show that unique solutions exist in a larger class of admissible
strategies under integrability and non-degeneracy conditions on
the hedging asset price process that are weaker than popular
descriptions provided previously. Specifically, we do not require
the hedging asset price process to be square-integrable, and do
not use the bounded mean-variance trade off assumption. Our
criterion for admissible strategies only requires the cumulative
trading gain, and not the incremental trading gains, to be square
integrable. We derive explicit expressions for the second-moment
and the variance of the hedging error to arrive at the respective
optimal hedging strategies. Further, we explain the connections
between our work and those of the previous formulations.

I. INTRODUCTION

We revisit the problem of discrete-time hedging of a Euro-

pean contingent claim (ECC) with a portfolio consisting of a

risky security and a risk-less money market asset that grows

continuously at the risk-free rate. The risky security, known

as the hedging asset, may or may not be the underlying on

which the ECC is written and it is to be traded at pre-specified

discrete-times. The objective is to seek a hedging strategy

to minimize a quadratic-cost criterion on the profit or loss

to the seller of the ECC. Problems of such kind have been

considered previously by several authors, for example, [1]–[5]

in continuous time and [6]–[9] in discrete-time. The pre-cursor

to the current work lies in the discrete-time hedging literature.

In particular, we build on the work of [7] by weakening the

assumptions on the hedging asset price process and widening

the set of admissible trading strategies. Our approach to finding

optimal hedging strategies mainly involve manipulations of

conditional expectations.

A. Background and Motivation

Much of the work on hedging have their origin in the sem-

inal works of Black, Scholes and Merton [10], [11] wherein

the authors considered the problem of replicating an ECC

and eliminating all risk under ideal market conditions such

as continuous trading, absence of transaction costs and the

assumption that the underlying asset price follows a geometric

Brownian motion (GBM). However, in reality, trading occurs

at discrete time and in a discrete-time setting it is not possible

to hedge seller’s risk completely. Our first motivation is to

consider the problem of hedging in a discrete-time setting.

To this end, a quadratic criterion on the profit or loss is

usually considered as a criterion function to be optimized

[1]–[3]. Our second motivation is consider the problem of

quadratic hedging with weak assumptions on the hedging

asset price process than previously considered before. In here,

assumptions on the hedging asset price process are centered

on integrablity or measurability properties.

B. Scope of work

The current work seeks self financing trading strategies in

a discrete-time setting with a non-degeneracy condition that is

more general than [6], [7]. Our approach to finding optimal

hedging strategies involves computing analytical expressions

for mean, variance and second-moment of profit or loss result-

ing from an arbitrary trading strategy. These expressions are

then used to arrive at the candidate strategies for the respective

moment minimizing problems. The candidate strategies are

shown to belong to a set of admissible trading strategies.

C. Outline

The outline of the current work is as follows. In Section

II we provide a mathematical formulation to the problem.

We introduce our non-degeneracy condition on the hedging

asset process and the admissibility criterion on the set of

trading strategies. Relationship of the problem formulation

with previous works are discussed in Section III. In Section

IV several preliminary notions are introduced to provide a

platform for arguments in subsequent sections. Section V

contains the derivation of explicit expressions for the mean,

second-moment and variance of the profit or loss to the seller.

These analytical expressions are later used in Section VI to ar-

rive at the optimal hedging strategies for various optimization

problems considered. We summarize our results in Section VII.

The appendix contain proofs of certain intermediate Lemmas

stated in various sections.

II. PROBLEM SETUP

A. Notations

Consider a probability space (Ω,F , Q). Denote by

L0(Ω,F , Q), L1(Ω,F , Q) and L2(Ω,F , Q) the set of mea-

surable, integrable, and square integrable random variables

on (Ω,F , Q), respectively. Given X ∈ L1(Ω,F , Q), Y, Z ∈
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L2(Ω,F , Q), with G ⊆ F being a σ-algebra, E
Q(X),

E
Q(X |G), varQ(Y |G) and covarQ(Y, Z|G) denote, respec-

tively, the expectation of X , the conditional expectation of

X given G, the conditional variance of Y given G, and the

conditional covariance between Y and Z given G, with all

moments taken under the measure Q. We emphasize that

all inequalities and equalities involving random variables on

(Ω,F , Q) are to be understood to hold Q-almost surely.

The ECC to be hedged matures at time T . Trading

on the risky asset occurs at pre-specified discrete-times

{T0, T1, · · · , Tn}, Tk−1 < Tk, k ∈ {1, . . . , n}, with Tn = T .

Denote Sk as the discounted price of the hedging asset at time

Tk, for each k ∈ {0, . . . , n} and {Sk}
n
k=0

as the discounted

hedging asset price process on the probability space (Ω,F , Q).
We note that all discounting happens to time T0. Let β ∈ R

be the initial amount invested at time T0 in the money market

asset which includes the premium received for the ECC and

let V ∈ L2(Ω,F , Q) be the discounted payoff of the ECC.

Finally, denote Δk as the amount of the risky asset to be held

in the hedging portfolio during the time interval (Tk−1, Tk],
k ∈ {1, . . . , n}.

The probability space (Ω,F , Q) is augmented with a fil-

tration {Fk}
n
k=0

with Fk being the σ-algebra generated by

the observations up to and including the hedging time Tk,

k ∈ {0, . . . , n}. We assume F0 to be the trivial σ-algebra

augmented with Q-null sets and set Fn = F . Lastly, we

denote E
Q
i (·) and varQi (·) to be conditional expectation and

conditional variance with respect to σ-algebra Fi in measure

Q.

B. Problem statement

We restrict ourselves to self-financing hedging strategies in

the sense that, at hedging times, Tk 1 ≤ k < n, changes to

positions in the money market asset are funded only by cash

flows resulting from the trading of the risky asset. At maturity

time Tn, we liquidate the risky asset to deliver the payoff of the

ECC to the buyer. The hedging error, which is the discounted

final money-market position of the seller of the ECC is then

given by,

H(Δ, β, V ) =

n∑
i=1

Δi(Si − Si−1) + β − V. (2.1)

The hedging error (2.1) represents the profit or loss to the

seller of the ECC, with positive values of H indicating profit.

We seek hedging strategies Δ = (Δ1, . . . ,Δk) such that

the seller’s risk represented by the second-moment or the

variance of the hedging error is minimized. To this end, we

assume a certain non-degeneracy condition on the hedging

asset process and define a admissibility criterion on the set

of trading strategies.

1) Non-degeneracy condition on the underlying asset price

process: We assume the discounted hedging asset price pro-

cess Sk to be Fk-measurable for k ∈ {0, . . . , n} with the

following non-degeneracy condition:

Assumption 1: (Non-degeneracy condition) (c.f. [7]) For

each k ∈ {1, . . . , n}, Sk − Sk−1 = Mk−1Ik, where Mk−1 ∈

L0(Ω,Fk−1, Q) and Ik ∈ L2(Ω,F , Q) are such that Mk−1 is

positive Q-almost surely and varQk−1
(Ik) > 0.

Assumption 1 states that the increment in the discounted

hedging asset price, across a hedging interval, has two factors.

The measurability condition on the first factor implies that

it is determined by observations available up to the current

hedging instant. The positivity of the conditional variance

of the second factor is a non-degeneracy assumption which

represents the uncertainty in the hedging asset price increment

not captured through observations up to and until the current

hedging instant. The motivation for the factorization provided

in Assumption 1 is that it subsumes two special cases that

are listed below. The first of these is in terms of arithmetic

returns on the discounted hedging asset prices defined by

Rk =
Sk−Sk−1

Sk−1

for each k ∈ {1, . . . , n} which is defined

whenever Sk−1 is non-zero Q-almost surely.

Assumption 1A: For each k ∈ {1, . . . , n}, Sk−1 is Fk−1-

measurable and non-zero Q-almost surely. Further, Rk ∈
L2(Ω,F , Q) with varQk−1

(Rk) > 0, Q-almost surely.

Assumption 1B: For each k ∈ {1, . . . , n}, Sk − Sk−1 ∈
L2(Ω,F , Q) and varQk−1

(Sk − Sk−1) > 0, Q-almost surely.

Assumption 1A implies that Assumption 1 holds with Mk−1 =
Sk−1 and Ik = Rk for k ∈ {1, . . . , n}, while Assumption

1B implies Assumption 1 holds with Mk−1 = 1 and Ik =
Sk − Sk−1 for k ∈ {1, . . . , n}.

2) Admissibility of trading strategies: Represent a hedging

strategy by an n-tuple Δ = (Δ1, . . .Δn) of random numbers

on (Ω,F , Q). In practice, any hedging decision taken at time

Tk, k ∈ {0, . . . , n − 1} can only be based on observations

made up to time Tk. Hence it is natural to restrict ourselves

to hedging strategies that are predictable in the sense that Δk

is Fk−1-measurable for each k ∈ {1, . . . , n}. We will denote

the set of all predictable hedging strategies by P .

The discounted gain from trading accumulated up to time

Tk, k ∈ {1, . . . , n}, that accrues when the hedging strategy

Δ ∈ P is used, can be expressed as,

Gk(Δ)
�
=

k∑
i=1

Δi(Si − Si−1) =

k∑
i=1

ΔiMi−1Ii. (2.2)

We adopt the convention that G0(Δ) = 0. The sequence

{Gi(Δ)}ni=0 is referred to as the gains process resulting from

the hedging strategy Δ. We now define our criterion for

admissibility as follows (c.f. [9]),

Θ
�
= {Δ ∈ P : Gn(Δ) ∈ L2(Ω,F , Q)}. (2.3)

Observe that the set Θ is a non-trivial real vector space. The

non-triviality follows because the strategy (M−1
0 , . . . ,M−1

n−1)
is contained in Θ under Assumption 1.

III. COMPARISON OF PROBLEM FORMULATION

The solution to a quadratic hedging problem depends on

the integrability and measurability assumptions made on the

underlying asset price process referred to as non-degeneracy

conditions. While the assumption of square integrability on the
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hedging asset price process increments were used as the non-

degeneracy (ND) condition in [6], [7], [12]–[14], references

[9], [15] considered a certain no-arbitrage condition as the ND

on the underlying asset price process. Additional assumptions

on the asset price process like deterministic mean-variance

trade-off [6], [13], bounded mean-variance trade off [7], posi-

tive variance, stationary and independent returns [12] were also

made. The work of Melnikov and Nechaev in [8], has solved

the minimum-variance hedging problem without imposing any

non-degeneracy condition. However, we believe that some

non-degeneracy condition is required to ensure uniqueness

of optimal trading strategies. We further conjecture that in a

set up that is as general as in [8], an optimization problem

can have multiple trading strategies as solutions with all of

these solutions having same trading gain. Although, having

no ND condition should not be viewed as a disadvantage to

a model description, a non-degeneracy assumption helps to

restrict the class of asset price processes to meaningful ones

[9]. Finally, we note that the current exposition is for hedging

with single asset, whereas some previous works [9], [16]–[18]

have considered the case of multiple hedging assets.

Previous literature also differ in the choice of the admissi-

bility criteria for trading strategies and there are two popular

choices. While, works in [8], [9], [15], like us, considered

trading strategies whose final cumulative trading gain is square

integrable as being admissible, references [6], [7], [12]–[14]

considered trading strategies which yield square-integrable

incremental discounted gain across each trading interval as

being admissible. A rigorous definition of the latter can be

stated as below (see [7]).

Θ̂
�
= {Δ ∈ P : Δk(Sk − Sk−1) ∈ L2(Ω,F , Q)}, (3.4)

for k ∈ {1, . . . , n}. Note that a strategy Δ ∈ P is contained

in Θ̂ if and only if the incremental discounted gain that results

at each trading time from applying the strategy is square

integrable on (Ω,F , Q). The criterion for admissibility given

in the current work, which defines Θ in (2.3) requires only

that the accumulated discounted gain up to Tn to be square

integrable, and is thus weaker than the admissibility criterion

in (3.4). In other words, Θ̂ ⊆ Θ. It is also worth while to note

that Θ̂ = Θ under the stronger assumption of bounded mean-

variance trade off provided in [7]. One can therefore argue that

the stronger bounded mean-variance trade off assumption is

only needed to ensure that the solutions of the mean-variance

hedging problems, which always exist in the bigger set Θ are

actually contained in Θ̂.

IV. MATHEMATICAL PRELIMINARIES

We begin this section with two useful results whose proofs

are given in [19]. Thereafter, we introduce certain variables

that will play a key role in the subsequent sections. We end this

section with a result that provides a necessary and sufficient

condition for a trading strategy to be admissible according to

(2.3).

Lemma 4.1: Suppose W ∈ L2(Ω,F , Q), Y ∈ L0(Ω,F , Q)
and G ⊆ F , a σ-algebra, are such that varQ(W |G) > 0 and

0 < Y 2 ≤ 1. Then E
Q(W 2Y 2|G) > 0 and 0 < E

Q(Y 2|G) −
[EQ(WY 2|G)]2/EQ(W 2Y 2|G) ≤ 1.

Let Z be a random variable of the form Z = X1Y1 + · · ·+
XlYl. Clearly, if each of the products XiYi is integrable, then

Z is integrable. Lemma 4.2 provides a weaker sufficiency con-

dition for integrability of Z which will be used subsequently

in this exposition.

Lemma 4.2: Suppose Wi ∈ L1(Ω,F , Q) and Yi ∈
L0(Ω,G, Q) for every i ∈ {1, . . . , l}, where G ⊆ F is a σ-

algebra. Let Z = W1Y1+· · ·+WlYl, and Z ′ = E
Q(W1|G)Y1+

· · ·+ E
Q(Wl|G)Yl. Then the following statements hold.

1) If Z ∈ L1(Ω,F , Q), then Z ′ ∈ L1(Ω,F , Q) and

E
Q(Z|G) = Z ′.

2) If Z is nonnegative and Z ′ ∈ L1(Ω,F , Q), then Z ∈
L1(Ω,F , Q), and E

Q(Z|G) = Z ′.

Next, we define a sequence of random variables {Ui}
n
i=0 in

the following way. Assuming that, for some i ∈ {1, . . . , n},
we have defined Ui satisfying 0 < Ui ≤ 1, define Ui−1 by

Ui−1 =

√√√√E
Q
i−1(U

2
i )−

[EQ
i−1(U

2
i Ii)]

2

E
Q
i−1(U

2
i )I

2
i

. (4.5)

Applying Lemma 4.1 under Assumption 1 with Y = Ui and

W = Ii implies that the right hand side of (4.5) is well

defined and real-valued, and takes values in the interval (0, 1].
Our definition of the random variables U0, . . . , Un is now

completed by letting Un = 1. Note that Ui ∈ L2(Ω,Fi, Q)
for each i ∈ {0, . . . , n}.

Next, for each i ∈ {1, . . . , n}, define a measure Qi on

(Ω,F) by letting

dQi

dQ
=

U2
i

EQ(U2
i )

. (4.6)

It is easy to see that Qn = Q. Since Ui > 0, it follows

that each Qi is equivalent to Q, for i ∈ {1, · · · , n}. Since

Ui ≤ 1, it also follows that Lj(Ω,F , Q) ⊆ Lj(Ω,F , Qi)
for each j ∈ {1, 2} and i ∈ {1, . . . , n}. In particular, by

Assumption 1, Ii ∈ L2(Ω,F , Qi) for each i ∈ {1, . . . , n}.
Finally, we note that, given i ∈ {1, . . . , n}, W ∈ L2(Ω,F , Qi)
if and only if UiW ∈ L2(Ω,F , Q).

Next, for each i ∈ {1, . . . , n}, we introduce

μi = Mi−1E
Q
i−1(U

2
i Ii), νi = Mi−1

√
E
Q
i−1(U

2
i I

2
i ). (4.7)

Note that νi > 0 for each i ∈ {1, . . . , n} by Lemma 4.1 and

our assumption on Mi−1. Change of measure in conditional

expectations allows us to rewrite (4.7) as

μi = Mi−1E
Qi

i−1(Ii)E
Q
i−1(U

2
i ),

νi = Mi−1

√
E
Qi

i−1(I
2
i )E

Q
i−1(U

2
i ). (4.8)

Finally, (4.7) and (4.8) enable us to rewrite (4.5) as

U2
i−1 = E

Q
i−1(U

2
i )−

μ2
i

ν2i
(4.9)
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For later use, we state a useful identity, which follow from

(4.9). For each i ∈ {1, . . . , n − 1}, the following equality

holds,

U2
i = 1−

n∑
j=i+1

E
Q
i

(
μ2
j

ν2j

)
. (4.10)

We next give a useful characterization of admissible strategies

in the form of the following lemma. The proof of this Lemma

is given in the appendix.

Lemma 4.3: Suppose Δ ∈ P and i ∈ {1, . . . , n}. If Δ ∈ Θ,

then we have UiGi(Δ) ∈ L2(Ω,F , Q), and

E
Q
i−1[U

2
i G

2
i (Δ)] = U2

i−1G
2
i−1(Δ)

+ ν2i

(
Δi +

μi

ν2i
Gi−1(Δ)

)2

,(4.11)

E
Q
i−1[U

2
i Gi(Δ)] = U2

i−1Gi−1(Δ)

+ μi

(
Δi +

μi

ν2i
Gi−1(Δ)

)
. (4.12)

Furthermore, Δ ∈ Θ if and only if νiΔi +
μi

νi
Gi−1(Δ) ∈

L2(Ω,F , Q) for each i ∈ {1, . . . , n}.

V. MOMENTS OF THE HEDGING ERROR

We now turn our attention to finding expressions for the

mean, variance and second-moment of the hedging error of

an arbitrary trading strategy that is admissible in the sense

of (2.3). Our approach relies on algebraic manipulations of

conditional expectations which are rigorously justified using

Lemma 4.2. In the next section, we will use these expressions

to obtain solutions of the hedging problems.

We begin by introducing the function Fi : L
2(Ω,F , Qi)→

L0(Ω,Fi−1, Q), for each i ∈ {1, . . . , n}, by

Fi(X) = E
Qi

i−1(X)− E
Qi

i−1(Ii)
covar

Qi

i−1(Ii, X)

var
Qi

i−1(Ii)
. (5.13)

Note that the right hand side of (5.13) is defined Q-almost

everywhere since, by Assumption 1, the conditional variance

appearing on the right hand side is positive Q-almost surely.

One can show that the function Fi is a map from L2(Ω,F , Qi)
to L2(Ω,Fi−1, Qi−1) for every i ∈ {1, . . . , n} [19].

Define a collection of functions Xi, i ∈ {0, . . . , n} on

L2(Ω,F , Q) by first setting Xn(Z) = Z for all Z ∈
L2(Ω,F , Q), and then recursively define Xi−1 = Fi ◦ Xi.

Each Xi is a map from L2(Ω,F , Q) to L2(Ω,Fi, Qi). Next,

given i ∈ {0, . . . , n}, Δ ∈ P , β ∈ R, and V ∈ L2(Ω,F , Q),
define

Hi(Δ, β, V ) = Gi(Δ) + β −Xi(V ). (5.14)

Observe that Hn is same as the hedging error H of (2.1).

Given Δ ∈ P , i ∈ {1, · · · , n}, β ∈ R, and V ∈ L2(Ω,F , Q),
define ηi(Δ, β, V ) ∈ L0(Ω,Fi−1, Q) by

ηi(Δ, β, V ) = −
μi

ν2i
[Gi−1(Δ) + β]

+
Mi−1

ν2i
E
Q
i−1(U

2
i IiXi(V )). (5.15)

Note that the conditional expectations in (5.15) exist be-

cause both UiXi(V ) and UiIi are square integrable on

(Ω,F , Q), and the Cauchy-Schwartz inequality implies that

U2
i IiXi(V ) ∈ L1(Ω,F , Q). For later use, we observe that, if

i ∈ {1, . . . , n} and β1, β2 ∈ R, then

ηi(Δ, β1, V ) +
μi

ν2i
(β1 − β2) = ηi(Δ, β2, V ). (5.16)

Our next result gives a convenient alternative expression to

(5.15) in addition to the integrability properties that we will

need soon. The proof is given in appendix.
Lemma 5.1: Suppose V ∈ L2(Ω,F , Q), i ∈ {1, . . . , n},

and Δ ∈ Θ. Then we have νi(Δi − ηi(Δ, β, V )) ∈
L2(Ω,F , Q) and μi(Δi−ηi(Δ, β, V )) ∈ L2(Ω,F , Q). More-

over,

ηi(Δ, β, V ) = −
μi

ν2i
Hi−1(Δ, β, V ) +

covarQi

i−1(Ii, Xi(V ))

Mi−1var
Qi

i−1(Ii)
.

(5.17)

We now state two key results in the form a Lemma and

Theorem that will enable us to obtain expressions for the mean,

variance and second moment of the hedging error resulting

from a given admissible hedging strategy. While the proof of

the Lemma, provided in the appendix, makes use of Lemma

4.2, the proof of the Theorem 5.3, provided below, makes use

of Lemma 5.2 in a recursive manner.
Proof of Theorem 5.3 Recall that H(Δ, β, V ) =

Hn(Δ, β, V ), while Un = 1. Hence applying (5.18) with

i = n gives

E
Q
n−1[H(Δ, β, V )] = U2

n−1Hn−1(Δ, β, V )

+ μn[Δn − ηn(Δ, β, V )].

Now suppose that, for some j ∈ {1, . . . , n−1}, the following

holds.

E
Q
n−j [H(Δ, β, V )] = U2

n−jHn−j(Δ, β, V )

+
n∑

k=n−j+1

E
Q
n−j [μk{Δk − ηk(Δ, β, V )}] . (5.24)

Lemmas 5.1 and 5.2 imply that all terms on the right hand side

of the above equation are integrable on (Ω,F , Q). Taking the

conditional expectation E
Q
n−j−1

(·) on both the sides of the

above equation and using (5.18) with i = n− j yields

E
Q
n−j−1[H(Δ, β, V )] = U2

n−j−1Hn−j−1(Δ, β, V )

+

n∑
k=n−j

E
Q
n−j−1 [μk{Δk − ηk(Δ, β, V )}] (5.25)

that is, (5.24) holds with j replaced by j − 1. Noting from

(5.14) that H0(Δ, β, V ) = β−X0(V ) and applying induction

yields (5.19). A similar induction argument based on (5.18)

yields (5.21).
To prove (5.20), we use (4.10) with i = 0 to write (5.19)

as
n∑

i=1

E
Q

[
μi

{
Δi − ηi(Δ, β, V )−

μi

ν2i
(β −X0(V ))

}]
+(β−X0(V )).
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Lemma 5.2: Suppose Δ ∈ Θ, V ∈ L2(Ω,F , Q), β ∈ R, and i ∈ {1, . . . , n}. Then, UiHi(Δ, β, V ) ∈ L2(Ω,F , Q), and

E
Q
i−1[U

2
i H

2
i (Δ, β, V )] = U2

i−1H
2
i−1(Δ, β, V ) + ν2i [Δi − ηi(Δ, β, V )]2

+ E
Q
i−1(U

2
i )

[
varQi

i−1(Xi(V )) −
covarQi

i−1(Ii, Xi(V ))2

varQi

i−1(Ii)

]

E
Q
i−1[U

2
i Hi(Δ, β, V )] = U2

i−1Hi−1(Δ, β, V ) + μi[Δi − ηi(Δ, β, V )]. (5.18)

Equation (5.20) now follows on using (5.16) with β1 = β and

β2 = X0(V ).
Next, on using (5.16) with β1 = β and β2 = X0(V ) to

substitute for ηi(Δ, β, V ) in terms of ηi(Δ, X0(V ), V ), we

have
∑n

i=1
E
Q[ν2i {Δi − ηi(Δ, β, V )}2] equals

n∑
i=1

E
Q[ν2i {Δi − ηi(Δ, X0(V ), V )}2]

+ [β −X0(V )]2
n∑

i=1

E
Q(μ2

i /ν
2
i )

+ 2[β −X0(V )]

n∑
i=1

E
Q [μi{Δi − ηi(Δ, X0(V ), V )}] .

Using 4.10 with i = 0 to replace the last summation

above and using the resulting expression in (5.21) yields

E
Q[H2(Δ, β, V )] as

n∑
i=1

E
Q[ν2i {Δi − ηi(Δ, X0(V ), V )}2] + [β −X0(V )]2 + σ2

0

+ 2[β −X0(V )]
n∑

i=1

E
Q[μi{Δi − ηi(Δ, X0(V ), V )}].

Squaring (5.20) and subtracting from the last equation gives

(5.22). �

VI. OPTIMAL HEDGING STRATEGIES

In this section, we use the expressions derived in the

previous section to obtain solutions of various optimal hedging

problems. We will soon see that all optimal strategies involve

the function given by Δ∗ : R×L2(Ω,F , Q)→ P defined by

Δ∗i (β, V ) = −
μi

ν2i
[Gi−1(Δ

∗(β, V )) + β]

+
Mi−1

ν2i
E
Q
i−1(U

2
i IiXi(V )), (6.26)

for each i ∈ {1, . . . , n}.

Remark One can show that the function Δ∗i (β, V ) given

by equation (6.26) does not depend on the factorization in

Assumption 1. To this end, we first argue that the variables

{Ui}
n
i=1, {μi}

n
i=1 and {νi}

n
i=1 do not depend on the said fac-

torization. Let the asset price increments have an alternate fac-

torization given by, Si−Si−1 = M̂i−1Îi for each i, with M̂i−1

and Îi satisfying the conditions in Assumption 1. Define ran-

dom variables {Ûi}
n
i=1 for the new factorization using (4.5). If

Theorem 5.3: Suppose Δ ∈ θ, β ∈ R and V ∈ L2(Ω,F , Q). Then

E
Q[H(Δ, β, V )] =

n∑
i=1

E
Q[μi{Δi − ηi(Δ, β, V )}] + U2

0 [β −X0(V )] (5.19)

=

n∑
i=1

E
Q[μi{Δi − ηi(Δ, X0(V ), V )}] + (β −X0(V )) (5.20)

E
Q[H2(Δ, β, V )] =

n∑
i=1

E
Q[ν2i {Δi − ηi(Δ, β, V )}2] + U2

0 [β −X0(V )]2 + σ2
0 (5.21)

varQ(H(Δ, β, V )) =
n∑

i=1

E
Q[ν2i {Δi − ηi(Δ, X0(V ), V )}2]

−

[
n∑

i=1

E
Q[μi{Δi − ηi(Δ, X0(V ), V )}]

]2
+ σ2

0 (5.22)

where

σ2
0 =

n∑
i=1

E
Q

[
E
Q
i−1(U

2
i )

{
varQi

i−1(Xi(V ))−
{covarQi

i−1(Ii, Xi(V ))}2

varQi

i−1(Ii)

}]
. (5.23)
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TABLE I
SOLUTION FOR VARIOUS QUADRATIC HEDGING PROBLEMS

Quantities Problems
1 1a 2 2a

Δ Δ∗(X0(V ), V ) Δ∗(β0, V ) Δ∗(X0(V ), V ) Δ∗(X0(V ), V )
β X0(V ) β0 undetermined β0

E
Q[H(Δ, β, V )] 0 U2

0
[β0 −X0(V )] undetermined [β0 −X0(V )]

E
Q[H2(Δ, β, V )]− σ2

0
0 U2

0
[β0 −X0(V )]2 undetermined [β0 −X0(V )]2

varQ(H(Δ, β, V )) − σ2

0
0 U2

0
(1− U2

0
)[β0 −X0(V )]2 0 0

Ui = Ûi for some i, then Îi = Mi−1Ii/M̂i−1. From Lemma

4.2, we have, E
Q
i−1(U

2
i Î

2
i ) = (Mi−1/M̂i−1)

2
E
Q
i−1(U

2
i I

2
i )

and E
Q
i−1(U

2
i Îi) = (Mi−1/M̂i−1)E

Q
i−1(U

2
i Ii), so that (4.5)

yields Ûi−1 = Ui−1. This implies Ûi = Ui for all i, since

Ûn = Un = 1. A similar reasoning can be put forth to show

that the variables {μi}
n
i=1 and {νi}

n
i=1 are independent of the

factorization. Next, observe that the term Gi−1(Δ
∗(β, V )) is

a sum of asset price increments across trading intervals which

is independent of the factorization. Lastly, the second term

on the right hand side of equation (6.26) involves the product

Mi−1Ii which again is independent of the factorization.

One can show that the function Δ∗ is a linear function from

R × L2(Ω,F , Q) to Θ and actually yields an admissible

strategy for each initial investment β ∈ R and a payoff

V ∈ L2(Ω,F , Q). Moreover, for every β ∈ R and V ∈
L2(Ω,F , Q), Δ∗(β, V ) is the unique hedging strategy in P
satisfying Δi = ηi(Δ, β, V ) for all i ∈ {1, . . . , n} [19].

The fact that Δ∗(β, V ) satisfies Δi = ηi(Δ, β, V ) for all i ∈
{1, . . . , n} along with (5.17) yields the alternative expression

Δ∗i (β, V ) = −
μi

ν2i
Hi−1(Δ

∗
i (β, V ), β, V )

+
covarQi

i−1(Ii, Xi(V ))

Mi−1var
Qi

i−1(Ii)
, (6.27)

for each i ∈ {1, . . . , n}. In the rest of this section, we present

solutions to problems which do not involve any constraints

on the hedging strategy. For convenience we first list out the

problems we solve.

1 Find the admissible trading strategy Δ and the initial

investment β that minimizes the second-moment of the

hedging error

1a Find admissible trading strategy Δ that minimizes the

second-moment of the hedging error for a given initial

investment β0

2 Find admissible trading strategy Δ and initial investment

β that minimizes the variance of the hedging error

2a Find admissible trading strategy Δ that minimizes the

variance of the hedging error for a given initial investment

β0

Proposition 6.1: Suppose V ∈ L2(Ω,F , Q), and β0 ∈ R.

Then, under Assumption 1, the unique solutions to the prob-

lems listed above as well as the corresponding values for the

second moment, mean, and the variance of the hedging error

are as given in Table I.

Proof. First, note that the constraint 1a fixes β to be β0. The

solution to problem 1a becomes evident on inspecting (5.21),

and recalling that Δ∗(β, V ) is the unique hedging strategy

in Θ satisfying Δi = ηi(Δ, β, V ) for all i ∈ {1, . . . , n}.
The expressions for the mean and second moment of the

hedging error follow from (5.19) and (5.21), respectively,

while the variance is directly computed as EQ[H2(Δ, β, V )]−
[EQ[H(Δ, β, V )]2.

The solution to problem 1, its uniqueness and the resulting

second moment of the hedging error readily follow from

observing (5.21) and fixing β = X0(V ). The expression for

the resulting hedging error variance follows from substituting

Δi = ηi(Δ, β, V ) for all i ∈ {1, . . . , n} into (5.22), while

E
Q[H(Δ, β, V )] = 0 follows by letting β = X0(V ) in the

expression (5.19).

Recall that from equation (5.22) and that Δ∗(·) is a

unique hedging strategy in P satisfying Δi = ηi(Δ, β, V )
for all i ∈ {1, . . . , n} imply that varQ(H(Δ, β, V )) =
σ2
0 for Δ = Δ∗(X0(V ), V ), while it can be shown that

varQ(H(Δ, β, V )) ≥ σ2
0 for all Δ ∈ Θ. It follows that the

minimum in problem 2 is achieved by Δ = Δ∗(X0(V ), V ).
Since varQ(H(Δ, β, V )) does not depend on β, the optimiza-

tion in problem 2 does not determine β. Consequently, the

mean and second moment of the hedging error resulting from

the optimal strategy remains undetermined.

Since the variance of the hedging error does not depend

on β, the solution to problem 2a is the same as the solution

to problem 2. The expression for the mean of the hedging

error follows by substituting Δ = Δ∗(X0(V ), V ) and β =
β0 in (5.20), while the expression for the second moment

of the hedging error follows by using E
Q[H2(Δ, β, V )] =

varQ(H(Δ, β, V )) + [EQ[H(Δ, β, V )]]2. �

VII. SUMMARY AND OUTLOOK

In this paper, we considered the problem of discrete-time

quadratic optimal hedging of an ECC with a portfolio consist-

ing of a risky asset. Specifically, optimal hedging strategies

were obtained that minimize the second-moment and the

variance of the profit and loss to the seller of the ECC.

The problem setup differs from previous formulations by

having weaker non-degeneracy assumptions on the hedging

asset price process and a broader admissibility criterion for

trading strategies. The solution approach relies mainly on

manipulations of conditional expectations and sums of squares.

We derived analytical expressions for second-order moments

of the hedging error and used them to arrive at optimal
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trading strategies. A longer version of the work containing

derivation of variance optimal martingale measures, mean-

variance frontier determination and connections to previous

literature is available at [19]

As noted in the introduction, the solution to the discrete-

time hedging problems depend on the non-degeneracy assump-

tions on the underlying asset price process. In this context, it is

worthwhile to identify the weakest non-degeneracy condition

required for solving such hedging problems and eventually

examine the need for any sort of non-degeneracy assumption.

Such analysis will more shed light into the problem setting

such as the one in [8]. It may also be useful to characterize

equivalent non-degeneracy conditions for the multi-asset case

involving covariances of different underlying asset prices and

examine their role in solving the hedging problem. We end

by noting that the solutions of various quadratic hedging

problems presented in Section VI involve computationally

intensive Monte-Carlo simulations. However, when underlying

asset price process follows a definite model like GBM, it may

be possible to arrive at closed form expressions for hedging

problems. For example, closed form solutions to hedging

problems for simple ECCs [20], [21] and path-dependent

ECCs [22] are available for the GBM case.

VIII. APPENDIX

Proof of Lemma 4.3 Note that the right hand side of

(4.11) is well defined since νi > 0. For the first assertion,

suppose Δ ∈ Θ. Then UnGn(Δ) ∈ L2(Ω,F , Q). To set up

an induction argument, pick i ∈ {2, . . . , n}, and suppose we

have shown that UiGi(Δ) ∈ L2(Ω,F , Q).
We may use (2.2) to expand U2

i G
2
i (Δ) into a sum

W1Y1 + W2Y2 + W3Y3, with W1 = U2
i , Y1 = G2

i−1(Δ),
W2 = U2

i Ii, Y2 = 2ΔiMi−1Gi−1(Δ), W3 = U2
i I

2
i ,

and Y3 = Δ2
iM

2
i−1 Note that each Wj , j ∈ {1, 2, 3}

is integrable on (Ω,F , Q), while each Yj , j ∈ {1, 2, 3}
is Fi−1-measurable. Assumption 1 implies that part 1)

of Lemma 4.2 applies with Z = U2
i G

2
i (Δ). Hence,

we have E
Q
i−1(U

2
i G

2
i (Δ)) =

∑3

j=1
E
Q(Wj |Fi−1)Yj =

E
Q
i−1(U

2
i )G

2
i−1(Δ)+2μiΔiGi−1(Δ)+ ν2i Δ

2
i , where we have

used (4.7). Using (4.9) to express EQ
i−1

(U2
i ) in terms of U2

i−1,

μi and νi, and rearranging terms yields (4.11). Equation (4.11)

implies that U2
i−1G

2
i−1(Δ) is dominated by the integrable

random variable E
Q
i−1[U

2
i G

2
i (Δ)], and hence is integrable on

(Ω,F , Q). Induction now completes the proof of the assertion

on integrability, as well as that of (4.11).

To prove (4.12), pick i ∈ {1, . . . , n}, and observe

that U2
i Gi(Δ) = U2

i Gi−1(Δ) + ΔiMi−1U
2
i Ii. U2

i Gi(Δ)
is integrable by Lemma 4.3. Therefore, by Lemma 4.2,

E
Q
i−1

(U2
i Gi(Δ)) = E

Q
i−1

(U2
i )Gi−1(Δ) + μiΔi. Substituting

for E
Q
i−1(U

2
i ) from (4.9) yields (4.12).

To prove necessity in the second assertion, suppose Δ ∈ Θ,

and choose i ∈ {1, . . . , n}. Then, by the first assertion, (4.11)

holds, and UiGi(Δ) ∈ L2(Ω,F , Q). Equation (4.11) implies

that (νiΔi +
μi

νi
Gi−1(Δ))2 is dominated by the integrable

random variable E
Q
i−1[U

2
i G

2
i (Δ)], and hence is integrable

on (Ω,F , Q). To prove sufficiency, consider Δ ∈ P . For

each i ∈ {1, . . . , n}, denote Ni =
(
νi Δi + μi

νi
Gi−1(Δ)

)
and suppose Ni ∈ L2(Ω,F , Q) for i ∈ {1, · · · , n}. The

proof proceeds by induction on i. Observe that U1G1(Δ) =
U1Δ1M0I1, which is square integrable on (Ω,F , Q) since Δ1

and M0 are deterministic and I1 ∈ L2(Ω,F , Q). Now suppose

that Ui−1Gi−1 ∈ L2(Ω,F , Q) for some i ∈ {2, . . . , n}. Recall

that we may expand U2
i G

2
i (Δ) = W1Y1 + W2Y2 + W3Y3,

where Wj ∈ L1(Ω,F , Q) and Yj ∈ L0(Ω,Fi−1), j ∈
{1, 2, 3}, are as chosen earlier in the proof. An easy calculation

yields
∑3

j=1
E
Q(Wj |Fi−1)Yj = U2

i−1G
2
i−1(Δ) + N2

i , which

is integrable by the induction hypothesis and our assumption

on Ni. Since U2
i G

2
i (Δ) is nonnegative, part 2) of Lemma 4.2

implies that UiGi(Δ) ∈ L2(Ω,F , Q). It follows by induction

that UiGi(Δ) ∈ L2(Ω,F , Q) for all i ∈ {1, . . . , n}. In

particular, we have, UnGn(Δ) = Gn(Δ) ∈ L2(Ω,F , Q).
Thus Δ ∈ Θ, and sufficiency follows. �

Proof of Lemma 5.1 Substituting for ηi(Δ, β, V ) from

(5.15) yields

νi(Δi − ηi(Δ, β, V )) = [νiΔi +
μi

νi
Gi−1(Δ)] −

μi

νi
β

+
Mi−1

νi
E
Q
i−1

(U2
i IiXi(V )).(8.28)

The first term on the right hand side of (8.28) is in L2(Ω,F , Q)
by Lemma 4.3, since Δ ∈ Θ. We can see from (4.8)

that μ2
i /ν

2
i ≤ 1, and hence the second term (μi/νi)β ∈

L2(Ω,F , Q). On using the definition of νi from (4.7) and

the Cauchy-Schwartz inequality, we find that the square of

the third term on the right hand side of (8.28) is bounded

above by E
Q
i−1[U

2
i X

2
i (V )]. Since Xi(V ) ∈ L2(Ω,F , Qi), we

have U2
i X

2
i (V ) ∈ L1(Ω,F , Q), and hence E

Q
i−1[U

2
i X

2
i (V )] ∈

L1(Ω,F , Q) and
Mi−1

νi
E
Q
i−1(U

2
i IiXi(V )) ∈ L2(Ω,F , Q).

This proves the first inclusion. The second inclusion follows

from the first by noting from (4.8) that μ2
i ≤ ν2i Q-almost

surely.

Next, let Z denote the right hand side of (5.17). On

substituting for Hi−1 from (5.14) into the right hand side of

(5.17), we get

Z +
μi

ν2i
[Gi−1(Δ) + β] =

μi

ν2i
Xi−1(V ) +

covarQi

i−1(Ii, Xi(V ))

Mi−1var
Qi

i−1
(Ii)

=
1

Mi−1

[
E
Qi

i−1(Ii)E
Qi

i−1[Xi(V )] + covarQi

i−1(Ii, Xi(V ))

E
Qi

i−1(I
2
i )

]

=
1

Mi−1

E
Qi

i−1(IiXi(V ))

E
Qi

i−1(I
2
i )

=
1

Mi−1

E
Q
i−1

(U2
i IiXi(V ))

E
Q
i−1

(U2
i I

2
i )

=
Mi−1

ν2i
E
Q
i−1(U

2
i IiXi(V )),

where the second equality uses (5.13), and the last equality

use (4.7). A comparison of (8.29) with (5.15) shows that Z =
ηi(Δ, β, V ), that is, (5.17) holds. �

Proof of Lemma 5.2 Note that UiGi(Δ) ∈ L2(Ω,F , Q)
by Lemma 4.3, βUi ∈ L2(Ω,F , Q) by boundedness, and
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UiXi(V ) ∈ L2(Ω,F , Q) by construction of Xi. Hence, by

(5.14), UiHi(Δ, β, V ) = UiGi(Δ) + βUi − UiXi(V ) ∈
L2(Ω,F , Q). We note that UiHi(Δ, β, V ) can be written as,

UiHi(Δ, β, V ) = UiIi︸︷︷︸
W1

[Δi − ηi(Δ, β, V )]Mi−1︸ ︷︷ ︸
Y1

+ Ui

(
1−

μi

ν2i
Mi−1Ii

)
︸ ︷︷ ︸

W2

Hi−1(Δ, β, V )︸ ︷︷ ︸
Y2

+ Ui[E
Qi

i−1
[Xi(V )]−Xi(V )]︸ ︷︷ ︸

W3

+ Ui[Ii − E
Qi

i−1
(Ii)]︸ ︷︷ ︸

W4

covar
Qi

i−1(Ii, Xi(V ))

var
Qi

i−1(Ii)︸ ︷︷ ︸
Y4

.

From the right hand side of equation (8.29), one can use

algebraic manipulations involving expressions for Hi(Δ, β, V )
and Hi−1(Δ, β, V ) from (5.14), ηi(Δ, β, V ) from (5.17) and

the relationship between Xi and Xi−1 from (5.13) to arrive

at the left hand side of (8.29).

We observe that UiHi(Δ, β, V ) is a sum
∑4

j=1
WjYj ,

where Y3 = 1, and Y1, Y2, Y4 and Wj , j ∈ {1, . . . , 4}
are as indicated in (8.29). The random variables Yj , j ∈
{1, . . . , 4} are clearly Fi−1-measurable, while W1,W3,W4 ∈
L2(Ω,F , Q). Applying Lemma 4.2 to the expansion of W 2

2

and using (4.5) yields W2 ∈ L2(Ω,F , Q) and E
Q
i−1

(W 2
2 ) =

U2
i−1. Our observation following Lemma 4.2 now shows that

E
Q
i−1[U

2
i H

2
i (Δ, β, V )] =

∑
j,k≤4

E
Q
i−1(WjWk)YjYk. (8.29)

We next compute the terms on the right hand side of (8.29).

Equation (4.7) readily yields E
Q
i−1(W

2
1 )Y

2
1 =

ν2i [Δi − ηi(Δ, β, V )]2. The products W1W2, W1W3

and W1W4 are contained in L1(Ω,F , Q) by the

Cauchy-Schwartz inequality. Hence, applying Lemma

4.2 to the expansions of W1W2, W1W3 and W1W4,

and using (4.7) and (4.6) yields E
Q
i−1(W1W2) = 0,

E
Q
i−1(W1W3) = −EQ

i−1(U
2
i )covar

Qi

i−1(Ii, Xi(V )) and

E
Q
i−1(W1W4) = E

Q
i−1(U

2
i )var

Qi

i−1(Ii), so that we have

E
Q
i−1(W1W3)Y1Y3 + E

Q
i−1(W1W4)Y1Y4 = 0. Similarly,

applying Lemma 4.2 to the expansions of W2W3 and

W2W4, and using (4.8) and (4.6) yields E
Q
i−1(W2W3) =

E
Q
i−1(U

2
i )E

Qi

i−1(Ii)covar
Qi

i−1(Ii, Xi(V ))/EQi

i−1(I
2
i ) and further

E
Q
i−1(W2W4) = −EQ

i−1(U
2
i )E

Qi

i−1(Ii)var
Qi

i−1(Ii)/E
Qi

i−1(I
2
i ),

so that E
Q
i−1(W2W3)Y2Y3 + E

Q
i−1(W2W4)Y2Y4 = 0.

A direct computation shows E
Q
i−1(W

2
3 ) =

E
Q
i−1(U

2
i )var

Qi

i−1(Xi(V )), EQ
i−1(W

2
4 ) = E

Q
i−1(U

2
i )var

Qi

i−1(Ii),

and E
Q
i−1(W3W4) = −E

Q
i−1(U

2
i )covar

Qi

i−1(Ii, Xi(V )), so that∑
j,k∈{3,4} E

Q
i−1(WjWk)YjYk can be written as

E
Q
i−1(U

2
i )

[
varQi

i−1(Xi(V ))−
{covarQi

i−1(Ii, Xi(V ))}2

varQi

i−1(Ii)

]
.

Substituting into (8.29) now yields (5.18). The integra-

bility of UiHi(Δ, β, V ) implies that U2
i Hi(Δ, β, V ) ∈

L1(Ω,F , Q). Multiplying (8.29) by Ui yields an expansion

of U2
i Hi(Δ, β, V ), to which Lemma 4.2 is applied to obtain

E
Q
i−1(U

2
i Hi(Δ, β, V )) =

∑
j≤4

E
Q
i−1(Wj)Yj . Equations (4.7)

and (4.9) readily yield E
Q
i−1(W1) = μi/Mi−1, E

Q
i−1(W2) =

U2
i−1, and E

Q
i−1(W3) = E

Q
i−1(W4) = 0. Equation (5.18) now

follows immediately. �
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