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Abstract—We examine retailers that maximize their relative
profit, which is the (absolute) profit relative to the average
profit of the other retailers. Customer behavior is modelled by a
multinomial logit (MNL) demand model. Although retailers with
low retail prices attract more customers than retailers with high
retail prices, the retailer with the lowest retail price, according
to this model, does not attract all the customers. We provide
first and second order derivatives, and show that the relative
profit, as a function of the retailer’s own price, has a unique local
maximum. Our experiments show that relative profit maximizers
“beat” absolute profit maximizers, i.e. they outperform absolute
profit maximizers if the goal is to make a higher profit. These
results provide insight into market simulation competitions, such
as the Power TAC.

I. INTRODUCTION

In some situations, retailers (also referred to as firms)
have the incentive to “win”, by making a higher profit than
other retailers, rather than to maximize their own profit. In
the literature, several reasons for this are suggested. First,
managers of firms may be rivalrous by nature [1]. Second,
firms with an incentive to maximize their profit in the long
term may sacrifice their profit in the short term, in order to
gain a larger market share [2]. This way, other firms are pushed
out of the market and new firms are prevented from entering,
eventually to the benefit of the firm’s profit. Another possibility
is that managers are paid according to their performance
relative to other managers [1], [2]. Finally, in tournaments
where the participants are ranked by their profit (e.g. [3], [4]),
the incentive is to make more profit than others, rather than to
maximize one’s own profit.

If the goal is to win, firms are known to perform better if
they maximize their relative profit instead of their (absolute)
profit [5]. Relative profit is the absolute profit minus the
average absolute profits of the other firms (possibly weighted
by some factor). Though relative profit maximization is not
necessarily the same as winning, it is intuitive that relative
profit maximizers, by taking into account the other firms’
profits, outperform absolute profit maximizers if the goal is
to win.

In this paper, we study relative profit maximizers in retail
markets. To model customer behavior, we use the multinomial
logit (MNL) demand model [6], which is among the most
widely used stochastic demand models (see Section II). It has
the desired property that customers do not necessarily buy a
product at the lowest possible price, though the probability of
buying a product is higher if its price is lower. There are several

reasons why a customer may buy a more expensive product,
despite the availability of a cheaper alternative. They may do
this either intentionally, e.g. if they believe the more expensive
product is better, or unintentionally, e.g. if they are unaware
of the cheaper alternative. In addition, the MNL model has
the mathematically elegant property that the ratio between the
probabilities of choosing among two products is independent
of the probabilities of buying other products.

Due to its desired properties, MNL demand is a useful
model to study in combination with relative profit. In partic-
ular, an interesting application of MNL demand and relative
profit maximization is the Power TAC competition [4]. The
participants of this tournament create retailer agents that trade
electricity in a simulation of a smart grid electricity market.
Customers in this simulation behave according to the MNL
model. The winner of the competition is the retailer with
the highest profit, so participants have the incentive to create
relative profit maximizers.

To our knowledge, relative profit maximizers have not yet
been studied in combination with the MNL demand model,
despite its desired properties. The goal of this paper is to
provide this connection. The next section describes previous
work on relative profit and MNL demand. In Section III, we
formally describe the MNL demand model, and we introduce
the concept of relative profit. In Section IV, we give the
first and second order derivatives of the relative profit with
respect to the own price, and we show that relative profit has
a unique local maximum. We also show that, unlike absolute
profit maximizers, a relative profit maximizer may, under
certain conditions, have a retail price lower than the cost price.
Furthermore, we show this retail price may be part of a Nash
equilibrium. We give necessary and sufficient conditions under
which a relative profit maximizer is more competitive than an
absolute profit maximizer in the same situation. As opposed
to what previously has been assumed, conditions exist under
which a relative profit maximizer is less competitive. Section V
describes and discusses the experiments we performed in order
to examine the performance of relative profit maximizers if the
goal is making more profit than other retailers. The results
suggest that relative profit maximizers outperform absolute
profit maximizers in all settings. Finally, in Section VI, we
summarize and conclude.

II. RELATED WORK

Though relative profit maximization has not been studied
as extensively as absolute profit maximization, a considerable
number of papers have been published over the years. Bishop
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[7] suggests that relative profit maximization as a “warfare”
strategy is a plausible outcome of duopoly market games
where the firms compete on quantity. Shubik and Levitan
[8] describe “beat-the average” games. Lundgren [1] suggests
that collusion can be prevented by installing incentives to
maximize relative profit. Donaldson and Neary [9] show that,
if relative profit incentives are imposed, efficiency is achieved
in a socialist industry. Matsumura et al. [10] examine relative
profit maximizers in the context of R&D expenditure.

Several papers have shown that, if the goal is to have
a higher profit than other firms, relative profit maximizers
outperform absolute profit maximizers. Jones [3] describes a
“classroom game” where firms compete on quantity, and the
firm with the highest profit wins. In this game, successful
players aim for relative profit maximization. In an evolutionary
setting, Schaffer [5] and Vega-Redondo [11] show that, in
Cournot-models, a firm outperforms another firm by unilater-
ally deviating from the Cournot equilibrium. By doing so, the
firm decreases its own profit, but decreases the other firm’s
profit even more. It is shown that games with only relative
profit maximizers result in the Bertrand equilibrium, in which
firms sell their products at the cost price. Riechmann [2]
analyzes a Cournot model in which the firms are a mix of
absolute and relative profit maximizers, and shows that the
equilibrium lies between the Cournot and Bertrand equilibria.

All the work mentioned so far uses Cournot models, in
which the market price is determined by the total output of
all firms. In such models, all firms with a non-zero output sell
their products at this price. However, in many situations this
is unrealistic, because firms can have different retail prices
and still have a non-zero output. A few exceptions, though,
exist in the literature. First, Appendix C in the paper by
Lundgren [1] analyzes a case with heterogeneous products with
different prices. It is shown that relative profit maximizers are
more competitive than absolute profit maximizers, provided
that both firms have a positive price-cost margin. Besides this
conclusion, however, no extensive analysis is provided. Sec-
ond, Nakamura and Saito [12] use a duopoly model allowing
different prices, but their paper mainly focusses on capacity
choice, which is not directly related to our problem. Finally,
Satoh and Tanaka [13] analyze relative profit maximization for
an oligopoly market that allows different prices. They show the
existence of pure strategy equilibria, but they do not address
the issue of outperforming other firms.

To our knowledge, our paper studies relative profit for
MNL demand for the first time. This model, as opposed to
Cournot models, has the desired property that firms can have
different prices and still have a non-zero output. For this model,
we derive some properties that have not been reported for other
models, such as the possibility of prices lower than the cost
price and situations in which relative profit maximizers are less
competitive than absolute profit maximizers. Furthermore, we
study the performance of relative profit maximizers if the goal
is to outperform each other.

Despite their absence in the relative profit literature, MNL
demand models [6] are common models for customer behavior
in the economics literature. In most of this research, firms
are assumed to be absolute profit maximizers [14]–[20]. Some
research has been conducted, though, on firms with different
objective functions (e.g. risk averse firms [21]).

III. RETAIL MARKET MODEL

Here we describe the MNL demand model [6], which
expresses the demand of customers as a function of the retail
prices of the retailers in the market. We also introduce the
concept of relative profit. Though more research has been
conducted on absolute profit, in some situations, relative profit
maximizers outperform absolute profit maximizers. In particu-
lar, if retailers have the goal to have a higher profit than other
retailers, then relative profit maximizers perform better than
absolute profit maximizers.

A. MNL Demand

The MNL demand model is a stochastic choice model,
which means the choice of a customer is sampled from a
probability distribution. A customer chooses from a finite set
of products or chooses not to buy any of them. The latter
is called the exit option, and it means that the customer
either buys elsewhere or does not buy at all. The MNL
model assigns a probability to every option. The model can
also be used to model a group of customers with the same
choice model. In that case, the MNL demand is interpreted
as the proportion of customers that buy the product. In our
model, every retailer sells a single type of product. These
products are homogeneous, i.e. all products have the same
value to the customer, and preferences are only determined by
the retail prices. Although cheaper products are bought more
often than more expensive products, customers do not only
buy the cheapest product. Furthermore, the ratio between the
demand of two products is independent of the demand of other
products.

We now give an expression for the MNL demand. Let n be
the number of retailers and let �p = 〈p1, . . . , pn〉 be the vector
of retail prices of the retailers’ products. The probability qi(�p)
that a customer buys from retailer i is

qi(�p) =
e−λpi

e−λp0 +
∑n

j=1 e
−λpj

, (1)

where λ > 0 and p0 > 0 are parameters of the model. Note
that 0 < qi(�p) < 1. The parameter λ determines the amount
of stochasticity. In the extreme case of λ = 0, the customer’s
choice has a uniform distribution, regardless of the retail prices.
The other extreme, λ = ∞, is the deterministic case, where
the customer buys the cheapest product with probability 1. The
parameter p0 specifies the price of the exit option. Depending
on the application, customers that choose the exit option buy
the product elsewhere, or they do not buy it at all.

B. Absolute and Relative Profit

Here, we give a formal definition of relative profit. We
assume each retailer i has a constant marginal cost ci. The
absolute profit πi of retailer i is

πi(�p) = (pi − ci)qi(�p). (2)

The relative profit ραi (�p) of retailer i is defined as

ραi (�p) = πi(�p)− α
∑

1≤k≤n,k �=i

πk(�p). (3)

The parameter α specifies the degree of relativity. It can have
any real value (even less than 0 for colluding retailers). In
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this paper we assume α ≥ 0. Three special cases are to be
distinguished. First, if α = 0, then ραi (�p) coincides with the
absolute profit. Second, if α = 1

n−1 then ραi (�p) is the retailer’s
own profit minus the average profit of the other retailers. If
the goal is to maximize relative profit with α = 1

n−1 , then

the game is zero-sum, because
∑n

i=1 ρ
1

n−1

i (�p) = 0. Finally,
if α = 1, then an increase of another retailer’s profit has the
same impact on ραi (�p) as a decrease by the same amount of the
retailer’s own profit. In some papers, the definition of relative
profit is restricted to α = 1

n−1 (e.g. [1], [13]), while others
use the same definition as ours (e.g. [10], [12]). For a more
general version of relative profit, we refer to Koçkesen [22].

IV. ANALYSIS

Here we give some useful properties of the MNL demand
model, the absolute profit, and the relative profit. The derivative
of the demand qi(�p) with respect to pi is

∂qi
∂pi

= −λqi(�p)(1− qi(�p)). (4)

Note that ∂qi
∂pi

< 0, so the higher the retail price, the lower
the probability that the customer buys from i. Furthermore,
for k �= i, the derivative of qk(�p) with respect to pi is

∂qk
∂pi

= λqk(�p)qi(�p).

This implies ∂qk
∂pi

> 0, so the higher the retail price of one
retailer, the higher the probability that the customer buys from
another retailer.

The derivative of the absolute profit with respect to pi is

∂πi

∂pi
= qi(�p)

[
1− λ(pi − ci) + λπi(�p)

]
.

The derivative of the profit of retailer k with respect to the
price pi of another retailer i �= k is

∂πk

∂pi
= λqi(�p)πk(�p).

Hence, the first derivative of the relative profit is

∂ραi
∂pi

= qi(�p)

[
1− λ(pi − ci) + λραi (�p)

]
. (5)

The second derivative of the relative profit of retailer i is

∂2ραi
∂p2i

= λ

[
(2qi(�p)− 1)

∂ραi
∂pi

− qi(�p)

]
. (6)

The following proposition shows that the relative profit has
exactly one maximum.

Proposition 1: Let 0 ≤ α ≤ 1. Then, the relative profit

ραi (�p) has exactly one maximum for pi, viz. for which
∂ρα

i

∂pi
=

0.

Proof: First, we show a stationary point exists, then we
show this point is a unique local maximum.

By substitution of Equations (2) and (3) into Equation (5),
any pi satisfying

λ(pi − ci)(1− qi(�p)) = 1− λα
∑

1≤k≤n,k �=i

πk(�p)

0

1

2

3

4

5

0 1 2 3 4 5

p
2

p1

player 2 α = 0
player 2 α = 1
player 1 α = 0
player 1 α = 1

Fig. 1. This diagram shows the best responses of both players in 2 player
games. The parameters of the games are p0 = 3 and λ = 1. The cost price
is ci = 1 for both players i. For each player, the best response is shown as a
function of the other player’s price for absolute (α = 0) and relative (α = 1)
profit.

is a stationary point of the relative profit. The left hand side of
this equation approaches 0 if pi → −∞, and approaches ∞ if
pi →∞. The right hand side approaches 1 if pi → −∞, and
approaches some real number if pi → ∞. Since both sides
of the equation are continuous, there is at least one pi that
satisfies the equation, and hence is a stationary point of the
relative profit.

By Equation (6),
∂ρα

i

∂pi
= 0 implies

∂2ραi
∂p2i

= −λqi(�p) < 0,

so any stationary point is a local maximum. Moreover, since
all stationary points are local maxima, there is at most one
local maximum.

Figure 1 shows the best responses for two retailers in
duopoly games. Nash equilibria exist where the graphs of
retailers 1 and 2 intersect.

For Cournot games, it has been reported that relative profit
maximizers with α = 1

n−1 result in the Bertrand equilibrium
[5], [11], i.e. they have retail prices equal to the cost price. This
means equilibrium prices are lower for relative profit maximiz-
ers than for absolute profit maximizers. The next proposition
shows a similar property for MNL demand duopoly markets
for retailers with the same cost prices.

Proposition 2: For duopoly markets (n = 2) with p0 =
∞ in which the two retailers are relative profit maximizers
with the same αi = α and the same cost price ci = c for
i ∈ {1, 2}, a symmetric Nash equilibrium exists such that, for
both retailers i ∈ {1, 2},

pi − c =
2

λ(1 + α)
. (7)
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Proof: Since p1 = p2, it holds that q1(�p) = q2(�p) = 1
2 .

Therefore, by Equation 5, it holds that

∂ραi
∂pi

= 0⇔(pi − c)− πi(�p) + απk(�p) =
1

λ

⇔pi − c =
2

λ(1 + α)

for i, k ∈ {1, 2}, i �= k. Hence, by Proposition 1, Equation (7)
for i ∈ {1, 2} is a Nash equilibrium.

From Proposition 2, under the conditions assumed by this
proposition (e.g. the same cost price for both retailers), it
follows that equilibrium prices are lower for relative profit
maximizers (α > 0) than for absolute profit maximizers
(α = 0), because pi decreases with respect to α. Unlike
Cournot games, however, the retail prices are still higher than
the cost price. The retail prices only approach the cost price
for high values of λ.

Under different conditions, though, relative profit maximiz-
ers have retail prices that are even lower than the cost price.
For example, if a relative profit maximizer has a cost price
much higher than the cost price of another retailer, then the
relative profit maximizer may accept a negative profit, in order
to prevent the other retailer from having a high market share
and, consequently, a high profit. Moreover, there are games for
which a Nash equilibrium exists such that the retail price of
one of the retailers is lower than the cost price. This is shown
by the following proposition.

Proposition 3: There are games with relative profit max-
imizers, in which a Nash equilibrium exists such that one of
the retailers has a retail price lower than the cost price.

Proof: We give an example of such a game with two
relative profit maximizers with α = 1. Let the parameters of
the MNL demand model be λ = 1 and p0 = ∞, and let the
cost prices be c1 = 5 and c2 = 1. Then, p1 = p2 = 4 is a
Nash equilibrium. By Equation (5), if p2 = 4, then p1 = 4 is
a stationary point of the relative profit ρα1 (�p) of retailer 1, and
by Proposition 1, it is the optimal value. Similarly if p1 = 4,
then p2 = 4 maximizes the relative profit ρα2 (�p) of retailer 2.
Thus, p1 = p2 = 4 is a Nash equilibrium. In this equilibrium,
the retail price p1 = 4 of retailer 1 is lower than the cost price
c1 = 5.

A retailer is more competitive than another retailer if it
has a lower retail price than the other retailer in the same
situation. Retailer 1 in Proposition 3 is more competitive
than an absolute profit maximizer, because absolute profit
maximizers never have retail prices lower than the cost price.
In addition, for n = 2 retailers and α = 1, Lundgren has
shown that a relative profit maximizer is more competitive
than an absolute profit maximizer, provided that both retailers
have positive price-cost margins [1] (Appendix C). For MNL
demand and arbitrary n ≥ 2 and α > 0, it can be shown
that a relative profit maximizer is more competitive than an
absolute profit maximizer if the sum of the profits of the other
retailers is positive. However, if this sum is negative, then
the opposite holds. In that case a relative profit maximizer is
less competitive than an absolute profit maximizer. Both cases
are covered by Proposition 4. First, we prove the following
property of MNL demand.

Property 1: The sign of
∑

k �=i πk(�p) does not depend on
pi.

Proof: By Equations (1) and (2), the sum of the profits
of the other retailers k �= i is∑
1≤k≤n,k �=i

πk(�p) =
∑

1≤k≤n,k �=i

(pk − ck)qk(�p)

=
1∑n

j=0 e
−λpj

∑
1≤k≤n,k �=i

(pk − ck)e
−λpk .

(8)

Though
∑

k �=i πk(�p) depends on pi, whether or not it is

positive is independent of pi. This holds, because 1
∑n

j=0 e−λpj

is always positive, so the sign of
∑

k �=i πk(�p) only depends on∑
k �=i(pk − ck)e

−λpk , which is independent of pi.

Due to Property 1, we can speak of
∑

k �=i πk(�p) > 0
regardless of pi.

Proposition 4: Given the prices p1, . . . , pi−1, pi+1, . . . , pn
of the other retailers, the retail price of retailer i is lower for
a relative profit maximizer (with α ≥ 0) than for an absolute
profit maximizer if and only if the sum of the absolute profits
of the other retailers is positive.

Proof: Let pai be the retail price of an absolute profit
maximizer (α = 0), let �pa = 〈p1, . . . , pi−1, p

a
i , pi+1, . . . , pn〉

be the retail price vector with pi = pai , and let qai = qi(�p
a)

be the demand given this price. Similarly, let pri be the retail
price of a relative profit maximizer for some α > 0, let �pr =
〈p1, . . . , pi−1, p

r
i , pi+1, . . . , pn〉 be the retail price vector with

pi = pri , and let qri = qi(�p
r) be the demand given this price.

Thus, our goal is to prove that

pri < pai ⇔
∑

1≤k≤n,k �=i

πk(�p) > 0. (9)

By Proposition 1,
∂ρα

i

∂pi
= 0 for pi = pri , and

∂ρ0
i

∂pi
= 0 for

pi = pai . Therefore, by substitution of Equations (2) and (3)
into Equation (5), it holds that

λ(pri − ci)(1− qri ) = 1− λα
∑

1≤k≤n,k �=i

πk(�p
r), (10)

with �pr = 〈p1, . . . , pi−1, p
r
i , pi+1, . . . , pn〉, and, by choosing

α = 0,
λ(pai − ci)(1− qai ) = 1. (11)

Note also that pai > ci holds by Equation (11) and 0 <
qai < 1. First, we assume pri ≤ ci. Then, pri < pai and, by
Equation (10),

∑
k �=i πk(�p) > 0, so Equation (9) follows from

pri ≤ ci.

We now assume pri > ci. Then, for pi in the interval
between pri and pai , both (pi − ci) and (1 − qi(�p)) are
positive and increase monotonically with respect to pi (By
Equation (4)), so their product (pi−ci)(1−qi(�p)) also increases
monotonically with respect to pi in this interval. Therefore,

pri < pai ⇔ (pri − ci)(1− qri ) < (pai − ci)(1− qai ).

Furthermore, by equations (11) and (10), it holds that∑
1≤k≤n,k �=i

πk(�p) > 0⇔ (pri − ci)(1−qri ) < (pai − ci)(1−qai ).
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Therefore, Equation (9) follows from pri > ci.

Thus, regardless of pri > ci, Equation (9) holds, so
Proposition 4 has been proven.

V. EXPERIMENTS

We performed experiments in order to examine the per-
formance of relative profit maximizers if their goal is to
win, i.e. to outperform each other. We evaluate retailers by
computing their relative performance S, which we define as
the retailer’s profit divided by the highest profit of the other
retailers: S = πi

maxk �=i πk
. In addition to expressing whether a

retailer has the highest profit (S > 1), the relative performance
expresses, in case of a victory, how much better a retailer is
than the second best retailer, or, in case of a loss, how close
the retailer is to the winner.

A. Settings

We analyzed retail market games with 3 players and with
4 players. We tested best response strategies for relative profit
with α-values in the interval [0, 1]. For the 3 player games,
we used step size 0.01 for α, resulting in 101 different
relative profit maximizers. For the 4 player games, we used
step size 0.02 for α, resulting in 51 different relative profit
maximizers. We ran games for all combinations of retailer
strategies. Since we examine relative profit maximizers, a
strategy corresponds to a choice for α. Every game consisted
of at most 30 iterations. In each iteration, the retailers choose
the best-response retail price given the retail prices of the
previous iteration. The game is terminated if the retail prices
have converged before the last iteration. As parameter values,
we chose λ ∈ {1, 2}, p0 ∈ {2, 4}, and the same unit cost
price ci = 1 for all retailers i. The best response relative profit
maximizers were implemented in Java using gradient ascent.
As initial price for the gradient ascent algorithm, we chose
pinit = 2. For each game, we recorded the number of iterations
and, for each player, the final retail price and profit.

B. Results

In all games, the retail prices converged before the last
iteration. This provides empirical evidence for the existence of
a Nash equilibrium. We tried different values for the param-
eters λ and p0, but this had no major impact on the results.
Here, we present the results for the games with λ = 1 and
p0 = 4. For each game in the experiments, we computed the
relative performance πi

maxk �=i πk
. The results of the experiments

are summarized in Figure 2. For each α, the best case and
worst case relative performances over all games are shown.

In games with 3 players, the best case and worst case
relative performances have a peak at α = 0.5. Around this
point, the worst case relative performance is approximately
1, so, at worst, these retailers are never far from having the
highest profit. The highest relative performances were achieved
in games against opponents with α-values close to either 0 or
1. In these games the profit was up to 5.95% higher than the
opponents’ profits. Figure 3 shows the relative performance of
a retailer with α = 0.5 against all combinations of opponent
strategies.

In games with 4 players, the best case and worst case
relative performances have peaks around α = 0.32 and
α = 0.34 respectively. For the retailer with α = 0.34, the
worst case relative performance is approximately 1, so, at
worst, this retailer is never far from having the highest profit.
The highest relative performances were achieved in games
against opponent retailers with α-values close to 1, in which
the relative profit maximizer with α = 0.32 had a profit
up to 8.72% higher than the opponents’ profits. This is not
a surprise, as these α-values are the furthest from the best
performing retailers. High performance is also achieved in
games against absolute profit maximizers, in which the relative
profit maximizer with α = 0.32 had a profit up to 3.50% higher
than the opponents’ profits.

The good performance of the retailer with α = 0.5 in
3-player games and the retailers with α = 0.32, 0.34 in 4-
player games can be explained as follows. If the goal is to
outperform other retailers, then it is a zero-sum game, and an
increase of the retailer’s absolute profit is equally beneficial
as a decrease of all opponents’ absolute profits by the same
amount. This is achieved by optimizing the retailer’s own
profit minus the average profit of the other retailers, which is
equivalent to maximizing relative profit with α = 1

n−1 . Though
extrapolation to games with n > 4 players seems likely, more
experiments are required to prove this.

The worst case performances of the best strategies (α = 1
2

for 3 players and α = 0.32, 0.34 for 4 players) were slightly
lower than 1.0, so they did not win in all situations. At five
digits after the comma (e.g. S = 0.99995 for α = 1

2 3 player
games, and 0.99996 for α = 0.34 in 4 player games), we
found that the relative performance was slightly less than 1 in
some situations. In games in which this occurs, retailer 1 has
α = 1

n−1 , retailer 2 has an α-value slightly higher than 1
n−1 ,

and other retailers have α-values close to 0 or 1 (e.g. in the 3
player game with α2 = 0.52 and α3 = 0). These results can
be explained as follows. In these games, only the strategies of
retailers 1 and 2 are good enough to compete for the highest
profit, and the other retailers can be ignored. Therefore, an α-
value slightly higher than 1

n−1 performs better than α = 1
n−1

in these cases.

VI. CONCLUSIONS

We analyze retailers that maximize their relative profit for
the MNL demand model. We derive first and second order
equations of the relative profit, and show that relative profit
has a unique local maximum with respect to the retailer’s own
price. We also show that, under certain conditions, the optimal
retail price of a relative profit maximizer is lower than the cost
price. In addition, we give a necessary and sufficient condition
in which a relative profit maximizer is more competitive than
an absolute profit maximizer. This holds if and only if the
sum of the profits of other retailers is positive. We performed
experiments in order to examine the relation between relative
profit maximization and winning. We simulated games with
3 and 4 players with different combinations of α-values in
the range of [0, 1]. The results show that retailers with α = 1

2
have a high performance in games with 3 players, and retailers
with α = 1

3 have a high performance in games with 4 players.
Furthermore, by extrapolating to games with n > 4 retailers,
these experiments suggest that retailers outperform others if
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Fig. 2. Relative performance of retailer 1 for different values of α1. Relative
performance is defined as the retailer’s profit divided by the maximum of the
profits of the other retailers in the game. For each α1, the graphs show the
best and the worst relative performance of the retailer over all games.

they maximize the difference between their absolute profit and
the average profit of the other retailers (α = 1

n−1 ).

An application of relative profit maximization to MNL
demand is the Power TAC competition. The Power TAC is
a smart grid electricity market simulation in which customers
behave according to the MNL model, and participants have the
incentive to outperform others rather than to maximize their
own profit. In order to deal with the complexity of the simula-
tion, participants agents have used computational intelligence
techniques, such as reinforcement learning [23], [24], particle
swarm optimization [25], and other adaptive strategies [26]–
[28]. However, none have so far addressed the issue of relative
profit maximization. The insights provided by our analysis can
be used to enhance computational intelligence-based Power
TAC agents.
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Fig. 3. This diagram shows the relative performance π1
maxk∈2,3 πk

of retailer

1 with α1 = 1
2

in games with 3 players. The axes show the αj -values of
the other retailers j = 2, 3. The diagram shows that retailer 1 has the highest
relative performance in games in which the other retailers have αj -values
close to either 0 or 1.
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