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Institute of Neural

Information Processing

Ulm University

Germany

Email: markus.kaechele

@uni-ulm.de

Günther Palm
Institute of Neural

Information Processing

Ulm University

Germany

Email: guenther.palm

@uni-ulm.de

Friedhelm Schwenker
Institute of Neural

Information Processing

Ulm University

Germany

Email: friedhelm.schwenker

@uni-ulm.de

Abstract—The present work aims primary at developing an
approach to detect irregular and spontaneous facial gestures in
video sequences. The developed approach should help a system
distinguish between neutral facial expressions characterized by
the absence of facial gestures and facial events characterized by
the presence of observable facial gestures in video sequences.
For this purpose, an active learning approach is proposed in
order to avoid the task of annotating an entire video sequence
before proceeding with the classification. It is well known that the
annotation task is hard, expensive and error prone. Each video
sequence is segmented into smaller segments that are then to be
investigated and annotated based on the absence or presence of
facial gestures. The approach consists in first selecting a set of
samples classified as uncharacteristic through the majority vote
of a committee of support vector data description (SVDD) models
generated randomly. The base learner then focuses on the selected
outliers and not on the whole annotated corpus. Different query
strategies are used to select the most informative samples among
the selected outliers. Those samples are then annotated by the
user and added to a pool of annotated samples. The latter is
subsequently used to train the base learner again before the next
iteration can take place. Experiments suggest that the proposed
active learning approach performs as well as a system trained on
a fully annotated corpus, while dramatically reducing the cost of
annotation.

I. INTRODUCTION

Semi-supervised learning is a learning paradigm based
on the combination of unsupervised and supervised learning
mechanisms. This field of research bears its means of existence
from the fact that the globally available amount of data
increases so fast, that it is almost impossible to properly assess
the content of the data, let alone annotate or label it in a
meaningful way. The demand for algorithms that are able to
process huge amounts of unlabelled data together with a small
set of labelled instances has gained, especially in recent years,
increased attention with the emergence of fields such as web
document classification, mining of social data and applications
that generally fall under the term big data [1]. With increasing
technologization of everyday life, the human factor starts to
play a significant role in pattern recognition and machine
learning applications. Data analysis in the context of social

signals has become an emerging field with many researchers
contributing to the subfields of emotion recognition, human-
computer interaction, language processing, and recognition of
gestures and facial expressions.

Those subfields are highly data driven and advancements
are generally strongly correlated with having more or better
data collections. Designing and recording such data collections
is an interdisciplinary task that demands a large amount of
effort. The concept phase of a recording includes the design
of the actual experiment and the emotional stimulation, as well
as the recruitment of participants. For the actual recording
phase the hardware setup has to be prepared and the emotional
stimulation has to be carried out.

While those points may use the majority of the scheduled
time, an important point that has to be considered is the
annotation of the recorded material. In the annotation process
groundtruth labels are generated for subsequent classification
experiments. As the annotation process causes high cognitive
load in the annotators, it usually takes more time to annotate
a single video than its duration. If more than one emotional
dimension are to be annotated, the video has to be watched
several times. Additionally to obtain reliable labels, more than
one rater is used as the outcome is highly dependent on the in-
dividual. Those issues render annotation a very expensive task.
To tackle the annotational overhead, machine learning methods
from the fields of semi-supervised and active learning can be
used. Active learning [2], [3] is a method in which a classifier
selects which instances should be labeled by an expert. The
decision should be made based on the information gain that
is achieved when selecting specific points. Active learning has
for example been successfully applied in combination with
crowd sourcing [4]. Bandla et al. [5] used active learning with
uncertainty sampling for action detection in video sequences.
Tong and Chang [6] applied active learning with a binary
Support Vector Machines (SVM) [7] as base learner in the
domain of image retrieval using relevance feedback.

Recently, active learning has been used for the emotional
annotation of the Interaction Game corpus [8] using support
vector methods [9]. The approach proposed in the latter aimed
at detecting events in video sequences by using an One Class
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Support Vector Machine (OCSVM) [10] as a base learner in an
active learning scenario. The use of an OCSVM is motivated
by the assumption that most of the outliers (events) are located
in regions of low density in comparison to neutral instances
which are located in regions of high density. Therefore us-
ing the distance from each sample to the OCSVM decision
boundary as a confidence measure would help in detecting
and annotating as much outliers as possible. The presented
experimental results proved the effectiveness of the approach.
Therefore, we build upon this work and investigate the use of
ensemble methods for the detection and annotation of outliers.
Furthermore, we investigate the combination of the described
outliers detection approach with different selection criteria that
are used in the active learning decision making process for the
development of a system that accurately distinguishes between
neutral instances and events (see Figure 1) in video sequences
while reducing the cost of annotation.

The remainder of this work is organized as follows. In the
next section, the theoretical basis of our system is introduced
together with the proposed decision criteria. The data collec-
tion that was used is described in Section 3. In Section 4,
the experimental results are presented before in Section 5 a
conclusion is drawn.

II. THEORETICAL BACKGROUND

In this section, the theoretical basis is introduced which
includes SVDD, active learning and the proposed decision
criteria.

A. Support Vector Data Description (SVDD)

Introduced by Tax and Duin [11], Support Vector Data
Description (SVDD) is inspired from the Support Vector
classifier and aims to characterize a set of objects in order to
distinguish the latter from atypical and uncharacteristic objects.
Thus SVDD can be used for outlier detection as well as for
imbalanced classification problems [12], [13]. To this end,
SVDD generates a closed spherically shaped boundary around
the set of target objects with minimal volume. Objects located
out of the boundary are therefore considered as outliers while
those located inside the boundary are considered as normal or
typical objects.

Let {xi}Ni=1, with xi ∈ Rn ∀i ∈ {1, . . . , N} and (N,n) ∈
N∗ ×N∗ be a set of objects belonging to a target class. The
SVDD generates a closed boundary called hypersphere with a
radius R > 0 and a center a ∈ Rn with minimal volume
around the target class. The volume of the hypersphere is
minimized by minimizing R2 and all points xi of the target
class should be within its boundary. Thus, the optimization
problem to be solved is defined as follows:

Minimizing F (R, a) = R2

s.t. ‖xi − a‖2 ≤ R2, ∀i (1)

Furthermore, the distance from an object xi to the center of the
hypersphere a should not be strictly smaller than R2 but larger
distances should be penalized. These requirements enhance the
flexibility of the boundary. To this end, slack variables ξi ≥ 0
are introduced, as well as a parameter C ≥ 0, which controls
the trade-off between the volume of the hypersphere and

the amount of miss classifications. The optimization problem
becomes:

Minimizing F (R, a) = R2 + C
∑

i

ξi

s.t. ‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0 ∀i
(2)

The optimization problem is solved by introducing the La-
grange multipliers αi ≥ 0 and γi ≥ 0:

L(R, a, αi, γi, ξi) = R2 + C
∑

i

ξi

−
∑

i

αi{R2 + ξi − (‖xi‖2 − 2a.xi + ‖a‖2)}

−
∑

i

γiξi

(3)

L is minimized with respect to R, a, ξi and maximized with
respect to αi and γi. By applying the Karush-Kuhn-Tucker
conditions, the following equations are derived:

∂L

∂R
= 0⇒

∑

i

αi = 1 (4)

∂L

∂a
= 0⇒ a =

∑

i

αixi (5)

∂L

∂ξi
= 0⇒ C − αi − γi = 0 (6)

Equation 5 shows that the center of the hypersphere is a
linear combination of the objects xi for which the Lagrange
multipliers αi �= 0. Those objects are therefore called the
support vectors of the description (sv). Furthermore, based on
equation 6 and due to the fact that ∀i αi ≥ 0 and γi ≥ 0, the
following constraint can be derived:

0 ≤ αi ≤ C, ∀i ∈ 1, . . . , N (7)

By substituting the Equations 4, 5, 6 into Equation 3, the
optimization problem can be specified as follows:

Maximizing L =
∑

i

αi(xi · xi)−
∑

i,j

αiαj(xi · xj)

s.t. 0 ≤ αi ≤ C and
∑

i

αi = 1, ∀i ∈ 1, . . . , N
(8)

Solving Equation 8 gives the set of αi. Based on this, the radius
of the hypersphere, which is the distance from its center to any
support vector on its boundary, can be computed:

R2 = ‖xk−a‖2 = (xk·xk)−2
∑

i

αi(xi·xk)+
∑

i,j

αiαj(xi·xj)

(9)
Subsequently, an object z is classified as belonging to the target
class if the distance from z to the center of the hypersphere a
is smaller or equal to the radius R of the hypersphere.

‖z− a‖2 = (z · z)− 2
∑

i

αi(xi · z) +
∑

i,j

αiαj(xi · xj) ≤ R2

(10)
Similarly to the Support Vector classifiers, a more flexible data
description can be obtained by using the kernel trick. Let φ :
R → H be a function which maps the target set into the
Hilbert space H. This can be achieved by replacing the inner
product in the previously derived equations by an appropriate
kernel function K(xi, xj) = (φ(xi), φ(xj)).
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B. Active Learning

Supervised and Semi-Supervised Learning rely on labeled
samples in order to successfully perform classification or
regression tasks ([14]). The robustness and the performance
of a model trained with such techniques highly depend on
the amount of annotated samples available as well as on the
quality of the annotation process. Thus the creation of a large
and reliable annotated corpus is known to be the bottleneck in
the domain of Supervised and Semi-Supervised Learning. In
most real world applications, the annotation process is hard,
expensive both in time and costs, cumbersome and error prone,
in particular when the amount of data needed is very large
([15]). Furthermore, a large corpus of annotated samples may
contain redundant and irrelevant samples for the classification,
respectively the regression task.

Active learning is a widely used technique to address these
issues ([16]). The main characteristic of active learning is the
ability of the learner to select the samples from which it learns.
More specifically, the learner selects the most informative
unannotated samples to be annotated by an oracle (e.g. a
human annotator). In this way the learner is able to improve its
performance and accelerate its learning process, while reducing
the costs of annotating an entire corpus.

Several approaches have been proposed for the selection
of the samples, the most common approaches being:

1) Membership Query Synthesis [17] : In this approach,
the learning model generates itself new samples by
synthesizing some selected unannotated instances, be-
fore requesting an annotation of the synthetic samples
from the oracle.

2) Stream-based Selective Sampling [18]: In this ap-
proach samples are presented in a stream and the
learning model decides whether or not to query its
label.

3) Pool-Based Sampling [19]: In Pool-Based Sampling,
it is assumed that a small set of annotated samples L
is available, additionally to a large pool of unanno-
tated instances U ; the learning model then selectively
chooses one or more informative instances from the
pool U to be annotated and added to the pool L. A
new model is then learned using the pool L and the
process is iterated.

The informativeness of each unannotated instance is evaluated
by the learner. Depending on the evaluation strategy, the
most informative instances are selected and annotated. Several
evaluation strategies have been proposed through the years,
amongst others:

1) Query by committee [20]: This strategy involves
maintaining a committee of prediction models, which
are trained on the current annotated pool L; each
committee member votes on the annotation of each
queried sample; the informativeness of the queried
sample can be expressed in two different ways, de-
pending on the nature of the models in the committee:
the most informative sample is considered to be the
one about which most of the committee members
either disagree or agree.

2) Uncertainty sampling [21]: This strategy consists in
querying those unannotated samples for which the
current prediction model is least certain about the
corresponding labels;

3) Expected error reduction [22]: This strategy consists
in querying those unannotated samples that would
most reduce the generalization error of the prediction
model.

III. SVDD BASED ACTIVE LEARNING

In this section we present a pool-based active learning
approach based on outlier detection combined with binary
classification. To this end, both the SVDD and the binary SVM
are used.

Since the approach is pool-based, the algorithm begins
with a small set of annotated samples L and a large set of
unannotated samples U . At each iteration the most uncharac-
teristic samples of the unannotated set are detected using a
committee of randomly generated SVDD models. Each model
is trained and tested on the entire pool U . The samples are
then selected by majority vote, thus are those for which most
of the committee members agree. Subsequently there are two
variants of the algorithm:

1) The first variant consists in annotating the whole
selection of outliers, adding the annotated samples
to the pool L, training a binary SVM on L and
applying the model to U . This process is iterated until
a termination criteria is satisfied. It should be noted at
this point that the committee, which is trained at each
iteration on the unannotated set, decides solely on the
samples to be annotated. The binary SVM is used in
this variant just to measure the performance of the
active learning method and does not get involved in
the selection process of the samples to be annotated.

2) The second variant consists in involving the binary
SVM in the selection process of the samples to be
annotated. At each iteration k, the binary SVM model
trained at the previous iteration k−1 on the annotated
set Lk−1 is tested on the set of samples selected by
the committee of SVDD models. Instead of anno-
tating the whole selection as in the previous variant
of the algorithm, a subset of the selected samples
is annotated based on the binary SVM model. Those
samples that are annotated are added to Lk, while the
other samples are left in U . This process is iterated
until a termination criteria is satisfied.

Four Query strategies with three of them based on the
output of the binary SVM model are used to select the samples
to be annotated:

• Random Sampling: the samples to be annotated are
queried randomly among those selected by the com-
mittee of SVDD models.

• Shannon Entropy: this is a widely used uncertainty
measure [23]; the uncertainty measurement function
based on the entropy estimation of a model’s posterior
distribution can be expressed as:

H(x) = −
∑

y∈Y
P (y|x)logP (y|x), (11)
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Fig. 1: Frame sequence depicting a typical event (laughter in this case) characterized by the presence of observable facial gestures.
The approach should enable a system to distinguish such events from sequences where no facial gesture is observable.

where y is the label and x is the feature vector of the
sample; the selection of the most informative sample
s can be formulated as:

s = argmax
x∈U

H(x) (12)

• Nearest To The Border: this strategy involves anno-
tating the samples that are closest to the decision
boundary of the binary SVM model.

• Farthest from The Border: this strategy involves anno-
tating the samples that are farthest from the decision
boundary of the binary SVM model.

The second variant of the algorithm helps the annotator by
enabling him to chose the number of samples to be annotated
at each iteration. This is not possible while using the first
variant of the algorithm, since the SVDD models are generated
randomly. Based on the work of Chang et al [24], for each
SVDD model the cost parameter C is chosen in the interval
[ 1N , 1] where N is the number of samples in the unannotated
set U . In order to have a more flexible boundary the radial
basis function (RBF) kernel is used for each SVDD model.
The RBF kernel is given by

K(xi, xj) = exp(−γ‖xi − xj‖2) (13)

For each SVDD model the parameter γ is randomly selected
in the interval [ 1f , 1] where f is the number of feature vectors.
This randomness in the parameter selection for each member of
the committee leads to a fluctuation of the number of samples
selected as outliers at each iteration. Nevertheless, instead of
searching through the whole set of unannotated samples at
each iteration, the binary SVM focuses uniquely on a small
set of uncharacteristic samples. By annotating such instances
the algorithm should be able to quickly compute an efficient
model for the classification of the unseen instances.

IV. DATA DESCRIPTION

In this work a dataset is used that was recorded as part
of an interaction experiment [8]. The data consists of a set of
30 video sequences with a length of about 30 minutes, each
depicting an experiment involving a participant who interacts
by speech and touch input with a multi-modal system. The
experiment involves resolving a series of subsequent puzzles
with different levels of difficulty. Two cameras capture the
interaction between the participant and the system. One of
them is placed in front of the participant and records his/her
face while the other one is used to monitor the progress of
the experiment. Audio is recorded as well. The experiment
is designed such that the participant has to solve a series of
timed puzzles with increasing difficulty. As an incentive, the
participant can earn money based on his/her performance. The
longer it takes to solve a puzzle, the less money is rewarded.

While the dataset has not been primarily designed to
elicit emotions in the participants, spontaneous reactions occur
(more or less) frequently in the interaction process. By the
design of the experiment the content of the recordings mainly
includes two different reaction types. First, a so called neutral
class that spans the search phases of each puzzle and the event
class which comprises events such as exclamation of happiness
or frustration (if the puzzle was solved correctly/incorrectly)
(see Figure 1). The distribution between neutral and event is
skewed towards neutral (compare Table I). The two classes
have been annotated manually for a set of 6 participants drawn
such that expressive and non expressive persons are included.
For more details about the annotation or the dataset, the reader
is referred to [9].

Fig. 2: Interaction Game dataset. Top left: Interface with an
instance of the puzzle. Top right: Typical recording of a
participant. Bottom: Annotated events such as search phases
and outcome of the task.

V. EXPERIMENTAL SETTINGS & RESULTS

The proposed approach was tested on 6 participants drawn
from the Interaction Game dataset described earlier. As it
can be seen in Table I, each participant’s set exhibits a
severe imbalance ratio between both event and neutral classes.
Appropriate features were extracted by first localizing and
extracting the facial region in each frame of a video sequence.
Subsequently, the facial region was divided into a fixed number
of overlapping blocks. The local binary pattern on three
orthogonal plane (LBP-TOP) [25] was then applied on each
cuboid consisting of each block of facial region for the entire
video sequence to generate the corresponding histogram of
description. Finally the histograms generated from each single
cuboid were concatenated into a final feature vector describing
the video sequence.

In order to measure the performance of the proposed ap-
proach a stratified 3-fold cross validation was applied on each
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TABLE I: Dataset description and class membership distribu-
tions.

Participant ID Neutral Instances Events

12 3387 108

15 3365 135

17 4149 66

23 3406 208

26 3409 429

30 4489 665

single set. The active learning algorithm was then successively
applied to two of the folds, while the performance of the
generated model was tested on the left out fold. A binary RBF
SVM was also trained on the annotated two folds and tested
on the left out fold. The result of this classification is used
as baseline in order to assess the performance of the active
learning approach. Furthermore, since the sets are particularly
imbalanced, the geometric mean (g − mean) was chosen as
performance metric in order to assess the performance of the
generated model on the left out fold. The geometric mean is
defined as follows:

g −mean =
√
sensitivity · specificity, (14)

where sensitivity is the accuracy on the neutral class and
specificity is the accuracy on the event class.

During the experiments the size of the committee is fixed
to 10. For the second variant of the approach a maximum of
20 samples are annotated after each iteration. The annotation
of the selected samples is followed by a classification with a
binary RBF SVM. This classification is preceded by a grid
search in order to select the appropriate parameters for the
SVM classification. At the beginning of each experiments a
small set of 59 instances chosen randomly are annotated to
form the initial annotated pool U .

Figure 3 shows the ratio of annotated samples for the
dataset specific to the participant 12. The results of the
annotation process are plotted for each of the variants:

• OD: Consists in annotating the whole set of samples
depicted as outliers by the committee.

• ODCB: Detection of the outliers closest to the border
of the model trained in the previous step.

• ODFB: Detecting and annotating those outliers that
are farthest from the border of the model.

• ODE: Detection based on the entropy of the distribu-
tion.

• ODRS: Detection of the outliers followed by the
random sampling approach.

The figure shows clearly that the first variant of the
approach leads to a quicker annotation of the dataset, while
the second variant is much slower. More precisely, the first
variant OD needs around 60 to 65 learning rounds to annotate
around 80% of the entire dataset. Meanwhile, the second

variant (ODCB, ODFB, ODE, ODRS) needs around 100
learning rounds to reach the same amount. This is due to the
randomness of the generation of the committee members which
occurs at each learning round and causes the fluctuation in the
number of samples that are classified as being outliers.

Meanwhile figure 4 shows the results of the approach on
each participant’s set. These results depict clearly that the
algorithm is able to generate a model that performs at the
very least as good as a supervised model trained on the whole
set of annotated samples, and this by annotating between
50% and 60% of the available samples. In some cases the
algorithm generates a model that performs even better than a
fully supervised trained model. It can also be seen that limiting
the number of annotated samples at each iteration instead of
annotating the whole set of detected outliers does not hinder
the performance of the approach. The main difference of both
variants is the number of iteration that is needed in each case
to annotate a precise amount of samples (the reader is referred
to figure 3). The different query strategies perform also well,
but in order to find out which query strategy performs better,
further experiments are to be undertaken.

In figure 5, the result of the annotation process can be
seen. For a small time window, the continuous distances to the
hyperplane are visualized together with the manually annotated
ground truth. As can be clearly seen, the classifier detects
deviations from the neutral class in each case (here because of
wrongly solved puzzles) as negative distance to the decision
border.

VI. CONCLUSION

In this work, we proposed an active learning approach
for the annotation and detection of unusual events in video
sequences. The first step of the approach consists in localiz-
ing and selecting uncharacteristic samples using a commit-
tee of SVDD models. The search for informative samples
does not cover the whole set of unannotated samples, but
instead focuses on those samples tagged as uncharacteristic by
the committee. Subsequently, common active learning query
strategies are applied to select the most informative samples
to be annotated and used for the training of the base learner.
The results of the undertaken experiments on a set of video
sequences drawn from an interactive game dataset clearly
depict the effectiveness of the proposed approach for both
annotation and classification tasks. As a matter of fact, the
proposed approach performed in some cases better than a
binary SVM trained on the fully annotated set of samples. Fur-
ther experiments involving more datasets are to be undertaken
for a better assessment of the performance of the approach.
These experiments should also include the comparison of the
approach with other common and successful active learning
algorithms. Moreover the applicability of the approach to
multimodal datasets should be investigated.
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Fig. 3: Active learning results specific to the participant 12. Left: Using the first approach, nearly 80% of the samples are
annotated after a total of 70 iterations. Around 100 iterations are needed for the other variants in order to annotate the same
amount of samples. Right: Almost all true outliers are detected using each variant, whereby the first variant needs a total of 70
iterations and the other variants nearly 100 to reach the same amount.
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