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Abstract—An important task in engineering is the numer-
ical design of structures. The current state of technology is
characterized by deterministic thinking and practices. Fact is
that all available data and information are characterized by
uncertainty. An adequate consideration is necessary. The con-
tribution gives an overview about approaches and methods for
the numerical structural design, which consider the uncertainty
of the data (a priori and design parameters). As the basis of the
uncertainty modeling, the definition of polymorphic uncertainty
models is proposed, to take real-world scenarios into account.
Polymorphic uncertainty models allow the incorporation of the
uncertainty characteristics variability (randomness), imprecision
and incompleteness simultaneously. The direct consideration of
data uncertainty in design tasks is for the optimization and
the solution of the inverse problem not possible, due to the
missing of rules for comparing uncertain quantities. An efficient
approach is the formulation of surrogate models, differing in
the order of evaluation uncertainty and solving the optimization
task. This contribution presents well known passive (wait-and-
see) and active (here-and-now) approach for numerical design
tasks analysed with optimization or solving the inverse problem.
The advantages and disadvantages of each concept are pointed
out and the applicability, especially in early stages of design
is demonstrated. Furthermore, numerical structural analysis,
assessments, replacement models and reduction methods with
uncertain data are outlined, leading to an efficient numerical
design and to practical engineering solutions. This contribution
demonstrates algorithms and methods for the numerical design
concepts under consideration of polymorphic uncertainty models,
by applying different surrogate models. Surrogate models allow
the application of an appropriate uncertainty model. Suitable ap-
proaches for increasing numerical efficiency are reduction meth-
ods and replacement models among others. Reduction methods
include model reduction, reducing the number of function calls
and the complexity (e.g., the dimensionality with sensitivities).
Replacement models are, e.g., physically motivated and analytical
meta-models. Analytical meta-model can be distinguished into
approximation and classification methods. Numerically efficient
classification algorithms are, e.g., Support Vector Machines or
Self-Organizing Maps. Efficient approximate meta-models are,
e.g., Artificial Neural Networks, Radial Basis Function Networks,
and Extreme Learning Machines. The capabilities of approach
are demonstrated by means of engineering examples.

I. INTRODUCTION

The main point of view for this contribution are soft
computing methods for numerical structural design considering
data uncertainty. The realistic consideration of the uncertainty
of the underlying database is essential in order to compute
realistic results. Uncertainty can be classified into aleatoric
and epistemic uncertainty, see e.g. [1] and [2]. The uncertainty

characteristic variability is of aleatoric manner. The conven-
tional modeling of this characteristic is based on stochastics,
which is well known documented e.g. in [3], [4], [5], [6].
Epistemic uncertainty can be separated into incompleteness
and impreciseness. An uncertain variable, which should be
considered in structural analysis, is mostly characterized by
more than one of these characteristic. Therefore, the aim of
current research is to describe all uncertainty characteristics
with one model, see e.g. [7]. A main field in this context is im-
precise probability, see e.g. [8]. These polymorphic uncertainty
models provide the possibility for a realistic investigation
of structural behavior and yields to better results in design
processes. The numerical analysis based on two independent
algorithms, fuzzy analysis and stochastic analysis in sequential
applications.

Two different approaches for considering the uncertainty
in optimization tasks were developed. On the one hand, there
is the wait-and-see strategy, see [9], also known as passive ap-
proach. On the other hand, there the here-and-now strategy, see
[10] and [11], denoted as active approach. These approaches
mainly differ in the order of applying structural optimization
and estimation of uncertainty. The known investigations and
applications for the two approaches, see [12], are using es-
pecially random variables to describe the uncertainty of data.
In this contribution approaches for considering polymorphic
uncertainty in optimization tasks are shown.

The applicability of the proposed methods mainly depends
on the computation effort of the structural analysis. There are
three essential possibilities to reduce the numerical effort

• reduction of calculation time for the deterministic
solution or reduction of necessary number of com-
putations of the deterministic solution,

• replace the deterministic solution with metamodels,

• parallel evaluation of deterministic solutions.

In this contribution an overview about metamodel technoligies
is given and especially the possibilities of Self-Organizing
Maps (SOM) are discussed in detail, see [13].

The importance of considering polymorphic uncertainty for
structural analysis and design is demonstrated by an example.

II. NUMERICAL DESIGN

A. General aspects
This section shows possibilities for surrogate models,

which are necessary for the consideration of data uncertainty
in optimization tasks. A general formulation of a set of
polymorphic uncertain variables is
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This means, e.g. D(Ω,R) is a set of random numbers, respec-
tively, D(R, [0, 1]) is a set of fuzzy numbers. The notation
is an abbreviation, which always implements further relating
properties, but allows a general formulation of the design tasks.

The optimization objective function under consideration of
uncertain quantities can be written as

f̂uZ : D(Q,R) → D(V,W ). (2)

The uncertain input quantities D(Q,R) can be classified into
uncertain design variables xud ∈ D(Qx, Rx) and uncertain a
priori parameters pu ∈ D(Qp, Rp), holding

D(Qx, Rx) ×D(Qp, Rp) = D(Q,R). (3)

An optimization algorithm for the direct consideration of
polymorphic uncertain design variables does not exist. This
means that the application of uncertain design variables is
directly not possible. A solution is the application of an affine
transformation T to the uncertain design variables and split
them to deterministic design variables d ∈ R

nx (suitable for
well known optimization algorithms) and further (constant)
uncertain a priori variables, containing to the set pu. The affine
transformation has to be defined for each uncertainty model;
e.g. for a fuzzy quantities

T f : Rnx → F(Rnx) : d �→ (c(d) · u + d) = x̃d (4)

can be found. The objective function Eq. (2) is rewritten as

fuZ : Rnx ×D(Qp, Rp) → D(V,W ) :

(d, pu) �→ f̂uZ (T (d), pu) .
(5)

B. Optimization
With the objective function Eq. (5),

considering deterministic design parameters,
the optimization task can be formulated as

determine L ⊆ X+
d such that ∀ d ∈ x+d

and dmin ∈ L it holds: fuZ(dmin, p
u)

is ”lower or equal than” fuZ(d, pu).

The objective is to find

minimum
d∈X+d

fuZ(d, pu), (6)

under consideration of the uncertain permissible range

X+
d = {d ∈ Rnx | ∀ j ∈ {1; . . . ; ag} :

guj (d, p
u) ”lower than” 0

∧ ∀ k ∈ {1; . . . ; ah} : huk(d, p
u) ”equal” 0},

(7)

with the uncertain constraints

guj : D(Q,R) → D(V,W ) and

huk : D(Q,R) → D(V,W ).
(8)

Due to the missing of a general rule for comparing uncertain
quantities, relational operators as <, >, =, used in the intro-
duced design task, the related constraints and the usually used
minimum-operator ”min” for a deterministic case in Eq. (6),
are not applicable. This means, the solution of the design task
with uncertain quantities, can be found for surrogate problems
only. The surrogate problem can be formulated as passive or
active approach. The both approaches mainly differ in the order

of evaluation of uncertainty task and solving the optimization
problem.

1) Passive approach: The passive approach is extended
for polymorphic uncertain variables and formulated as

determine for all p (realization of pu) that set

L ⊆ X+
d , such that ∀d ∈ X+

d

and dmin ∈ L it holds: fZ(dmin, p) ≤ fZ(d, p).

With this approach, the realizations of uncertain a priori
parameters pu will be firstly computed, yielding deterministic
objective functions, e.g. the dotted line in Fig. 1. The
mapping of uncertainty input quantities to uncertain output
quantities is with known approaches only possible, if the
affine transformation e.g. Eq. (4), is linear dependent from
the design variables. The next step is the computation of
the minimum of these deterministic objective functions with
deterministic optimization techniques, and has to be repeated
for all necessary realizations of pu. The direct result of
this computation is a set of the minima of all deterministic
functions and could be interpreted as the minimum of the
uncertain objective function, (Fig. 1, 1©). In a pre-processing,
step the single points of this uncertain minimum can be
associated with the related design quantity, yielding to an
uncertain evaluation for the design quantities, (Fig. 1, 2©).
The checking of the permissibility for the uncertain set of
designs has to be done afterwards.

fu
z
(d, pu)

d

1

2

Fig. 1: Passive approach (optimization problem)

2) Active approach: The active approach is also denoted
as here-and-now strategy. The generalized formulation for
polymorphic uncertain quantities is

determine L ⊆ X+
d such that

∀ d ∈ X+
d and dmin ∈ L it holds:

M (fuZ(dmin, p
u)) ≤ M (fuZ(d, pu)).

Selected deterministic design quantities d (Fig. 2, 1©)
were transformed to uncertain design quantities xud and the
uncertain result quantities (Fig. 2, 2©) can be computed. The
application of information reducing measures

M : D(V,W ) → R (9)

allows the reduction to deterministic values and a further
optimization processing. There are two different types of
information reducing measures. On the one hand, there are
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measures reducing the uncertainty to an representative value.
On the other hand, there are measures quantifying the un-
certainty. In dependency of the specific uncertainty model
and different design objectives, different information reducing
measures could be formulated. Due to the main difference to
the passive approach – evaluating the uncertainty in the second
step – there are no requirements for the affine transformation.
The general algorithm can be seen in Fig. 3. This approach
is the basis for the established Reliability-Based Optimization
methods (RBO), see e.g. [14].

fu
z
(d, pu)

d
1

2

Fig. 2: Active approach (optimization problem)

C. Inverse problem
The aim to solve the deterministic inverse problem

x = f−1Z (θ) | x ∈ Rnx , θ ∈ R, (10)

is the detection of input quantities yielding to a given target
value θ. A main property of fZ(x) is the non-uniqueness,
which means, a result value z can be found by more than
one input value x. This is the main challenge for solving
the inverse problem. Most of the engineering tasks are not
invertible (e.g. nonlinear finite element analysis), such that the
inverse problem has to be formulated as feedforward task

| fZ(x) − θ | → min | ∀ x ∈ Rnx , θ ∈ R. (11)

The solution, with the uncertain objective function

{((d, pu), |fuZ(d, pu) − θ |) | d ∈ Rnx ,
pu ∈ D(Qp, R, p)}, (12)

can also be found by solving surrogate problems. These
surrogate problems can be formulated in the same manner as
for an optimization task.

III. METHODS OF COMPUTATIONAL INTELLIGENCE WITH

UNCERTAIN DATA

A. Uncertainty modelling
Polymorphic uncertainty modelling is based on two well

established models: fuzzy sets and random variables, see [15].

a) Fuzzy sets: A fuzzy number extends the entropy of a
crisp subset A ⊆ R. This extension is done by an evaluation of
the vector space R with membership functions μ : R→ [0, 1]
and can be written as a set of ordered pairs

{(x, μ(x)) | x ∈ R ∧ μ(x) ∈ [0; 1]}. (13)

The set of all fuzzy sets of R is denoted by F(R). For
numerical implementations, it is necessary to introduce α-level
discretization for fuzzy variables. For a fuzzy variable Ã and

α ∈ (0, 1],
Ã := {x ∈ R : μÃ(x) ≥ α} (14)

is called α-level cut.
b) Random variables: A random variable is a mapping

X : Ω → R, that satisfies the condition

∀ I ∈ B(R) : X−1(I) := {ω ∈ Ω; X(ω) ∈ I} ∈ Σ. (15)

Thereby is (Ω,Σ, P ) a probability space and (R,B(R)) an
observation space. Ω is the set of elementary events, Σ is
a σ-Algebra and P a probability measure. This probability
measure P has to satisfy the axioms of Kolmogorov. The
notation B(R) is the Borel-σ-Algebra. For the random variable
X , the associated probability measure PX is defined as

PX : B(R) → [0, 1] : I �→ PX(I) = P
(
X−1(I)

)
. (16)

The parameter I is the set of all possible intervals I ⊆ R.

c) Fuzzy probability based random variable: An ex-
ample of a polymorphic uncertainty model is a fuzzy proba-
bility based random variable, which can take variability and
incompleteness into account. This type of uncertainty model
is described e.g. in [16] and extended in [17]. For fuzzy
probability based random variables, the probability measure P
of the random number, Eq. (16) is defined as an evaluated set
of probability functions. This means every event is represented
by a fuzzy value and not by a single number. The fuzzy
probability space is the triple (Ω,Σ, P̂ ). Ω and Σ are equal

to the random number definition. The fuzzy probability P̂ is
a family of mappings

P̂ =
(
P̂α

)
α∈(0,1]

, (17)

where P̂α assigns to each A ∈ Σ a probability interval
[P̂α,l(A), P̂α,r(A)], such that 0 ≤ P̂α,l(A) ≤ P̂α,r(A) ≤ 1
holds. The relating measurable mapping X : Ω → R is called
fuzzy probability based random variable. A visualization of
the cumulative distribution function of the fuzzy probability
based random variable is shown in Fig. 4.

1.0

0.0

FX(x)

x

FX,1.0

FX,0.5

FX,0

Fig. 4: Fuzzy probability based random variable

There are other polymorphic uncertainty models, e.g. fuzzy
probability based fuzzy randomness, for consideration of vari-
ability, incompleteness and imprecision at once, see [17].

B. Metamodels
Metamodels are versatile, e.g. there are applicable for

pattern classification, function approximation or computing
sensitivity measures. The possibility to approximate functional
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Fig. 3: Framework for calculation of the optimization problem with the passive approach

data, a mapping of input to output quantities

f∗ : Rn ⊃ Hn → R
m (18)

can be done by several types of metamodels. The definition of
the region of interest Hn = [a1, b1] × . . . × [an, bn] | ai, bi ∈
R, ai ≤ bi, i ∈ {1, . . . , n} is necessary to avoid extrapolating.
The metamodel f∗ can be found on the basis of a set of
support points N = {(x, z) | x ∈ Hn, z ∈ Hm}, which
provide the relations between input and output quantities of
the original function f : Rn → R

m, x �→ z point wise. The
well established metamodels to approximate functional data, as
Artificial Neural Networks (ANN) or Radial Basis Functions
Networks (RBFN) need intensive, time-consuming training.
Furthermore, an assumption about the network architecture
(e.g. number of hidden layers and number of neurons or radial
basis functions inside each hidden layer) is necessary. But the
quality of the network mainly dependents on this architecture,
especially for a small number of neurons. The computation
of the best fitting architecture can be done by investigation of
different variants, accompanied by high computational costs.
To avoid making a wrong assumption about network type and
architecture, [18] developed a specific training algorithm for
ANN and RBFN, called Extreme Learning Machine (ELM).
This metamodel needs a very short time for training.

C. Evaluation of results by Self-Organizing Maps
The theory of Self-Organizing Maps was introduced by T.

Kohonen in 1982, [13]. Looking to the natural origin, SOMs
try to copy the brains ability to efficiently map various features
of input signals to spatially organized internal representations.
Therefore the maps are mainly used to represent a high
dimensional input space with a less dimensional output space
(usually two). Due to the preservation of the input space
properties, the evaluation of the map yields the ability to
determine e.g. number of clusters, correlation behaviour of
input dimensions or the distribution of a chosen input property.
Especially in engineering tasks the overview and identification
of certain properties within a complex structure or numerical
simulations builds up a demand for visualisation and evaluation
methods of given data. But furthermore the field of application
ranges from robotics to data mining, which are just an instance
of SOMs vast capabilities in computational intelligence for
engineering tasks. In the following the unsupervised learning
algorithm of basic map structure as well as evaluation methods
are presented.

1) Training algorithm: The learning algorithm of the SOM
is unsupervised and adjustable by the type of the neighbour-
hood function h(t), the learn rate α(t) and the membership
function σ(t). Each neuron mi is represented by its weights
win in the input space. For R

n follows

mi = (wi1, wi2, . . . , win) . (19)

The initial weights are either randomly chosen or fulfil a
specific distribution in the input space. First step of each
learning iteration is the identification of the best matching unit
(BMU) mc by

c = argmin
i

(‖x−mi‖) , (20)

where the input is defined as x = (x1, x2, . . . , xn) ∈ Rn. With
respect to the metric ‖·‖ the BMU can be considered as closest
neuron to the current input, therefore every adjustment of the
map is performed regarding the neighbourhood relation of a
neuron to the current BMU. To adopt the position of the input
each neuron shifts itself in direction of the input. This process
may be shown as

mi(t + 1) = mi(t) + hci(t)[x−mi(t)] . (21)

Where t is the iteration coordinate. As Eq. (21) shows, the shift
of each neuron depends on the neighbourhood function hci(t).
It decreases the adjustment based on the relation of the neurons
mi and mc regarding the map space as well as the learning
progress. The map space depends on the structure of the map.
Considering a rectangular plane alignment of the neurons, each
neuron has four direct neighbours except those located on the
edge (three direct neighbours). A hexagonal layout yields to
six respectively five neurons with a direct connection. This
distance relation within the map space is denoted as ‖·‖map.
Subsequently the definition of the neighbourhood function can
be extended to hci(‖mc − mi‖, t). Crucial for a successful
map learning is the choice of the neighbourhood function [13].
Several types are possible, such as a rectangular function,
the Mexican Hat function or Gaussian function. To ensure
convergence of the learning the membership of each neuron to
the activated neighbourhood around the BMU shrinks while the
iteration. The radius of the membership is therefore defined by
the membership function σ(t) which can be any monotonically
decreasing function, e.g.
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σ(t) = σstart

(
σend
σstart

) t
N

, t = 0, 1, . . . , N . (22)

With σstart and σend the independence from the BMU for
each neighbour can be controlled along the learning progress.
The general map activation is determined by an activation
function such as

ε(t) = εstart

(
εend
εstart

) t
N

, t = 0, 1, . . . , N . (23)

For convergence reasons, the activation function should be
monotonically decreasing as well. Considering the SOM as
a physical plane the activation function defines the stiffness
of this plane, in terms of the amount of input stimulations to
achieve a certain adaption level. The shape of α(t) and ε(t)
as well as the function parameters �start, �end are decisive
for the quality of the adaption and therefore for the evaluation
of the map topology and furthermore the input space itself.
Combining e.g. Gaussian function as neighbourhood function
hci becomes

hci(t) = ε(t) exp

(
− (κ‖mc −mi‖map)2

2σ(t)2

)
, (24)

where κ is a variable to compensate changing map distances
due to varying number of neurons in relation to constant
parameters in Eq. (22), Eq. (23) regarding numerical im-
plementation. Despite a analytical neighbourhood function a
decreasing quantity of neurons around the BMU is appropriate
as well. An example for the map training in R3 is shown in
Fig. 5 below. The SOM consists of 400 neurons with an initial
layout of an rectangular plane, whereas the artificial input data
is represented by 100 random samples on a sphere surface (Fig.
5(a)). Especially Fig. 5(b) shows the unfolding of the map and
during the further training the proper adoption of the general
topology of the input signals (Fig. 5(c)).
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Fig. 5: SOM training with 400 neurons based on artificial input
data in shape of a sphere

2) Visualisation and evaluation of high dimensional data:
Preserving the topological properties of an input space leads
to a wide field of applications, even more if those properties
can be visualized due to the reduction of dimensions. Beside
the visualisation of high dimensional data, a SOM can be
used for correlation analysis (component charts) or function
approximation as well. In the following section two approaches
(U -matrix, P -matrix) will be presented for the visualisation
of high dimensional data based on [19]. Both are computed
within the map space, but base upon two different evaluation
methods of neuron related map space positions. The outcome
identifies areas in the input space with high density. Therefore

a prediction of probable cluster quantities becomes possible for
algorithms such as k-means [20]. The U -matrix is a procedure,
which maps the distance relations of all neurons over the
particular map position of the neuron in a SOM. Considering
a neuron mi in a rectangular plane configuration with the map
coordinates ξ, η, the summed value is

Ui =
∑

j={d±}
‖mi −mj‖ , d = ξ, η . (25)

Assuming that the map represents the input space, high Ui
values correspond to a long range data distribution, whereas
low Ui-values correlate with an area where the input data is
close to each other. Hence two low Ui areas separated by a
high Ui area refer to two probable clusters. The computation of
the Pi-value is based on the neuron density within a assumed
hypersphere around the evaluation neuron mi. The Pareto
Density Estimations is the basis to determine the radius of such
a hypersphere. In [19] the derivation of the optimal set size is
shown, and defined as pu = 20.13%. This fraction of the entire
set size produces 88% of the maximum information. The actual
radius is determined with a Chi-square cumulative distribution
function for varying dimensions d. For a two dimensional map
space the radius equates to ru = 0.1915, which is valid for
a normed input space [0, 1] for each dimensions. Hence the
the Pi-value correspond to the relation of neurons within the
hypersphere, therefore the computation is carried out by

Pi =
ni
γ

, Pi ∈ [0, 1] , (26)

ni = |{mj | ‖mi −mj‖ ≤ ru}| ; , j = 1, . . . , γ , (27)

where γ defines the total amount of neurons in the SOM.
As the P -matrix characterizes the density distribution of

the neurons in the input space, the evaluation is contrary to the
U -matrix. High Pi-values refer to high dense areas whereas
low Pi-values detect low dense areas in the input space. In
Fig. 6 the vice versa evaluation becomes obvious. The SOM
training is performed on a artificial data set with apparently
three clusters (Fig. 6(a)). The SOM training is carried out with
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(c) P -matrix

Fig. 6: Visualisation of the input space with U - and P -matrix

400 neurons. The U -matrix (Fig. 6(b)) as well as the P -matrix
(Fig. 6(c)) illustrate the data distribution. Of course for a two
or three dimensional input space the visualization seems self-
evident, but to identify properties of high dimensional data sets
those visualization methods become handy as the following
example will point out. An artificial data set including 600
points in spatial arrangement of 6 Clusters with 100 points
each is represented by the U -matrix in Fig. 7.
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Obviously the visualisation method represents the 6 clus-
ters, furthermore a distinct alignment within the data space is
apparent. Due to the diagonal separation of the clusters, it is
logical to assume an uni-axial (in the input space) expansion of
the map perpendicular to the separation. Considering the initial
equidistant distribution of the neuron along a dimensional
axis, the clusters might positioned at a spatial diagonal of the
input space. Beside the cluster estimation and the topological
evaluation, SOMs are suitable to confirm the result of cluster
algorithms in terms of an adequate classification.

In Fig. 7 a continues integer numbering of clusters (cal-
culated with k-means) is related to every data point and
highlighted over the BMUs position while the last learning
iteration. First of all, there is no visible intersection of the
clusters, which approves a reasonable outcome of the cluster
algorithm. Secondly the representation in the SOM facilitates
an assessment relating the topological relations of the clusters.
If there is no discrepancy in the combined examination, the
SOM becomes applicable to the design space identification
for solving the inverse problem.
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Fig. 7: U -matrix for the entire data set with highlighted cluster
numbers

IV. EXAMPLE

A. Combined application of active and passive approach for
a structural tire design

The benefits of the combined application of active and
passive approach should be demonstrated by the structural
optimization of a passenger car tire 195/60 R15. A single
optimization task is formulated with three design variables and
additional consideration of three uncertain variables as fuzzy
triangular numbers, see Table I. The design variables are the
belt angle xd1, the delta thickness of a tread layer xd2 and the
number of capplies xd3. The considered uncertain variables are
the tire inner pressure pu1 , the fiber spacing in carcass p

u
2 and

the stiffness of the tread compound pu3 . The result of interest
is the contact pressure ratio pcoeff.

pcoeff =
ps (xd, p

u)

pc(xd, pu)
(28)

In Fig. 8 the contact pressure for the initial design is shown.
The numerical simulation was applied for 200 sample points

contact pressure

N/mm
2[ ]

0.800

0.667

0.533

0.400

0.267

0.133

0.000

pS

pC

Fig. 8: Contact pressure of the initial design

according to results of an Design of Experiments (DoE). The
calculation of the responses for the uncertain single-objective
optimization tasks were applied at a newly neural network
based approach, see [18]. Further information about a multi-
objective optimization task for the investigated tire can be
found in [21].

TABLE I: Input data of the structural tire design

design variables
lower bound upper bound

xd1 [◦] 18.0 30.0
xd2 [mm] −1.5 1.5
xd3 [−] 0 2

uncertain a priori parameters
αl = 0 α = 1 αr = 0

pu1 [N/mm2] 0.23 0.25 0.27
pu2 [mm] 1.17 1.304 1.44
pu3 [N/mm2] 0.875 0.976 1.075

a) Passive approach: Three results of the passive ap-
proach will be formulated. First, for the design variable xd1,
a convex fuzzy number can be found for the fuzzy result of
pcoeff, see Fig. 9. This means, that the objective function shows
probably a monotonous behavior according to xd1. An other
interpretation is, that regions with a higher gradient of the
membership function of xd1 are higher sensitive to the result
than regions with lower gradients. Summarizing, the range of
the design variable xd1 can be shrank to xd1 ∈ [20.0◦; 28.0◦],
which is about 2/3 of the original interval.

The second result is, that all points of the membership
function of pcoeff were found with xd2 = −1.5 mm. This
design variable needs no further investigation and can be
set as deterministic value. These two restrictions reduce the
computational effort for the active approach.

The third result is about the discrete design variable xd3,
see Fig. 10. Therefore no (discrete) fuzzy number can be
found. The same effect can also be observed in [22]. This
means, the boundaries of the support and the peak value
of pcoeff can be related to xd3 ∈ {0, 1}, in between points
of the membership function were found with xd3 = 2.
The interpretation is, that the minimum of the deterministic
objective function jumps between the discrete values of xd3
for small changes of pcoeff, especially in the region close to
the peak value, which is marked with the dash-dot line. Due
to this high sensitivity for all values, no assumption about any
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suitable ranges can be made. It has to be remarked, that the
one-dimensional representation of the input values in Fig. 9
and Fig. 10 is only approximate, because of the original three-
dimensional input space.
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Fig. 9: Results of passive approach (xd1)
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Fig. 10: Results of passive approach (xd2)

b) Active approach: Due to the significant of reduction
of the input space with the information out of the passive
approach, the computational efficiency of the active approach
could be increased.

The active approach allows the consideration of informa-
tion reducing measures. For the fuzzy result, value the measure
area M1, for quantifying the uncertainty, is chosen in this
example. Second, a measureM2 reduces the fuzzy result value
to a representative value, the minimum of the support (which
is the same aim as for the passive approach).

The optimization objective function is rewritten as

fobj : Rnx ×Fnx → R, (29)

(xd, pu) �→ M1 (f(xd, pu)) + M2 (f(xd, pu)) .

The result of optimization is presented in Table II. The
related fuzzy result value for pcoeff is shown in Fig. 11. It can
easily be seen that the convex part of the membership function
μ(pcoeff) (left of the peak point) includes a larger area than the
concave part (right of the peak-point). That means, the found
result tends more to smaller values for pcoeff than to larger one,
which completely fulfills the aim of investigation.

TABLE II: Results of the optimization investigation

design variables
xd1 27.3 ◦
xd2 −1.5 mm
xd3 2

1.0

0.0

0.5

�(p )coeff

1.14 1.20 1.26 1.32 p [-]coeff

Fig. 11: Fuzzy value pcoeff for best design of active approach

V. CONCLUSION

The contribution gives an overview about approaches and
methods for the numerical structural design, which consider
the uncertainty of the data (a priori and design parameters).
As the basis of the uncertainty modeling, the definition of
polymorphic uncertainty models is proposed, to take real-world
scenarios into account. Polymorphic uncertainty models allow
the incorporation of the uncertainty characteristics variability
(randomness), imprecision and incompleteness simultaneously.
The direct consideration of data uncertainty in design tasks is
for the optimization and the solution of the inverse problem not
possible, due to the missing of rules for comparing uncertain
quantities. An efficient approach is the formulation of surrogate
models, differing in the order of evaluation uncertainty and
solving the optimization task.

This contribution demonstrates algorithms and methods for
the numerical design concepts under consideration of poly-
morphic uncertainty models, by applying different surrogate
models. Surrogate models allow the application of an appro-
priate uncertainty model. Suitable approaches for increasing
numerical efficiency are reduction methods and replacement
models among others. Efficient approximate metamodels are,
e.g., Artificial Neural Networks, Radial Basis Function Net-
works, and Extreme Learning Machines. The possibilities for
applying SOM in the design task, to gather information out of
existing data, are shown.

The applicability of the approach are demonstrated by
means of an engineering examples.
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[22] M. Götz, S. Pannier, W. Graf, and M. Kaliske, “A combined approach
of considering uncertainty in optimization tasks to efficiently identify
robust designs,” in Proc. Appl. Math. Mech, vol. 12, pp. 807–810, 2012.

1831


