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Abstract—A lot of approaches are already published to solve
software architecture deployment problems. Most of them
are intended for academic use and assume that the software
components can be deployed freely on the hardware components.
But for an improvement of existing applications, non-functional
constraints will have a high influence on the acceptance of the
automatically generated solutions. In this paper, the organization
of the engineers and their tasks as well as the amount of changes
regarding to a currently applied system are considered. To gain
a smart and reduced interface between hardware components, a
method is presented to reduce the communication overhead for
an existing architecture. Additionally, the deployment problem
is restricted by the amount of changes in comparison to an
initial deployment. This approach is tested on a realistic case
study to show that it is possible to achieve high improvements
with only small changes of the system.

I. INTRODUCTION

Automation of software architecture deployment has been

subject of research in recent years, and great advances have

been made. Tasks like software design [1], performance

prediction [2], [3], and resource usage [4] have also been

addressed, and methods for the latter two are applied in

practice. However, despite a huge number of different ap-

proaches exists, automated software design methods are either

intended for academic use or are very specific, and they have

never become a product available on the market. One of the

reasons for this might be the fact that most developments

do not start from scratch, but are e.g. based on a previous

version/release/edition, and several non-functional constraints

apply, which are not covered or cannot be solved by the

automated methods.

An example for a well known software design problem is

the software deployment problem where software components

(SWCs) are deployed to Electronic Control Units (ECUs).

In the automotive industry, a high number of ECUs are

connected through data buses and hundreds of SWCs. The

search space of possible solutions easily becomes very big

and, thus, an automation of the deployment process would be

helpful. However, this is only possible if the assumption can

be made that the SWCs are independent of the hardware or at

least that they can be categorized in hardware dependent and

independent ones. Additional restrictions apply, which are not

necessary technical, but based on the organization structure of

development teams. Moving SWCs from one ECU to another

would mean to move either the respective responsibilities

and expertise to another team, or to move people from one

team to another. However, this obviously high overhead is

not regarded within the existing automated software design

frameworks, which is why they have not been adopted by the

industry. The acceptance for a change and the will to cope

with the considerable additional effort exists only if a big

improvement of the quality criteria is achieved. In this paper, a

solution should be created that possesses a reduced and smart

interface between the ECUs with a reasonable change rate.

Possible quality criteria are summarized in [1], however, an

acceptance rate is not listed. From a technical point of view,

the optimization of the given problem even in case of several

ECUs and hundreds of SWCs can be solved. Optimization

techniques are widely spread and are able to consider multiple

quality objectives and design constraints, e.g. [5], [6], [7], [8],

[9] and many others. Commonly, the proposed methods are

tested on problems like the Anti-lock Brake System (ABS) or

randomly created systems with only few SWCs per ECU (e.g.

9 components and 6 ECUs in [10] or 60 components and 35

ECUs in [11]), which assume that function blocks (FBs) can

be deployed freely on different ECUs.

Typically, a function block consists of many strongly con-

nected functions. These functions are developed and main-

tained by a team of engineers from which one person is

responsible for a couple of functions. In this context, the

functions are described as SWCs and the surrounding area

where they are placed as FB. With this detailed operating level,

it is possible to change only small parts of an existing system

by deploying the SWCs instead of the whole FBs. Even though

this procedure leads to a considerable increase of possible
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deployments, the acceptance of a solution of an automated

system will be much more likely if only small parts of the

system are changed with a maximum benefit with respect to

the quality criteria.

In this paper, a subsystem of an electric driven automobile is

used to demonstrate the reduction of communication overhead

between ECUs. With the existing solution as reference, the

amount of changes will be evaluated and the total amount of

communicated signals between ECUs is reduced.

The rest of the paper is structured as follows: In Section II,

the problem is stated in detail and the resulting tasks for the

paper are derived. The proposed approach is introduced in

Section III, which allows getting feasible solutions according

to the acceptance rate. This method is evaluated on a realistic

problem, which is described in Section IV, and the results

are discussed in Section V. The paper closes with some

conclusions as well as an outlook on future work in Section VI.

II. PROBLEM DESCRIPTION

General product development in the automotive and other

areas is influenced by foreign developments. In consequence,

a new product is usually a modification of the previous one.

Learning from these projects is necessary for progress and

leads to constant improvements. Despite a lot of advantages,

this procedure runs into the risk of legacy issues. These in

turn lead to a constantly growing system and, consequentially,

a higher effort for testing and documenting during the de-

velopment process. To reduce not only unnecessary signals

but get a smarter interface between the ECUs, the software

deployment problem is defined as one of the most important

software design issues in the automotive industry.

Whereas the first problem can only be solved by a detailed

analysis, solutions with big changes mostly have great im-

provements around the quality objectives like performance,

cost, and reliability. Big changes possess the high risk to be

rejected if they are proposed in an experienced team due to

the administrative overhead or corporate team competences.

Therefore, the focus of this paper lies on solutions not only

with high improvements, but also on those with only small

changes on the software architecture. The aim is to reduce

the communication overhead (ccom) and the amount of signals

which are transmitted between different ECUs (cnts). Further-

more, solutions must also be evaluated with a change rate on

the basis of the necessary deployment changes which indicates

the acceptance of a solution (raccept). The overall cost function

is represented by

c = ccom + ρ1 ∗ cnts + ρ2 ∗ raccept. (1)

In contrast to other cases (with only a few components per

ECU), the approach goes one level deeper to gain more pos-

sibilities of small changes of the existing system. Therefore,

the term function block is defined as a unit for a collection of

related functions. Inside these FBs, there are several functions

which are called software components in the following. It is

assumed that these SWCs can be deployed freely not only on

other FBs, but also on other ECUs. The difference of FBs and
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Fig. 1: (a) Information is shared over an interface via messages

by a bus. (b) An interface is built on the basis of the real

information flow of messages between function blocks (FBs)

between ECUs. The intra-communication can be seen as well.
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Fig. 2: Demonstration of signal transfer of FB5. This function

block possesses 4 inputs and 11 outputs which are required

from SWCs. Signals can have the same information. For

example, s15 and s19 contain the same information but differ

in the destination.

SWCs can be seen in Fig. 1 and 2, which will be explained

in the following.

Fig. 1 demonstrates the difference between the communica-

tion between ECUs through an interface, see Fig. 1(a), and the

actual communication through messages if the FBs could be

connected directly, see Fig. 1(b). Messages consist of different

signals generated by the inputs and outputs of the FBs. An

example of one FB is shown in Fig. 2. As an FB contains

several SWCs, the inputs and outputs of an FB are built on

the signals generated by the SWCs itself. SWCs hold inputs

and outputs for information exchange. This information is put

in signals and sent to the requesting SWCs. Signals with the

same source and destination are put in interactions similar to

messages, with the difference that messages are based on bus

messages which usually are transfered between ECUs only

and contain related information. Interactions are created only
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Fig. 3: Demonstration of interaction transfer of FB5. Interac-

tions contain signals with same source and destination. The

information of s1 and s2 is transmitted by i1 and analogously

for other signals.

to conclude signals with the same destination and have no

other physical meaning.

In Fig. 2 and 3, the combination of signals to interactions is

shown for FB5. For example, signal s1 and s2 are transfered

from the same source to SWCa. Here, the interaction i1
combines these signals. The same holds for the signals s6 and

s7 which are represented by interaction i5. SWCb has 5 output

signals which are transfered to two other SWCs. Therefore, the

signals are summarized into two interactions (i11 and i12). A

signal in i11 and a signal in i12 can both contain the same

information, but must have a different destination.

SWCs are defined as components u, ECUs as hosts h. Each

component has a unique identifier uid, a description and a

collocation list col. col is a vector, where the position i
represents the binary information if the ith component must

be collocated with the current one. Signals s possess the

properties data amount sdata and transmission frequency sfreq

as well as the source and destination identifier (ssrc, sdest) of

the belonging components. Because the same information can

be shared with several components, there are signals with

the same content but different destinations. These signals

are assigned the same identifier sid. An interaction i in turn

bundles signals with the same source and destination.

The hardware is split into ECUs and buses. The ECUs are

also identified by a unique index hid. Additionally, they contain

a vector loc which represents the location list. The ith position

describes the permission of the ith component to be deployed

to this ECU.

pj(soli) is a vector for the solution soli, where the element

j represents the index of the ECU where the jth component

is deployed to.

III. PROPOSED APPROACH

In the following section, the proposed approach is described

in detail.

A. Deployment Process

The technical survey [1] shows that among other optimiza-

tion strategies, evolutionary algorithms are the most commonly

used. These algorithms are inspired by the natural development

of reproduction and surviving. The main steps are very easy

and many variations exist, where it must be noted that the

parameter settings of these algorithms have a big influence

on the quality of the resulting (near optimal) solutions. In

this paper the non-dominated sorting version of the generic

algorithm (NSGA2) is used because of the multi-objective

problem and the ability to operate on binary strings. A detailed

description of the NSGA2 algorithm can be found in [12].

Based on an initial population, it creates new solutions, evalu-

ates their quality and checks their validity. After iterating this

procedure until the stop criterion is met, the best solution will

be selected. The creation of new solutions is made by mutation

and crossover. The mutation procedure selects randomly a

solution and changes the jth entry of pj(soli) to a random

host. Sometimes, it would be necessary to do two or more

mutations to get a better convergence of the algorithm. In the

application of the NSGA2 in this paper, no clear results are

achieved to decide which configuration is the best. Therefore,

the standard setting with only one modification per mutation

is kept. The crossover procedure is another method to create

alternative solutions by selecting two previous solutions and

pick the index for the beginning of the crossover. All following

components are assigned to the alternative solution. Trying to

modify the algorithm with PMX (partially mapped crossover

[13]) does not lead to significant runtime or solution improve-

ments, why here as well the standard setting is retained.

After the creation process, all new solutions must be evalu-

ated on their quality (ccom, cnts and raccept). Besides that, the

solutions must be checked to be valid regarding the constraints.

The quality objectives and the constraints will be explained in

detail in the following subsections.

The whole process, shown in Fig. 4, is repeated until

the stop criterion is met. In this paper, the total number of

iterations for one single run is chosen as stop criterion and set

to 600.

B. Communication Overhead

The quality objective ccom calculates only the inter-ECU

communication which is also described as communication

overhead. For the calculation, it has to be checked if an

interaction connects two components which are assigned to

different ECUs. The presented method will count the data

amount only once per cycle because it is transfered via a bus

where the same information is combined to one signal. The

receiving ECUs will manage the distribution of the signals to

the SWCs internally. An identifier sid is used to decide whether

an information is already transfered. For the calculation, a new

list (listTxSignals) is created which is filled with the signals

where source and destination component have different hosts.

If a signal with the identifier sid does not appear in the list,

the upcoming communication costs will be calculated by the

frequency and the data amount of the signal. Neglecting the
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Fig. 4: Optimization procedure of the genetic algorithm.

protocol overhead and the reliability of the bus leads to the

result that only the quantitative amount of data which must

be transmitted is assessed. However, both features could be

easily integrated additionally. For one bus, the calculation can

be seen in Algorithm 1.

Algorithm 1 Process of communication overhead calculation.

listTxSignals = ∅
ccom = 0
cnts = 0
for ∀ interactions i do

if p[isrc] �= p[idest] then
for ∀ signals s in i do

if s �∈ listTxSignals then
ccom += sfreq ∗ sdata

cnts++

listTxSignals.add(sid)

end if
end for

end if
end for

Simultaneously, the number of signals cnts, i.e. the infor-

mation exchanged between different ECUs, is calculated. To

take more than one bus into account, the following decisions

are possible for the realization of data transfer between two

components:

• connected directly with one bus

• not directly connected but through a gateway

• not possible

If an information must be forwarded through a gateway, the

communication overhead must be added to the affected buses.

For complex system, the routing is an additional task with

several problems, which is not the focus of this paper.

If it is necessary to calculate more realistic overhead, the

protocol overhead can be evaluated by adding the specific

data amount, like header and the frame synchronization, to the

interactions. Besides that an extended definition of the com-

munication overhead must be formulated where the reliability

and the delay of the bus transmission are taken into account.

An exemplary formulation can be seen in [15].

C. Acceptance Rate

The acceptance of a new solution is dependent on several

criteria. One of the most significant influences is the predicted

amount of overhead for the realization. It is assumed that the

acceptance is proportional to the amount of SWC deployment

changes:

raccept ∼ 1

rchange

, if changes > 0. (2)

In the following, the calculation of the change rate is

explained. An initial deployment is used which is referred to

as “original” solution. For this original deployment p(solorg),
the communication overhead is calculated. After this step, a

reference for the following optimization is available including

the amount of transferred signals and the number of compo-

nents for each ECU. With this information, the change rate

of new solutions can be evaluated. The calculation is done by

comparing p(soli) of the current solution with p(solorg).
The following equations explain the necessary steps:

rchange,i =
cchange(soli)

n
, (3)

n = number of components, (4)

cchange(soli) =
∑
k

change[k], (5)

with change[k] =

{
1, if Δ(soli)[k] > 0

0, else
, (6)

Δ(soli) = |p(solorg)− p(soli)| . (7)

D. Communication Restrictions

In addition to the restrictions of the location and collocation,

the limits of transmitted signals and the predicted communi-

cation overhead are defined in the following. With an upper

limit number of signals, the optimization process can still find

solutions with different communication overheads and change

rates. Reasons for a limiting signal number could be maximum

utilization of the bus, assessments on improvements with

different signal numbers and the specification of the project

requirements. Limiting the overhead leads to the effect that

the resulting solutions are characterized by different amounts

of signals but similar overhead.

E. Result Representation

The solutions are plotted in dependence on the quality

criteria whereas just the Pareto front [14] is displayed. This

front contains those solutions which are not dominated by

another during the optimization. For the selection of one of the

solutions, an additional cost function is defined, see equation
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1, which combines all the quality objectives with a chosen

weighting.

IV. EXPERIMENT

The approach is demonstrated with an example motivated by

the functionality of an electric driven vehicle focusing on the

high voltage battery management system (BMS). The borders

of the subsystem are drawn by the energy management as well

as other involved control units to ensure a safe and efficient

operation of the HV battery. The inputs and outputs of the

components are translated into signals with a description of the

source and destination component, data amount and frequency.

A. Problem Instances

The investigation object contains 202 SWCs with 450

outputs. These outputs are translated into connections between

the SWCs with a resulting number of 796 signals. Signals with

the same source and destination component are combined to

544 interactions. The hardware is specified with two hosts

(BMS and the rest of the vehicle) and one bus. The original

deployment has got 96 SWCs allocated on the BMS and 106

SWCs allocated on the rest of the vehicle. This solution has

a transmission amount of 123 signals and a communication

overhead of 1895 bits per cycle. The deployment for opti-

mization consists of dependent and independent components.

Here, 61 SWCs are fixedly assigned to the BMS and 33

SWCs to the rest of the vehicle. Dependent components

contain functionality like sensor interpretation and actor signal

generation (directly in contact with hardware). Other reasons

might be safety, redundancy or functionality which should be

placed on the specific ECU. Subtracting the dependent SWCs,

there are 108 components left which can be deployed with the

optimization approach.

The used example does not restrict the hardware resources

to get a general deployment solution without knowledge of the

specific hardware. Furthermore, it is assumed that there is no

delay, no failure rate, and the transmission rate is unlimited.

B. Algorithmic Settings

For the experiment, a population size of 500 and 250

children per iteration are chosen. The algorithm stops after 600

iterations. The mutation rate is set to 0.9 and the crossover rate

to 0.8. The mating pool has 750 elements. Unfeasible solutions

will be discarded. Due to the size of the search space and the

risk of suboptimal solutions, the procedure is executed with

60 different seeds. The proposed approach is integrated within

the tool ArcheOpterix [15], [5].

V. RESULTS & DISCUSSION

Fig. 5 shows the result for only two quality criteria. The

communication overhead and the change rate are evaluated for

the first run in red. The solution with the highest improvement

(about 39.1% from 1895 to 1154 bits/cycle) has a change

rate of 8.9%, which implies the reallocation of 18 SWCs in

comparison to the original solution. The results after all runs

can also be seen in Fig. 5 in blue. Here, an improvement of
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Fig. 5: Non-dominated solutions of 60 runs with communica-

tion overhead and change rate.

about 43.3% (from 1895 to 1075 bits/cycle) with a change rate

of 11.9% (24 SWCs) is achieved.

In the next step, the signal amount is added as third

criterion. Now, solutions must be evaluated for all three criteria

which leads to new solutions in comparison to the previous

experiment. The results are shown in Fig. 6. The Pareto

solutions are taken from 60 instances with different seeds. For

the criterion ccom, the method yields the same extreme solution

as above (highlighted as circle) with minimal communication

overhead with a signal amount reduction of approx. 39.8%

to a number of 74 transfered signals between the two ECUs

(instead of 123). The other extreme solution with a minimum

signal amount, shown in black, achieves a communication

overhead with only 43% (1081 bits/cycle) in comparison to

the original solution. The number of signals which must be

transfered can be reduced to 47.2% fewer signals, which

means a total amount of 65 signals and a change rate of 11.4%

(23 SWCs). Those two solutions differ only in one SWC

change in comparison to the original solution and possess

a similar communication overhead (Δccom = 0.3%). But a

closer look at the deployment shows that the solutions differ

in 7.4% of the transferring signal amount. These differences

are possible because of the different data sizes specified in the

signals.

Regarding Eq. (1), a specific weighting is chosen. If ρ2
is the dominant weight, with ρ1 > 0 and ρ2 � ρ1, so-

lutions with only a few changes and the same total costs

are selected. Again, two non-dominated solutions are found

with only one change which possesses completely different

properties. One of these solutions reduces the communication

overhead from 1895 to 1703 bits/cycle which means an

improvement of approx. 10.1%. This solution must transfer

117 signals via the interface (4.9% improvement). The other

solution reaches a number of 115 inter-communicated signals

(6.5% improvement) and a communication overhead of 1767

bits/cycle (6.8%). With these results, it can be seen, that even
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Fig. 6: Non-dominated solutions of 60 runs with communica-

tion overhead, change rate and signal amount.

with one SWC change, the communication overhead of the

investigated system can be improved by 10%.

By specifying communication restrictions, the cost func-

tion is excluded and several solutions can be found. For

example, with a fixed signal amount of 99 signals (19.5%),

the approach finds three non-dominated solutions with [1325

(30%), 2.9], [1385 (27.1%), 2.4] and [1537 (19.4%), 1.9]

(bits/cycle, change rate). The same holds similarly for a fixed

communication overhead.

VI. CONCLUSIONS

In this paper, the problem of the improvement of the

communication overhead of an existing system was addressed.

Applying a theoretical best solution runs into the risk to be

rejected if it is proposed in an experienced team due to non-

technical reasons. Therefore, the presented approach does not

only regard the communication overhead, but also an indicator

for the acceptance probability. The acceptance is influenced

by the change rate of the software components which must be

allocated on ECUs. The existing solution was set as reference

and an amount of changes was taken into account in form of

the change rate. Besides that, the signal amount was used as

additional quality criterion for gaining a smart and reduced

interface between ECUs.

In the investigated case study, it was shown that with only

one change of a SWC deployment, a solution with 10% less

communication overhead could be achieved. Furthermore, the

method found much better improvements with up to 43.3%

less communication overhead at the expense of the change

rate growing to 24 SWCs (11.9%).

It should be mentioned that the approach is independent of

the optimization algorithm and other methods like Simulated

Annealing and Pareto Ant Colony Algorithm could be applied,

too.

In the future, more non-functional constraints like the corpo-

rate organization of the software components to the engineers

will be integrated. Then, solutions can be penalized with

changes in the organization structure. Another task will be the

priorization of the signals. This can be usefully if solutions

have the same transferring signal amount and change rate.
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