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Abstract—This work aims to scrutinise a proprietary dataset
containing major accidents occurred in high-technology facilities,
in order to disclose relevant features and indicate a path to the
recognition of the genesis of human errors. The application of
a tailored Hierarchical Agglomerative Clustering method, using
the bray-curtis dissimilarity and two different linkage functions
– complete and average – will provide means to understand data
and identify key similarities among accidents. Significant inter-
faces between human factors, the organisational environment
and the technology will be described. Main clustering results
have shown that accidents featuring communication issues and
interface problems were grouped together, and turned out to
be the most deadly ones, considering the fatality rate. Another
cluster highlighted relevant training shortcomings. Also, design
failures, poor quality control and inadequate task allocation
were identified as key contributing factors to major accidents.
Conclusions to improve the human performance based on these
clustering results are then discussed.

I. INTRODUCTION

Major accidents appear to be an unfortunate side of the

development of human activities, and the added complexity of

high-technology systems seems to challenge the improvement

of industrial safety records. Only in the last 5 years, a

perplex society faced worldwide tragedies such as the Macondo

Blowout in the Gulf of Mexico, the Fukushima Nuclear Plant

disaster in Japan, the missing Malaysian airplane and the

Korean Ferry which has capsized and killed 304 people.

Similarly, Reason [1] listed several analogous events in past

decades (e.g. Seveso, Three Mile Island, Bhopal, Chernobyl

and Piper Alpha) referring to them as man-made organisational

disasters.

Technical investigations generated a considerable amount of

data, revealing an extremely intricate chain of events leading

to disastrous consequences and highlighting the decisive part

the humans involved have played (Cullen, 1990 [2]; National

Commission on the BP Deepwater Horizon Oil Spill and

Offshore Drilling, 2011 [3]; Kurokawa et al., 2012 [4]).

Factors such as management problems, lack of information,

communication failures, fear, poor working conditions and

perceptive and reasoning shortcomings were combined with

human erroneous actions during the operational stage, to

explain the catastrophic failure of cutting-edge technologies

and systems, initially developed to be highly reliable.

One of the methods used to minimise human errors is to

apply a suitable Human Reliability Analysis (HRA) technique

to predict the probability of human error while executing

the tasks required during the operation of systems. Previous

work [5] identified 72 different methods to assess human

reliability, and some of these techniques are widely used by

industry, such as the Human Error Assessment and Reduction

Technique HEART [6], the Technique for Human Error Rate

Prediction THERP [7], and A Technique for Human Error

Analysis ATHEANA [8]. These techniques usually comprise a

list of internal and external features called performance shaping

factors, used to quantify the likelihood of human failure given

the task and the existing contributing factors.

In spite of the adequateness of HRA techniques to estimate

human error probabilities, it is clear that uncertainties related

to human behaviour, which are highly associated with cultural

issues, the organisational context, the work environment, work

pressures and relationships, training and technological aspects,

among others, turn the outcomes of this kind of study largely

imprecise.

Therefore, in face of the decisive impact of human actions

and decisions on the performance of engineering systems,

associated with the uncertainties of current prediction methods,

it is necessary to better understand the relationship among

contributing factors. Therefore, the Multi-attribute Techno-

logical Dataset [9] will be scrutinised by a suitable data

mining technique, in order to overcome barriers for dealing

with complex data and reveal improvement opportunities.

The dataset contains 216 major accidents from different

industries, all classified under the same framework, build upon

the taxonomy developed by Hollnagel [10] in the Cognitive

Reliability and Error Analysis Method (CREAM).

In the following sections, a short description of the data is

given. Then, data preprocessing steps are disclosed, hierarchical

agglomeration clustering is reviewed and the distance similarity
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criterion for the particular case is defined. Finally, conclusions

are built upon the relationships among contributing factors,

to reveal hints for the development of accident prevention

schemes.

II. DATA DESCRIPTION

A dataset containing information on major accidents was

analysed. For more than 200 major accidents, the documenta-

tion was examined. Thereby several comparable information

of the accidents were gathered, like the number of casual-

ties, the year, the location and the industry in which the

accident occurred. In addition to these general information,

the contributing factors and causes of the accidents are of

special interest. Earlier work suggested that 53 hierarchically

ordered attributes can define causes of accidents such that

the known reasons can be adequately modelled. On the first

hierarchical level, there are three entries: Man, Technology and

Organisational Environment. The group Man generalises all

human mistakes and errors where a human action or cognitive

aspect were directly involved. Man can be split into the

following four subgroups: Action, Specific Cognitive Functions,

Temporary Person Related Functions and Permanent Person

Related Functions. The technology part can be divided in the

following four categories: Equipment, Procedures, Temporary

Interface and Permanent Interface. Organisational Environment

is split into Organisation, Training, Ambient Conditions and

Working Conditions. Deeper levels of this hierarchy and more

detailed information were described earlier by Moura et al [9].

The overall dataset contains 216 major accidents. To maintain

the focus on the contributing factors, these will be the data

points considered by the analysis. Each of the accidents is

given as a vector in the 53 dimensional boolean space, stating

which conditions were present or absent when the accident

occurred. The dataset can be represented by a 216×53 boolean

matrix. For these overall 11448 values, the dataset contains

1416 ones and 10032 zeros. Given these data, our goal is to

find groups with common features, the so called data clusters.

Table I presents the factors list ordered by frequency in

the MATA-D dataset. Design Failures was most frequent and

appeared in 64.35% of the accidents, while 4 factors (Cognitive

Style, Sound, Humidity and Other) were not identified.

III. DATA UNDERSTANDING AND PREPROCESSING

In the early phase of data analysis, one aspect is data

understanding [11, p. 33], applying simple statistics on the

data to get a rough idea. Knowing that 1s are especially

important, we look at rows and columns with few ones. There

are 14 monocausal accidents (lines in the matrix), representing

accidents which showed a single contributing factor or cause.

For all of them, insurance companies have commissioned the

reports from which the data was taken. This might imply

that insurance companies do not invest further money on

the causes of accidents when one strong reason, such as an

equipment failure, has already been found. For the analysis,

these monocausal accidents were removed, as they would

probably be considered outliers by the cluster analysis.

TABLE I: Features and corresponding frequency

Feature Frequency
Design failure 64.35%

Inadequate quality control 59.26%

Equipment failure 58.33%

Inadequate task allocation 58.33%

Inadequate procedure 43.98%

Insufficient skills 37.50%

Maintenance failure 35.19%

Insufficient knowledge 34.26%

Wrong Place 26.85%

Missing information 19.91%

Observation Missed 15.28%

Wrong Time 14.81%

Incomplete information 13.89%

Wrong Type 12.96%

Faulty diagnosis 12.96%

Wrong reasoning 12.04%

Communication failure 11.11%

Management problem 10.19%

Inadequate plan 9.72%

Decision error 8.80%

Cognitive bias 7.87%

Adverse ambient conditions 7.87%

Priority error 6.94%

Social pressure 6.94%

Distraction 6.48%

Excessive demand 5.56%

Delayed interpretation 5.09%

Irregular working hours 4.17%

Incorrect prediction 3.70%

Inadequate team support 3.70%

Fatigue 3.24%

Psychological stress 3.24%

Wrong Identification 2.78%

Software fault 2.78%

Ambiguous information 2.78%

Inadequate work place layout 2.78%

Wrong Object 2.31%

False Observation 2.31%

Fear 2.31%

Inattention 2.31%

Access problems 1.85%

Performance Variability 1.39%

Access limitations 1.39%

Mislabelling 1.39%

Temperature 1.39%

Memory failure 0.93%

Physiological stress 0.93%

Illumination 0.93%

Functional impairment 0.46%

Cognitive style 0.00%

Sound 0.00%

Humidity 0.00%

Other 0.00%
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A look at the raw data of the 53 dimensions revealed that

four dimensions did not appear at all: Cognitive Style (part

of the group of Permanent Person Related Functions), as well

as Sound, Humidity and Other (from the group of Ambient

Conditions). Seventeen dimensions appeared less than 7 times

each (less than 3%). Although this could be useful information

for the accidents causation understanding, for statistical analysis

these dimensions hardly contain much information.

In order to verify the amount of information contained, a

Principal Component Analysis (PCA) was performed. The

result, showing the explained variance of the dimensions,

revealed that no further dimensions could be found, allowing

its legitimate removal.

Given that the dimensions are hierarchically ordered, data

was aggregated considering whether or not an attribute was

present in at least one of the groups within the categories. This

aggregated dataset (in contrast to the original unaggregated

dataset) contained only 15 dimensions. After filtering mono-

causal accidents and applying the aggregation, the boolean

matrix had a size of 202× 15. The PCA performed on these

new data did not show any duplicate dimensions.

IV. METHODOLOGY

Having a boolean representation of the accidents, defining

an adequate similarity measure to group them is the next step.

Accidents were considered to be similar if they have similar

contributing factors. For two given boolean vectors i and j,

we counted the number of Ones for each event S(i), S(j) and

further counted the dimensions in which both vectors show

Ones simultaneously C(i, j).

d(i, j) := 1− 2C(i, j)/(S(i) + S(j)) (1)

Equation 1 shows the bray-curtis dissimilarity of two accidents

[12], which is not a distance, because the triangle inequality

does not hold. Nevertheless, this measure ensures that accidents

are similar if they have common causes, meaning common Ones

in the boolean space. Dimensions with common Zeros do not

increase the accidents’ similarity. The measure is normalised by

the division of the number of ones contained in both vectors so

that high similarities occur if two vectors have many common

and only few different causes.

As our goal is to find groups of common accidents, we apply

a cluster analysis, e.g. described in [13, p. 390]. Hierarchical

Agglomerative Clustering was applied. Every data point is

considered as a cluster in the beginning, and then successively

merged by similarity. We already clarified what similarity

means for two given accidents, in our case. For given clusters,

this can be extended by using an appropriate Linkage Method.

For two clusters A and B with their contained points a and

b, respectively, their distances can be defined in the following

way for complete and average linkage:

dcomplete(A,B) := max
a∈A,b∈B

(d(a, b)) (2)

daverage(A,B) :=
1

|A||B|
∑

(a,b)∈A×B

(d(a, b)) (3)

Clusterings can be evaluated with silhouette score [14]. This

is an internal clustering evaluation measure returning values in

[−1, 1]. Values are close to one when the resulting clustering

return relatively compact clusters, also having fairly high inter-

cluster dissimilarities.

V. RESULTS

The following analysis details the dendrogram of the

complete-linkage distances. Reading bottom to top, it shows the

data points, which are iteratively merged into bigger clusters.

This process ends when the cut value is reached. Above that

value, the connecting edges are blue, and beyond they are

differently coloured, depending on the cluster. The cutting

was performed at the 0.65 distance, where a reasonable jump

in the clustering levels can be observed, as shown in Fig. 1.

The resulting clustering shows a moderate silhouette score

of 0.228, which is slightly better than the score for average

linkage 0.221
The clusters are enumerated from left to right. First single

cluster comprises the only two events which contained just

human factors as significant contributors to the accidents.

This chunk is substantially different from the distribution

in the remaining groupings, as the vast majority of the

technological accidents of the MATA-D encompasses at least

one organisational or technological issue. Therefore, these two

events can be considered outliers.

All the remaining events involved organisational aspects (or-

ganisation, training, ambient conditions or working conditions)

to generate the undesirable outcome. Clusters 2 to 5 were highly

associated with technological issues (equipment, procedures or

interface), while clusters 6 to 9 showed the manifestation of

humans factors (execution errors, specific cognitive functions

and person-related functions). It is important to notice that the

latter groupings (from 6 to 9) form a single cluster containing

almost the same amount of elements (102 of 106 events), when

a different clustering criterion, i.e. the average-linkage method,

is applied to quantify dissimilarities between clusters (Fig. 2).

Further, the same points build the leftmost cluster of outliers.

The main results of the individual analysis of the complete

linkage clusters are summarised in Table II and will be detailed

as follows.

Cluster 2 (20 elements) was dominated by wrong procedures

(100%) and organisational issues (95%). Training was also

significant (70%). No erroneous actions were observed.

Third Cluster (29 elements) contained organisational issues

(100%) with training problems (100%), also with a high

incidence of equipment failures (75.9%). A marginal incidence

(a single case) of erroneous actions was shown.

Cluster 4 (6 elements) main feature is the combination of

organisational issues with communication problems (100%

of the cases). No erroneous actions were observed, and a

marginal incidence of temporary person-related functions, i.e.

psychological stress, was shown.

Cluster 5 (39 elements) contained organisational issues

(100%) with equipment failure (82%). No human issues were

observed.

1840



Fig. 1: Dendrogram for complete linkage clustering

Fig. 2: Dendrogram for average linkage clustering

TABLE II: Aggregated Data, Complete Linkage

C1 C2 C3 C4 C5 C6 C7 C8 C9

Accident# 2 20 29 6 39 17 17 25 47

Median 2.50 6.00 6.00 4.00 2.00 13.00 5.00 10.00 8.00

Average 2.50 5.20 5.66 4.33 2.77 13.65 7.24 10.00 8.30

Mode N/A 7 5 4 2 13 5 6 9

Fatalities 5 159 67 2 248 471 6 132 388

Death Rate 2.50 7.95 2.31 0.33 6.36 27.71 0.35 5.28 8.26
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The following 4 clusters contained direct human errors

joining organisational issues to generate accidents. It is worth

mentioning that Cluster 6 was the deadliest combination of

factors, reflecting 471 fatalities and a death rate of 27.71 per

event, followed by Cluster 9, which encompassed 388 fatalities

and attained a death rate of 8.26, as can be seen in Table II.

All accidents in the sixth cluster (17 elements) contained

organisational issues plus erroneous actions. These actions were

explained by all three levels of specific cognitive functions,

i.e. interpretation (94.1%), Observation (88.6%) and Planning

(70.6%). Temporary person related functions were also sig-

nificant (88.6%). An important feature of cluster 6 is that

an interface problem (information provided by the systems,

a technology problem) or communication issues (exchange

of messages/information within the organisation) were shown

in 100% of the cases. Training problems (82.4%) and poor

working conditions (58.8%) as contributing factors were also

above the overall average.

The accidents in Cluster 7 (17 elements) showed organisa-

tional issues with erroneous actions (100%) again, but mainly

combined with one specific cognitive function level (obser-

vation, with 70.6%). Equipment failures and communication

issues also showed 70.6% of incidence.

Cluster 8 (25 elements) contained the combination of

organisational issues (100%) with erroneous actions (96%), but

with an intermediate level of cognitive error (interpretation,

with 84% of incidence). Wrong procedures (92%) were very

significant, and equipment problems were also shown (72%).

Cluster 9 grouped 47 cases (100%) containing erroneous

actions with organisational (97.9%) and training (91.5%)

issues. 95.7% of the erroneous actions were accompanied

by intermediate to advanced specific cognitive functions, i.e.

interpretation (61.7%) and inadequate mental planning (44.7%).

VI. DISCUSSION

A suitable cluster analysis algorithm was applied to a

collection of 202 major accidents from the MATA-D dataset

to disclose relevant relationships among contributing factors.

All clusters were largely dominated by the Organisational

Environment group, meaning that design failures, poor quality

control and inadequate task allocation are key contributing

factors to major accidents.

First cluster, which contained only two elements (less than

1% of the sampling), confirmed previous studies (Moura et

al, 2015 [9]) indicating that the possibility of having a single-

failure point leading to a major accident is low. The two

cases represented human erroneous actions following a serious

violation of a faultless work procedure, such as smoking during

a fuel tanker offloading or deviating from the recommended

navigating route without any apparent reason. Although viola-

tions are not uncommon, it appears to occur in specific cases,

such as under an uncertain environment (e.g. system is in an

unrecognised, non-routine status), associated with unclear rules

or procedures, or when operators distinguish some kind of

tangible benefit (e.g. save money, time or effort through an

easier way of performing a task) from non-compliance. These

associations would require further contributing factors (e.g.

inadequate procedure, poor communication or training), thus

this was not the case in the two analysed accidents.

The algorithm application set apart a very significant group,

i.e. 106 accidents (From cluster 6 to cluster 9) in which

organisational factors were accompanied by human erroneous

actions. The exposed differences between these 4 clusters lie

on the mental functions or disturbances which triggered the

action error.

In spite of having only 17 events, cluster 6 is an extremely

important chunk, as it is by far the deadliest grouping, with a

rate of 27.71 fatalities per event. Also, the accidents within this

cluster showed the largest amount of simultaneous contributing

factors to generate an accident, with an average of 13.65 and

mode of 13 significant features. The justification is that a

very complex chain of events or simultaneous failures took

place in sophisticated systems (e.g. oil & gas, chemical or

aviation industry), which would have required the whole range

of specific cognitive functions (observation, interpretation and

planning) to recover the system to a regular state and minimise

the effects of the accident sequence.

Although the path to recover the system to a normal state

was apparently clear in most of the cluster’s cases, the operator

was unable to make progress, due to two main reasons. First, a

technology problem related to the man-machine interface failed

to provide an accurate information (an indistinct or incomplete

error message, for instance), and the communication channels

of the organisation failed to deliver a complete information

or feedback. Second, inadequate working conditions (e.g.

excessive demand and irregular working hours) resulted in

temporary person-related functions (e.g. distraction, fatigue and

psychological stress) to disturb the mental processing. Deprived

from an accurate input from the system and from the organisa-

tion (information and training) to support the decision-making

process, and frequently affected by an undermining working

condition, the operator was unable to respond appropriately.

Cluster 7 erroneous actions can be explained by a sim-

pler mental modelling, where a wrong observation was the

triggering mechanism. Examples are failures to observe an

indication/warning, a mistaken or partial identification of a

status or an incorrect recognition of a signal. This cognitive

failure to observe something can be directly associated with

the substantial rate of concurrent equipment failures and

communication issues, which prevented the operator from

entering in a deeper state of cognition to build a more complex

problem-solving mental plan.

The 25 major accidents contained in cluster 8 shared similar

characteristics with the previous grouping, but with erroneous

actions largely commanded by a faulty reasoning (induction or

deduction error) or an imperfect diagnosis of the system state.

The additional contributors interacting with these human-related

issues suggest a reasonable explanation for this: inadequate

procedures, which can be specified by incorrect/outdated or

incomplete written instructions, directly affected the operator’s

capacity to construct a mental plan and understand the situation

or system state, as the written and trained information, typically
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assumed to be precise, was not representative of reality.

Cluster 9 grouped the largest number of major accidents,

with 47 events, and contained a very consistent amount of

contributing factors per accident (average of 8.3). Accordingly,

the causes for these accidents are quite well dissected, meaning

that a reliable understanding of the grouping behaviour can be

reached. The human erroneous actions were strongly influenced

by advanced cognitive functions, supposing that a complex

mental modelling was required to maintain the system under

a regular operational state, i.e. a seamless interpretation and

the construction of an accurate mental planning was necessary.

However, the high incidence of training flaws, including not

only the lack of suitable working instructions to improve the

human performance and manoeuvring capacity, but also the

dispossession of the necessary knowledge to fully understand

the system behaviour, seem to have undermined the human

capacity to act properly.

VII. CONCLUSIONS

A. Insights to improve human performance and minimise
accidents

The examination of complex accidents under an analysis

method, i.e. a Hierarchical Agglomerative Clustering using

distance measures tailored to the dataset characteristics, can

offer wide-ranging insights into the data, which could be

advantageous for the development of accident prevention

schemes. It is now clear that different mechanisms are able to

trigger specific cognitive failures, leading to human erroneous

actions and subsequently disastrous consequences, and the

decision-making process at any stage of high-technology

facilities’ lifecycle can take advantage of the findings discussed

earlier in this work. From the analysis of the technological

accidents in cluster 6, which resulted in 471 fatalities (27.71 per

event), it can be concluded that efforts towards the improvement

of the communication fluidity from the organisation (to make

sure operators receive and understood messages) and from the

interface (clear warnings and error messages from the system)

would have enhanced the operator’s ability to recognise the

system status. An evaluation of the whole range of information

reaching the operators is indispensable to ensure a proper

construction of a right cognitive line.

The study has also revealed that the largest cluster (C9, with

47 accidents) was intensely associated with training aspects.

Current industry’s response to training problems is usually

short-duration courses and on-the-job evaluations. In spite of

being valuable to some extent (primarily to improve practical

skills and develop work experience), this approach is unlikely to

improve the awareness level when operating complex systems.

This is a robust indication that the knowledge level required

to operate in high-technology environments is currently not

sufficient.

As a result, the application of a multidisciplinary and more

advanced recruiting and knowledge development programme

is strongly recommended. This should be fully tailored to the

system and industry in which the operator will be allocated, in

order to ensure that the capabilities required to understand and

operate the system consciously, including the recovery from

complex and abnormal situations, are in place.

B. Future Developments

The pronounced incidence of organisational problems in

all clusters is an issue which deserves further investigation.

This category includes failures in maintenance, quality control,

management, design and task allocation. Some of them (such

as a design problem) can be embedded in the system for

many years. The analysed accidents have shown that there was

enough time to spot symptoms of some future flaws before

being exposed by an accidental sequence. Also, a deeper

study of certain flaws (e.g. training) may provide cues to

improve organisations and technologies. Testing other data

mining methods such as Frequent Itemset or Association Rule

might reveal some extra factors to be addressed by future work.
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