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Abstract— Structural health assessment using the structural 
identification concept using measured dynamic response 
information in time domain was considered to be not possible in 
the late seventies. With the help of comprehensive analytical and 
laboratory investigations, the research team at the University of 
Arizona conclusively documented that the above statement is not 
correct. In fact, they showed that the concept has several 
advantages over other available methods. Considering the 
implementation potential, the concept appeared to be very 
desirable. The team proposed several intelligent schemes to 
address many challenges. They used mathematical concepts used 
in other disciplines, extensively modified them and proposed few 
novel concepts.  Some of them are briefly presented in this paper 
and their novelties are described with the help of several 
informative examples. The concepts presented in the paper cross 
the disciplinary boundaries and showcase benefits of 
computational intelligence. 

I. INTRODUCTION 
Structural health assessment (SHA) using structural 

identification (SI) technique has recently become an important 
research item. In 1979, Maybeck [1] concluded that the SI-
based concept cannot be used for SHA using measured 
response information. There are several reasons for his 
comments including: (i) no mathematical model to represent a 
system is perfect, (ii) dynamic systems are not only driven by 
control inputs, but there are always disturbances that cannot be 
controlled and modeled deterministically, and (iii) responses 
observed by sensors do not exhibit the actual perfect system 
responses, since sensors always introduce their own system 
dynamics and distortion into measured data. The authors and 
their team members had to overcome several challenges and 
proposed several computational intelligence schemes and 
documented that SI is an ideal option to assess structural health 
at the local element level. Some of these intelligent schemes 
are presented in this paper. 

Structural identification has three essential components: (1) 
excitation information, (2) the system to be identified, which 
can be represented by a series of equations or represented in 
algorithmic form, e.g., in a finite element (FE) formulation in 
terms of mass, stiffness, and damping characteristics of each 
element, and (3) response information. Using input excitation 
and output response information, the dynamic properties of all 
the elements can be evaluated using the inverse SI algorithm. 

Using the information on the identified element properties, it 
will be straightforward to evaluate the amount or rate of 
degradation of a particular element with respect to the “as 
built” or expected properties, or the changes from the previous 
values if periodic inspections are used or deviations from other 
similar structural elements for the health assessment purpose. 

The SI-based concept appears to be simple. However, to 
increase its implementation potential, several advanced 
computational techniques need to be used. It is to be noted that 
the SI concept has evolved over time from non-model based 
visual inspections to model-based using static and dynamic 
response measurements. The most desirable outcomes of an 
inspection are locating defects at the local element level, their 
number and severity. To obtain such information, it will be 
advantageous to represent the structure by finite elements. By 
tracking the changes in the stiffness properties of all the 
elements as they age or after a natural and man-made event, the 
health of a structure can be assessed. Most recently, measured 
time-domain response information instead of modal properties 
has attracted a considerable amount of attention and it is 
emphasized in this paper.   

II. CHALLENGES IN SI FOR SHA 

A. Measurement of input excitations  
One of the challenges in implementing the SI concept using 

time-domain response information is measuring the input 
excitation. Outside the control laboratory environment, the 
measurements of excitation information could be very 
expensive and so error-prone that the SI concept may not be 
applicable as observed by Maybeck [1]; thus SHA without 
excitation information will be very desirable. The team initially 
proposed a procedure, known as Iterative Least-Squares with 
Unknown Input (ILS-UI) [2]. They used viscous-type 
structural damping. The efficiency of the numerical algorithm 
was improved later by introducing Rayleigh-type proportional 
damping, known as Modified ILS-UI or MILS-UI [3]. 
Katkhuda et al. [4] improved the concept further and called it 
Generalized ILS-UI or GILS-UI. Later, Das and Haldar [5] 
extended the procedure for three dimensional (3D) large 
structural systems and denoted as 3D GILS-UI. 
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B.  Measurement of responses- limited numbers; noise-
contamination 
The use of Least Squares (LS)-based approach implies that 

response information must be available at all dynamic degrees 
of freedoms (DDOFs). For large structural systems, it may not 
be practical or economical to measure response time histories 
at all DDOFs. Considering accessibility and other practical 
issues, only a part of the structure can be instrumented and 
responses will be measured at a limited number of DDOFs. 
Thus, considering the implementation potential, the structural 
health needs to be assessed using only limited number of 
measured responses in time domain. The research team used 
accelerometers capable of measuring acceleration time 
histories at high sampling rates, about 4,000 Hz. Since voltage 
fluctuations are used to measure acceleration time histories, 
they are expected to be noise-contaminated with unknown 
magnitude. To summarize the challenges in SHA for 
implementing SI discussed so far are the availability of only 
limited number of measured noise-contaminated responses 
without using any information on excitation. 

C. Computational tools and their limitations  
When measured responses are limited and noise-

contaminated, generally Kalman filter (KF)-based concept is 
used. Kalman filter [6, 7] is a set of mathematical equations 
that provides efficient computational means in a recursive 
manner to estimate the state of a process, in a way that 
minimizes the mean of squared error, and calculates the best 
estimate of states from the noisy sensor responses [8, 9]. It is a 
time domain filter and is very powerful in several aspects. One 
of its limitations is that it is applicable for linear systems. For 
nonlinear SI, extended Kalman filter (EKF) is the most widely 
used. It extends the linear Kalman filter to handle nonlinear 
systems based on a first-order linearization of the nonlinear 
statistical distributions of the variables. 

D. Implementation of EKF for SHA  
The implementation of EKF concept for SHA may not be 

simple. The research team proposed several computational 
intelligent schemes as briefly discussed below. To implement 
the EKF concept for SHA, the excitation force vector and the 
initial state vector must be known. The first requirement 
invalidates the basic intent of SI without input excitation 
information. To address this challenge, the research team 
proposed to integrate EKF with the ILS-UI-based concept 
developed earlier [10]. It will require a two-stage approach. In 
stage 1, based on the location of excitation and measured 
response information, a substructure needs to be defined. Then, 
using the ILS-UI-based algorithm, the stiffness parameters of 
all the elements in the substructure, the time-history of the 
unknown excitation and damping information can be extracted. 
The information on the stiffness parameters of elements in the 
substructure can be judicially used to generate information on 
the initial state vector for the whole structure. Thus, both 
requirements for implementing EKF are now can be satisfied. 
The concept was initially denoted as ILS-EKF-UI [10]. Later, it 
was improved and denoted as Modified ILS-EKF-UI or MILS-
EKF-UI [11], Generalized ILS-EKF-UI or GILS-EKF-UI [12], 
and three dimensional GILS-EKF-UI or 3D GILS-EKF-UI [13]. 

The concept was conclusively verified by conducting extensive 
analytical and laboratory investigations [14, 15]. 

E. Nonlinearity in identification 
During an inspection, the intensity of dynamic loading is 

expected to be very low to avoid further damage. In some 
situations, the defective structure may behave linearly. 
However, in the presence of major defects, it may not behave 
linearly. In general, most structural identification problems are 
nonlinear. This is due to the fact that the identification of the 
unknown parameters jointly with dynamic responses is a 
nonlinear identification problem even if the structural system is 
linear. In other words, the state vector of the system, which 
needs to be identified, includes system parameters and 
nonlinear responses and this makes the structural system 
identification nonlinear. The influence of nonlinearity becomes 
more severe in the presence of defects. Since the level of 
severity of defect is unknown at the time of inspection, 
nonlinear SI-based approach needs to be used. 

Although the EKF has been successfully used to assess 
structural health in many applications, the authors observed 
that it failed to identify a structure in the presence of high 
nonlinearity. EKF operates by approximating the state 
distribution as a Gaussian random variable (GRV) and then 
propagate it through the first-order linearization for the 
nonlinear system [16]. The EKF-based approach provides only 
an approximation to the optimal nonlinear filter due to the 
truncation of the higher-order terms when linearizing the 
system. In practice, EKF suffers two well-known drawbacks. 
First, the derivation of the Jacobian matrices required to 
implement the filter is nontrivial in most applications and often 
lead to significant difficulties. Second, the filter can be 
unstable if the sampling interval or time between two samples 
is not sufficiently small. There are a threshold of nonlinearities 
when EKF may not be able to identify a system for SHA.  An 
alternative to EKF is unscented Kalman filter (UKF). UKF was 
developed with the underlying assumption that approximating 
a Gaussian distribution is easier than approximating an 
arbitrary nonlinear transformation [17]. UKF uses deterministic 
sampling (or so called sigma points) to approximate the state 
distribution as a GRV. The sigma points are chosen to capture 
the true mean and covariance of the state distribution. They are 
propagated through the nonlinear system. The posterior mean 
and covariance are then calculated from the propagated sigma 
points. UKF determines the mean and covariance accurately to 
the second order, while EKF is only able to obtain the first-
order accuracy [16]. Therefore, UKF provides better state 
estimates for nonlinear systems.  

F. Implementation of UKF for SHA 
The UKF method is a powerful nonlinear estimation 

technique. However, its applications for SHA are limited to 
simple and small structural systems [18-21]. It was applied to 
identify structural system, represented by a shear-type building 
with a relatively small number of DDOFs and it was not used 
for structural damage detection. The input excitation is 
considered to be known and response time histories 
(acceleration, velocity, or displacement) with relatively long 
duration were assumed to be available at all DDOFs. Long 
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duration may not be very desirable for SI, since there is a 
potential for contamination from other sources of excitation. 
One global iteration was used for the structural identification.  
The authors [22] also observed that the traditional UKF 
procedure may not be able to identify large structural systems. 
These deficiencies prompted the authors to introduce several 
intelligent computation schemes to improve the UKF algorithm 
in order to widen its application potential. 

The authors [22-24] proposed to use very short duration 
(fraction of a second) response time histories measured at a 
very high sampling rates to avoid cross-contamination. 
However, the algorithm may not converge in most cases; it will 
require several global iterations not used in UKF. The authors 
introduced a weighted global iteration (WGI) procedure with 
an objective function [25] into the UKF algorithm to obtain 
stable and convergent solutions to identify large structural 
systems. They proposed to integrate UKF with ILS-UI in order 
to identify the structure without using excitation information. 
The procedure is known as unscented Kalman filter with 
unknown input and weighted global iteration (UKF-UI-WGI). 

III. BRIEF MATHEMATICAL CONCEPT OF UKF-UI-WGI 

A. Implementation stategy of UKF-UI-WGI  
Before presenting the UKF-UI-WGI concept, it may be 

informative to discuss how it can be implemented for assessing 
health of real existing structures. Very complicated structural 
systems will be represented by finite elements. Based on the 
input excitation information, a substructure will be identified. 
Assuming the mass is known, the stiffness and damping 
parameters of all the elements in the substructure will be 
identified using only limited number of noise-contaminated 
acceleration response time histories measured at the 
substructure in stage 1 [2]. Then, the stiffness parameters of all 
the elements in the structure will be identified in stage 2 using 
the two-stage UKF-UI-WGI procedure. By tracking changes in 
the stiffness parameters from the previous, expected or design 
values or by comparing with other similar elements, the 
location(s) and the severity of the defects are established.  

B. Stage 1 - Identification of substructure  
A substructure is a small part of a structure that satisfies all 

the requirements to implement the ILS-UI procedure. Based on 
the location of input excitation(s) and the available measured 
response information, substructure(s) are selected, as discussed 
in [12]. The size of the substructure should be kept to a 
minimum for economic reason. The defect predictability 
improves significantly when the defect is located close to the 
substructure. Using the ILS-UI procedure, the stiffness and 
damping parameters of all the elements in the substructure can 
be identified. Information on the time history of input 
excitation(s) that caused the responses will also be generated 
[2]. The generated information is then used to implement the 
UKF-based procedure in stage 2.  

C. Stage 2 – Identification of whole structure  
The identified stiffness parameters of the substructure can 

be judiciously used to develop the initial state vector of 

stiffness parameters for the whole frame since they are 
expected to be similar. The excitation information is also 
known at this stage. Thus, in stage 2, the health of the whole 
frame can be assessed using only limited number of noise-
contaminated responses using the UKF-UI-WGI procedure. 

D. Mathmatical formulations 
Mathematical formulations of the two stages are discussed 

very briefly below.  

E. Mathematics of ILS-UI - stage 1 
The governing differential equation of motion using 

Rayleigh damping for the substructure can be expressed as: 

 ( ) + ( + ) ( ) + ( ) = ( )sub sub sub sub sub sub sub subt t t tα βM X M K X K X f�� �  (1) 

where Msub is the global mass matrix, generally considered to 
be known; Ksub is the global stiffness matrix; ( ) , ( )sub subt tX X�� � , 
and ( )sub tX  are the vectors containing the acceleration, 
velocity, and displacement, respectively, at time t; fsub(t) is the 
input excitation vector at time t; and � and � are the mass and 
stiffness proportional Rayleigh damping coefficients, 
respectively. The subscript ‘sub’ is used to denote substructure. 

The global mass and stiffness matrix can be formulated 
using standard procedure [26]. The stiffness parameter for the 
ith elemnt, ki is defined as EiIi/Li, where Li , Ii and Ei  are the 
length, moment of inertia, and modulus of elasticity, 
respectively. The P vector contains all the unknown parameters 
and can be defined as: 

 1 2 1 2
T

nesub nesubk k k k k kβ β β α� �= � �P � �  (2) 

where nesub is the total number of elements in the 
substructure.  

Using the least squares concept, the unknown system 
parameter vector P can be estimated as [2]: 

 ( ) 1T T−
=P A A A F  (3) 

where A matrix contains the measured displacement and 
velocity responses at time point t; F vector contains the 
unknown input excitations and the inertia forces at time point t; 
and the responses are measured at equal interval of �t for q 
time points. Since the input excitation fsub is unknown, the 
force vector F in (3) is partially known and the iteration 
process cannot be initiated. To start the iteration process, the 
excitation information can be initially assumed to be zero for 
all the time points as discussed in [4]. The iteration process is 
continued until the excitation time history converges at all time 
points, considering two successive iterations, with a 
predetermined tolerance level, which is set to be 10-8 in this 
study. 
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It is important to note that only acceleration time histories 
will be measured during an inspection. However, velocity and 
displacement time histories are necessary to implement the 
concept. The acceleration time histories can be successively 
integrated to generate the velocity and displacement time 
histories as discussed in more details in [27-29]. 

F. Mathematics of EKF and UKF- stage 2 
In order to implement the EKF or UKF-based procedure, it 

is necessary to describe the dynamic system by a set of 
nonlinear differential equations.  In the absence of any process 
noise, it can be expressed in a continuous state vector equation 
as: 

 ( ),t tf t=X X�  (4) 

The discrete time measurements with additive noise at t = 
kΔt can be expressed as: 

 ( , t)k k kh= +Y X V  (5) 

where Xt is the state vector at time t; tX� is the derivative of the 
state vector with respect to time t; f is a nonlinear function of 
the state; Xk is the state vector at t = kΔt; Δt is the constant time 
increment; Yk is the measurement vector at t = kΔt; Vk is a 
measurement noise vector of zero mean white noise Gaussian 
processes with covariance matrix Rk . 

To implement these concepts, the acceleration time 
histories will be measured in the substructure(s). Then the 
acceleration time histories will be successively integrated to 
obtain the velocity and displacement time histories. This 
discrete time measurement model can be expressed in a linear 
form as: 

 k k k= +Y HX V  (6) 

where Yk is the measurement vector;  H is the measurement 
matrix. 

To implement the filtering process, the initial values of the 
state vector are necessary. The initial stiffness parameters are 
generated from the information obtained from stage 1. The 
initial state vector is assumed to be Gaussian random variable. 
The next step is to find its mean and covariance at time step 
(k+1). It is important to note that the corrections of predicted 
values based on available measurements, i.e., the updating step 
are the same for both EKF and UKF methods. 

1) Mathematics of EKF 
The EKF procedure consists of two steps: 

a) Prediction step  
Predict the state mean vector and its covariance by 

linearizing the nonlinear dynamic equation as: 

 
( 1)

1| | |
ˆ ˆ ˆ( , )

k t

k k k k t k
k t

f t dt
+ Δ

+
Δ

= + �X X X  (7) 

and  

 T
1| 1| | 1|k k k k k k k k+ + +=P � P �  (8) 

where Φk+1|k is the state transition matrix of the system and 
denoting I is a unit matrix, it can be written in an  approximate 
form as: 

 
( )

( ) |

1|
ˆt

f ( t , t)
�t

X(t)
k k

k k+

=

� �∂
= + � �∂� �� �X X

X
� I  (9) 

The predicted measurement vector is determined as: 

 1| 1|
ˆ

k k k k+ +=Y HX  (10) 

and its error covariance matrix is 

 1 1|
YY T
k k k+ += +P HP H R  (11) 

and the cross correlation matrix is estimated as: 

 1 1|
XY T

k k k+ +=P P H  (12) 

b) Updating step  

Since observations are available at time k+1, the state 
vector and the error covariance are updated as follows: 

 1
1 1 1( )XY YY

k k k
−

+ + +=K P P  (13) 

where Kk+1 is the Kalman gain matrix 

The updated state mean vector and error covariance matrix 
are: 

 ( )1| 1 1| 1 1 1|
ˆ ˆ

k k k k k k k k+ + + + + += + −X X K Y Y  (14) 

 1| 1 1| 1 1 1
YY T

k k k k k k k+ + + + + += −P P K P K  (15) 

2) Mathematics of UKF 

The UKF procedure consists of three steps: 

a) Sigma point calculation step  

Sets of 2n+1 sampling points or so-called sigma points are 
generated around the current state vector based on its 
covariance as:  
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0

ˆ
k=� X  (16) 

 ( ) . 1 ,ˆ ,i k col i i nnλ == + +� X A �     (17) 

 ( ) .
ˆ 1, ,i n k col in i nλ+ − + ==� X A �     (18) 

where 

 ( )2 n nλ α κ= + −     (19) 

A is a square root of the covariance matrix such that Pk = AAT. 
Acol,i is the ith column of A’s matrix and n is the dimension of 
the state vector. α and κ are scaling parameters. 

b) Prediction step 
 Transform the sigma points through the nonlinear dynamic 

equation as: 

    ( )
( 1)

, 1| , | 1, ,( ),
k

k t

k
t

i k i k k i nf t t dtχ
+

Δ

Δ

+ = + =�� X �  (20) 

The predicted state mean vector and error covariance 
matrix are:  

 
0

1| , 1|

2
ˆ

n

i
i

k k i k kW χ+
=

+= 	X     (21) 

( )( )
2

1| , 1| 1| ,
0

1| 1|
ˆ ˆ

n T

k k i i k k k k i k k k k
i

W χ χ+ + + + +
=

= − −	P X X  

( )( )( )2
0 1| 0 1|

ˆ ˆ1
T

k k k kα β χ χ+ ++ − + − −X X  (22) 

where β is a parameter added to the weight on the zeroth sigma 
point of the calculation of the covariance. Wi is the weight 
given by: 

 0W
n

λ
λ

=
+

    (23) 

 1
2

1 ,
( )

,iW
n

i n
λ

==
+

�     (24) 

Since the measurement model is linear, KF will be used 
instead of using the sigma points to compute the predicted 
measurement, its error covariance and cross correlation matrix. 
i.e. (10) to (12) can be used.  

Once the process model and measurement of the EKF or 
UKF is set up, prediction and correction are performed at each 
time point. The correction is performed with the help of Kalman 

gain operated on the discrepancy between the predicted and 
measured values of the variables. Prediction and updating 
operations performed at each time point is generally known as 
local iteration. Completion of local iterations covering all time 
points in the entire time-history of responses is known as first 
global iteration. A weighted global iteration procedure with an 
objective function is incorporated after the first global iteration 
to obtain convergence in an efficient way. The weight factor 
along with the initial covariance matrix may accelerate the EKF 
and UKF procedures; however, in some cases the stability 
might be sacrificed to some extent. The weight factor leads to 
great fluctuation of the state in the initial stage due to the 
amplification of the initial covariance. The weight plays an 
important role in accelerating the convergence process [22]. 

IV. ILLUSTRATIVE EXAMPLE 
Suppose, a nonlinear function y = x4 and x is a Gaussian 

random variable with a mean of 2.5 and a standard deviation of 
0.3. The true mean and variance of y along with values 
obtained by UKF and EKF are shown in Table I. 

The propagations of uncertainties using UKF and EKF are 
shown in Fig. 1. It can be observed that the UKF approximates 
the propagation of the uncertainty in terms of the probability 
density function in the presence of large nonlinearity more 
accurately than the EKF, as discussed in more detail in [23,30]. 

V. VERIFICATIONS OF COMPUTATIONAL SCHEMES FOR SHA 
The intelligent aspects of several computational schemes 

presented in this paper need verification. As mentioned earlier, 
the team conducted extensive analytical and experimental 
investigations to validate some of the concepts. The authors 
used experience gained from the previous studies to highlight 
some of the intelligent computational schemes using analytical 
response information in this paper. 

A. Description of the structure 
A two-dimensional frame with a bay width of 9.14 m and 

story height of 3.66 m, as shown in Fig. 2, is considered. The 
frame has a total of 15 members; 5 beams and 10 columns. The 
beams and columns are made of W21×68 and W14×61 
sections, respectively, of Grade 50 steel. The frame is modeled 
by 12 nodes in the FE representation. Each node has three 
DDOFs; two translational and one rotational. The support 
condition at the base (nodes 11 and 12) of the frame is 
considered to be fixed. The total number of DDOFs for the 
frame is 30. The actual theoretical stiffness parameter values ki 
evaluated in terms of (EiIi/Li) are calculated to be 13,476 kN-m 
and 14,552 kN-m for a typical beam and column, respectively.  

TABLE I.  COMPARISON BETWEEN TRUE AND PREDICTED MEAN AND 
VARIANCE 

 True UKF EKF 

Mean of y 42.46 42.45 39.06 

Variance of y 406.47 384.65 351.56 
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(i) Gaussian probability distribution function of y (ii) Function relationship 
(a) Propagation of uncertainty using UKF

 
 

(i) Gaussian probability distribution function of y (ii) Function relationship 

(b) Propagation of uncertainty using EKF

Fig. 1. Propagation of uncertainties using UKF and EKF. 

First two natural frequencies of the defect-free frame are 
estimated to be f1 = 3.6973 Hz and f2 = 11.715 Hz, 
respectively. Following the procedure described in Clough and 
Penzien [31], Rayleigh damping coefficient � and � are 
calculated to be 1.0594748 and 0.000619589, respectively, for 
an equivalent modal damping of 3% of the critical for the first 
two modes. The frame is excited by two forces; a sinusoidal 
load, f(t) = 8 sin(20 t) kN, is applied at node 1 and a triangular 
impulsive load is applied at node 3, as shown in Fig. 3. 

The information on responses are numerically generated at 
0.00025 s time interval using a commercially available 
computer program ANSYS [32]. After the responses are 
simulated, the information on input excitations is completely 
ignored. Responses between 0.02 s and 0.32 s providing 1201 
time points are used in the subsequent health assessment 
process. 

B. SHA of defect-free frame 
SHA of defect-free frame is considered in this section. The 

substructure required to identify the two excitation loads are 
shown in double lines in Fig. 2. Using responses at five nodes in 
the substructure, the stiffness and damping parameters and the 
time-history of unknown input forces are identified using the 
ILS-UI procedure in stage 1. The errors in identified stiffness 
parameters are shown in column 2 of Table II. As commonly 
used in the literature, the errors are defined as the percentage 
deviation of identified values (at the current state) with respect 
to the initial theoretical values. The errors in the stiffness 
parameter identification of the four members in the substructure 
are very small. The excitation time history and damping 
coefficients were also identified very accurately. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Finite representation of a five-story frame.  
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a. sinusoidal  b. impulse 

Fig. 3. Excitation forces  
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TABLE II.  STAGE 1: IDENTIFICATION OF SUBSTRUCTURE 

Member Defect-Free Defect 1 Defect 2 

(1) (2) (3) (4) 

k1 0.001 0.021 0.011 

k2 0.010 0.021 0.016 

k6 0.020 0.023 0.022 

k8 0.020 0.023 0.022 

 
The stiffness parameters of all 15 elements of the frame are 

then estimated using the EKF and UKF-based procedures in 
stage 2 using only responses at the substructure. The errors in 
identification of stiffness parameters are shown in columns 2 
and 3 of Table III. The maximum error in the identification 
using EKF-based procedure is 1.2%, but it is only 0.2% using 
UKF-based procedure. From the results, it can be noticed the 
magnitude of error using EKF is higher than that of UKF-based 
procedure. 

TABLE III.  STAGE 2: IDENTIFICATION OF WHOLE STRUCTURE  

Member 
Defect-Free Defect 1 Defect 2 

EKF UKF EKF UKF EKF UKF 

(1) (2) (3) (4) (5) (6) (7) 

k1 -0.1 0.0 -0.4 0.0 -0.2 0.0 

k2 0.0 0.0 0.0 -0.1 -0.1 -0.2 

k3 -0.1 0.1 -0.6 0.0 -60.2 -59.9 

k4 -0.1 -0.1 0.2 -0.5 -40.6 -39.9 

k5 0.4 0.0 0.8 0.5 -18.3 -20.4 

k6 -0.1 0.0 -0.2 -0.1 0.3 -0.1 

k7 -0.2 0.0 -9.4 -9.9 -0.7 -0.1 

k8 0.2 0.2 0.6 0.3 0.0 0.3 

k9 0.3 0.2 1.1 0.4 -0.2 0.2 

k10 -1.1 0.1 -2.7 0.8 -0.3 0.9 

k11 1.2 0.1 2.6 0.7 12.4 -2.1 

k12 -0.9 0.1 -2.3 0.4 -2.3 -1.0 

k13 0.5 0.1 1.5 0.6 4.7 -0.1 

k14 -0.2 -0.1 -1.0 -0.6 -4.4 1.8 

k15 0.1 -0.1 0.3 -0.8 -2.4 -0.2 

 

C. SHA of defective frame 
Two defective states of the frame are considered. In Defect 

1, the moment of inertia of the member 7 (column) over the 
entire length is reduced by 10% of the defect-free value. In 
Defect 2, the moment of inertia of three members (beams), 
over their entire length is reduced by 60%, 40%, and 20% of 
their corresponding defect-free values. Obviously, the location 
and the severity of defects will be unknown at the time of 
inspection, but the measured responses should reflect their 
presence. As mentioned earlier, for this illustrative example, 

the responses are numerically generated using ANSYS by 
appropriately modeling the location, nature, and extent of 
defects. In real inspections, they will be measured. The 
substructure required in stage 1 is considered to be the same as 
used previously. Using responses at 15 DDOFs, the 
substructure is identified and the results of defect cases 1 and 2 
are summarized in columns 3 and 4 of Table II, . Then, using 
the results obtained in stage 1, the whole frame is identified. 
The results of Defect 1 using EKF and UKF-based procedure 
are presented in columns 4 and 5 of Table III, respectively, and 
the results of Defect 2 are presented in columns 6 and 7 of 
Table III, respectively. The reduction in the the stiffness 
parameter of defective members is indicated by bold values 
and the maximum error in the identification is indicated by 
italic bold values in the table. It can be clearly seen that the 
errors in identification using EKF is higher than that of UKF-
based procedure. For an example, the maximum error in 
identification of Defect 2 using EKF is 12.4%; however, it is 
only 2.1% using UKF-based procedure. The acceptable error in 
the identification process was reported to be about 10%. [33, 
34]. The results clearly show the superiority of the UKF-UI-
WGI procedure over the EKF-based procedure.  

D. Importance of weight factor 
In this section, the effectiveness of the weighted global 

iteration (WGI) on the UKF algorithm for SHA is studied. To 
do so, the convergence of defective member 7 in Defect 1 is 
considered. To implement UKF-based procedure, the initial 
value of the stiffness parameter of member 7 is considered to 
be 14,556 kN-m and this value is assigned based on the 
identified stiffness in stage 1, as discussed earlier. The 
convergence behavior for identified stiffness parameter of 
member 7 using UKF-UI-WGI is shown in Fig. 4. After first 
global iteration, the result of identified stiffness is equal to 
14,314 kN-m and corresponding reduction in stiffness with 
respect to theoretical defect-free value is 1.64%; however, the 
actual reduction must be 10%. This represents the result of 
traditional UKF procedure. It is clearly shown that it failed to 
identify the state of large structural system. After incorporating 
weight factor in the UKF algorithm in the second and 
subsequent global iterations, the algorithm converges at 4th 
global iteration. The identified stiffness parameter is 13,109 
kN-m, which corresponds to 9.9% reduction from defect-free 
value. This example demonstrates the superiority of the UKF-
UI-WGI over traditional UKF procedure. 

 

Fig. 4. Convergence behavior of stiffness of member 7 for Defect 1 
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VI. CONCLUSIONS   
The authors and their research team at the University of 

Arizona conclusively established that the structural 
identification-based concept can be used for the health 
assessment of large realistic structural systems. In the process, 
the team re-defined the SI concept by not using the excitation 
information and used very short duration (fraction of a second) 
noise-contaminated limited number of response information. 
Multiple global iterations with weight factor were also 
introduced. Health of defect-free and defective states of a frame 
was assessed to demonstrate the application potential of the 
proposed method. The team intelligently modified and used 
some of signal processing concepts used in Electrical 
Engineering for Civil Engineering applications of structural 
health assessment; an upcoming research topic. The concepts 
presented in the paper cross the disciplinary boundaries.   
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