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Abstract—Locating multiple optima of a problem is an 
important and challenging task for many real-world applications. 
In this paper, a random walk mutation strategy is proposed for 
differential evolution (DE) to handle multimodal optimization 
problems. The mutation strategy is able to find a balance 
between exploitation and exploration. First, the neighborhood 
and fitness information of individuals is incorporated into 
mutation to guide the formation of donor vectors. This facilitates 
the evolution of individuals toward their nearby optima. Second, 
the exploration ability of the mutation strategy is preserved by 
simulating a random walk process. Moreover, an archive 
technique is designed to detect converged subpopulations. The 
converged individuals are then reinitialized to search for other 
optima. This enhances the algorithm’s exploration ability. 
Meanwhile, found optima can be maintained throughout the 
optimization process by using the archive technique. The random 
walk mutation strategy and the archive technique are integrated 
with DE to make a competitive multimodal algorithm. The 
resulting algorithm is tested on a recently proposed benchmark 
function set. Experimental results show that the proposed 
algorithm is able to provide better performance than a number 
of state-of-the-art multimodal algorithms.  

I. INTRODUCTION  
Many optimization problems have multiple high quality 

solutions. These problems are commonly seen in real-world 
applications and are known as multimodal optimization 
problems. Some applications require that a problem solver 
finds out all the optimal solutions to a given problem [1]. In 
other applications, finding multiple optima of a problem is 
beneficial. First, when it happens that some solutions cannot be 
realized due to physical constraints, we can quickly switch to 
other high quality solutions without causing serious 
performance loss. Second, multiple distinct solutions may 
provide us some useful information about the problem being 
solved. Third, the probability of getting stuck in one local 
attraction is decreased if the goal of optimizers is to locate 
multiple optima. 

One of the most promising approaches for solving 
multimodal problems is evolutionary algorithm (EA). EAs [2]-
[4] are population-based stochastic optimization techniques 
inspired by evolutionism. EAs such as genetic algorithm (GA) 
[4] and differential evolution (DE) [6], are effective algorithms 
for solving various kinds of optimization problems. However, 
these algorithms are originally designed to search for a single 

optimal solution. Modifications must be made before they can 
be used to handle multimodal problems. EAs have inherent 
advantages over traditional optimization approaches owing to 
their population-based search strategy. To tackle multimodal 
problems, techniques known as “niching” are proposed in the 
literature. Famous niching techniques include crowding [7], 
clearing [8], restricted tournament selection [9], fitness sharing 
[10], and speciation [11]. They are integrated into classical 
EAs to solve multimodal problems. Generally, they modify the 
behavior of EAs such that multiple optima can be detected and 
maintained simultaneously. 

Niching techniques can be roughly divided into two groups, 
i.e., generic niching techniques and specialized niching 
techniques. Generic niching techniques generally modify the 
selection mechanism of an EA so as to maintain population 
diversity and avoid all individuals converge to a single 
optimum. They can be integrated with different kinds of EAs to 
make a class of multimodal algorithms. Some early niching 
techniques (crowding, speciation, fitness sharing) belong to 
this category. In comparison, a specialized niching technique is 
tailored for a specific kind of EA. Specialized niching 
techniques change the way in which offspring population is 
generated. By using these techniques, subpopulations are 
formed automatically within basins of attractions. Each 
subpopulation will finally converge to one possible optimum. 
Some recently proposed multimodal algorithms ([12]-[16]) 
belong to this category. It is noteworthy that the two groups of 
niching techniques can be used together to make more 
powerful multimodal algorithms. For example, Qu et al [17] 
proposed a neighborhood mutation strategy and integrate it 
with crowding, speciation, and fitness sharing. Experimental 
results reported in [17] show that the integrated algorithms are 
very competitive. 

One key challenge in designing niching techniques is to 
find a balance between local solution exploitation and global 
exploration. DE is efficient in performing global search [6]. 
However, when dealing with multimodal functions, it is 
important to enhance the algorithm’s exploitation ability while 
at the same time preserving its exploration ability. Note that a 
niching DE generally divides its population into multiple 
subpopulations, it would make the algorithm more effective if 
sufficient efforts are made to exploit the inner regions bounded 
by the individuals of each subpopulation. Motivated by the 
findings, we propose a random walk mutation based DE (RW-
DE) to handle multimodal functions. The strategy simulates the 
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random walk process to choose the parameter vectors (xr1, xr2, 
and xr3) that used to generate donor vectors. The random walk 
mutation is tailored in a way that encourages each individual to 
evolve toward its nearby optimum. Like the neighborhood 
mutation strategy [17], the proposed strategy is cooperated 
with the crowding technique to increase the algorithm’s ability 
of maintaining multiple optima.  

To accelerate the convergence speeds of subpopulations, a 
local parameter adaptation method is employed. Noticing that 
different subpopulations may have different convergence 
speeds, it is a waste of computational resource if the converged 
subpopulations are kept taking fitness evaluations away. 
Therefore, an archive technique is designed to detect and store 
converged subpopulations. With the external archive, the 
proposed algorithm can not only maintain found optima until 
the end of the search, but also enhance the algorithm’s 
exploration ability. Experiments have been conducted to 
investigate the effect of the random walk mutation strategy and 
the archive technique. In addition, the overall performance of 
the proposed algorithm on a population benchmark function set. 
The experimental results demonstrate the effectiveness of the 
proposed algorithm. 

The rest of this paper is organized as follows. Section II 
reviews the basic DE and its variants for multimodal 
optimization. Section III gives a detailed description of the 
proposed algorithm. Experimental setup and numerical results 
are presented in Section IV. Finally, concluding remarks are 
given in Section V. 

II. BACKGROUND 

A. Differential Evolution 
Differential evolution (DE) [6] is a simple yet powerful 

optimization technique proposed by Storn and Price. It is 
efficient in solving various global optimization problems [18]. 
Like other EAs, DE is a population-based stochastic search 
technique. It maintains a population of Np individuals 
(candidate solutions) during the search process. Unlike other 
EAs, DE mutates individuals by using the differences between 
randomly sampled pairs of individuals from the population. DE 
has four main steps, i.e., initialization, mutation, 
recombination, and selection. The last three steps are repeated 
until the termination criterion is satisfied.  

DE starts by scattering Np individuals {xi | i=1,2,…,Np} 
over the search space. At each iteration, for each target vector 
xi, we generate a donor vector vi using the following formula: 

 1 2 3( )i r r rv x F x x= + ⋅ −   (1) 

where r1, r2, and r3 are mutually exclusive integers chosen 
from {1, 2, …, Np}\i. F is a scale factor. Then, we generate a 
trial vector by combining the components of target vector xi 
and donor vector vi: 
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where Cr is the crossover rate that decides whether a 
component should come from xi or vi. The selection process is 

based on a comparison between the trial vector ui and the target 
vector xi. If the fitness value of ui is better than that of xi, then 
ui will take the place of xi in the next iteration. 

DE is a promising candidate for multimodal optimization. 
Some generic niching techniques have been incorporated into 
DE to tackle multimodal problems. In addition, there are 
niching techniques tailored for DE. 

B. Generic Niching Techniques and Their Integration with 
DE 
1) Crowding: Crowding method, proposed by De Jong in 

1975 [19], is one of the earliest niching techniques. The idea is 
that similar individuals in the population must compete with 
one other for limited resources. The similarity is generally 
measured by the Euclidean distance between individuals. An 
offspring is compared with CF randomly sampled individuals 
in the population, where CF is an integer parameter called 
crowding factor. The nearest rival will be replaced if the 
offspring has better fitness. This approach is advantageous to 
the diversity maintenance. However, replacement errors occur 
when we do the sampling. To reduce the replacement error, a 
deterministic crowding method is later proposed by Mahfoud 
[20]. It eliminates the parameter CF. An offspring is compared 
with the nearest individuals in the population. In a later study, 
Thomsen [7] proposed to extend DE with the crowding 
mechanism (CDE) to tackle multimodal problems.  

2) Speciation: The idea of speciation [11] is to divide the 
population into a number of species according to the distance 
information. Each species is formed around a dominated 
individual called species seed. A species seed is first 
identified. Then, individuals whose distance to the species 
seed is less than a threshold value rs are assigned to the 
species. The threshold value rs (called niche radius) controls 
the range of every species. The evolutionary operators of EAs 
(e.g. crossover and mutation) are performed within each 
species. In a later study, Li [21] proposed a speciation-based 
DE (SDE) applying the above speciation concept. 

3) Fitness sharing:The fitness sharing method is an 
effective niching technique proposed by Holland [22]. It is 
later extended by Goldberg and Richardson [10]. The idea is 
that an individual should share information with other 
individuals that are close to it. Specifically, the shared fitness 
of the ith individual is computed as follows: 
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where the sharing function is defined as: 
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where dij is the distance between individuals xi and xj. �share is a 
threshold value called sharing radius. � is a constant called 
sharing level. In a later study, Thomsen [7] integrated the 

1869



fitness sharing concept with DE and proposed a sharing DE 
(ShDE).  

C. Specialized Niching Techniques Tailored for DE 
Most of the specialized niching techniques concentrate on 

distributing offspring over a number of niches. This 
mechanism can help exploit the region of attraction that has 
been detected by the parental population. Some of the niching 
techniques are described in this subsection. Epitropakis et al. 
[15] proposed two mutation strategies to handle multimodal 
functions. For target vector xi, instead of choosing the base 
vector randomly, the individual closest to xi is selected. The 
strategies are called DE/nrand/1 and DE/nrand/2 respectively. 
They can be formulated as follows: 

 1 2( )i NNi r rv x F x x= + ⋅ −   (5) 

 1 2 3 4( ) ( )i NNi r r r rv x F x x F x x= + ⋅ − + ⋅ −   (6) 

where xNNi is the closest individual to xi. The donor vector 
generated by the formula is likely to be in the vicinity of xi. 
Hence, the strategies are beneficial to the preservation of 
population distribution. In the follow-up work, Epitropakis et 
al. [16] combine the first mutation strategy (DE/nrand/1) with 
an adaptive parameter control method and a dynamic archive 
technique to make a more competitive multimodal algorithm. 
The resulting algorithm, called dADE/nrand/1, turns out to be 
very effective.  

To improve the niching performance of existing DE-based 
multimodal algorithms, Qu et al. [17] proposed a neighborhood 
mutation strategy. In the strategy, the generation of a donor 
vector is limited to the neighborhood of its corresponding 
target vector. More specifically, for target vector xi, the 
parameter vectors (xr1, xr2, and xr3) are randomly chosen from 
the m nearest neighbors of xi, instead of from the entire 
population. The parameter m is used to control the 
neighborhood size. It is suggested to set between 1/20 and 1/5 
of the population size Np. The mutation strategy is then 
integrated with three existing algorithms, i.e., CDE, SDE, and 
ShDE. Experimental results reported in [17] show that the 
neighborhood mutation based algorithms (NCDE, NSDE, and 
NShDE) significantly outperform the original algorithms. 

From the above descriptions, it can be observed that the 
way of choosing parameter vectors (xr1, xr2, and xr3) plays a 

very important part on DE’s niching performance. This paper 
is devoted to finding a better way of choosing parameter 
vectors that will make DE more effective in multimodal 
optimization. To this end, we propose a random walk mutation 
strategy. Different from aforementioned methods, the mutation 
strategy simulates a random process while choosing the 
parameter vectors. It not only takes into the localities of 
individuals, but also their fitness.  

III. THE PROPOSED ALGORITHM 

A. Random Walk Mutation 
In the standard DE, several parameter vectors are randomly 

picked from the entire population to generate a donor vector vi. 
If the parameter vectors are far from one another, the length of 
the difference vector will be very large. This prevents 
premature local convergence and enhances DE’s global search 
ability. However, this strategy is not efficient when dealing 
with multimodal functions, since multiple optima need to be 
located simultaneously. To facilitate multiple convergence, a 
random walk mutation strategy is proposed in this paper. We 
regard the process of choosing parameter vectors as a random 
walk. Here, a random walk refers to a path that consists of a 
series of successive random steps. The term random walk was 
introduced by Karl Person [23] in 1905 and it serves as a 
fundamental model for many stochastic activities in different 
fields (e.g., ecology, economics, computer science, and 
physics). 

The random walk mutation strategy is illustrated in Fig. 1. 
Starting from the target vector xi, we take random steps 
successively to choose parameter vectors. More specifically, 
the vector xr1 is chosen from xi’s k1 nearest neighbors, where 
k1 is a random integer between 5%Np and 25%Np. Each 
neighbor ni,j (j∈[1, k1]) of xi is assigned a selection probability, 
which is calculated as: 

 ,
, 1

,1

( )

( )

i j
i j k

i mm

nfit n
P

nfit n=

=
�

  (7) 

where nfit(ni,j) is the normalized fitness of the ith neighbor. It is 
computed as: 

 ,
,

( )
( ) i j

i j
fit n worstfit
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bestfit worstfit

−
=

−
  (8) 

In (8), bestfit and worstfit are the best and worst fitness values 
in the current population respectively. xr1 is chosen using a 
roulette wheel based on the probabilities. By analogy, xr2 is 
chosen from xr1’s k2 nearest neighbors and xr3 is chosen from 
xr2’s k3 nearest neighbors. k2 and k3 are two random integers 
within [5%Np, 25%Np].  

xi

xr1

xr2

xr3

pi,1

pi,k1 pr1,k2

pr1,1 pr2,1

pr2,k3  
 

Fig. 1.  Illustration of the random walk mutation strategy. 
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The mutation strategy makes use of both fitness and 
neighborhood information to select the parameter vectors. On 
one hand, the donor vector is very likely to be in the vicinity of 
its target vector. The offspring (trial vector) will have more 
chances to approach the optimum close to its parent. This 
facilitates the exploitation of candidate regions located by the 
parental population. On the other hand, the donor vector can 
also ‘walk’ very far from the target vector. The offspring will 
have some chances to explore “new continents”. This preserves 
DE’s exploration ability and it would make the algorithm more 
effective in complex high dimensional multimodal functions. 
Hence, the strategy is able to find a balance between the 
algorithm’s exploitation and exploration abilities. The effect of 
the mutation strategy is demonstrated in Fig. 2, where blue 
circles represent the parental population. The parental 
population consists of 100 individuals. It can be seen that 
clustering tendency has emerged in the parental population. 
500 trial vectors (denoted by red crosses) are generated by 
using the random walk mutation strategy. From the figure, it 
can be seen that the distribution of the parental population is 
well preserved by the offspring. Most of the offspring tend to 
exploit the promising regions located by their parents. 
Meanwhile, efforts have also been paid to explore some 
unknown areas. 

B. Local Parameter Adaption 
The population is divided into multiple subpopulations so 

as to locate multiple optima. The suitable scale factors F for the 
subpopulations may vary. Therefore, a local adaptive 
parameter tuning method is developed to find the suitable scale 
factors and to increase the convergence speed of 
subpopulations. The method is a modification of the adaptation 
scheme proposed in [24]. It is specially designed for the 
parameter tuning of multimodal algorithms. Instead of using a 
location parameter of the Cauchy distribution for the whole 
population, each individual maintains its own �Fi. The scale 
factor for target vector xi is generated using the following 
formula: 

 Cauchy( ,0.1)FiFi μ=   (9) 

The parameter �Fi is updated at the end of each generation as: 

 0.9 0.1 mean ( )Fi Fi L Fiu u S= ⋅ + ⋅   (10) 

where meanL(SFi) is the Lehmer mean of the elements in set SFi. 
SFi contains successful Fs that belong to the 5%Np nearest 
neighbors of xi. Here, Fi is called a successful scale factor if the 
trial vector generated by Fi has successfully replaced a target 
vector. 

C. Archive Technique 
Similarly, the convergence speeds of the subpopulations 

may vary. It would degrade the performance of multimodal 
algorithms if the subpopulation that have already converged 
are taking up computational resources (fitness evaluations). To 
make good use of limited fitness evaluations, an archive 
technique is developed: The technique is used to detect 
converged subpopulation. Once a converged subpopulation is 
recognized, it is stored in an external archive and then 
reinitialized to search for other optima. This mechanism not 
only avoid the waste of fitness evaluations, but also enhance 
the algorithm’s exploration ability. Besides, the utilization of 
the external archive ensures that optima found in previous 
generations can be maintained throughout the optimization 
process. 

The process of detecting a converged subpopulation is 
described as follows. For each individual xi in the population, 
we maintain a stagnation counter and a radius R that represents 
the range of xi’s territory. The stagnation counter (i.e., the 
number of comparisons conducted since xi’s last improvement) 
is initialized to 0 and the radius is set to infinite. After a trial 
vector uj has been generated, it is compared with the nearest 
individual in the population. Suppose that xi is the individual 
nearest to uj. If ui is better than xi, then uj takes the place of xi 
and its stagnation counter and radius are set to 0 and infinite 

 
Fig. 2.  Offspring distribution using the random walk mutation. 
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Fig. 3.  Detection of a stagnant individual. 
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Fig. 4. Detection of a converged subpopulation. 
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respectively. Otherwise, xi prevails. In this case, we calculate 
the distance dij between xi and uj. If dij is less than the radius R 
(i.e., uj intrudes into xi’s territory), then we narrow the territory 
of xi down to a circle (or a hyper-sphere) of radius R=dij and 
increase xi’s stagnation counter by one. If dij is larger than R, uj 
is out of xi’s territory and thus nothing happens to the 
stagnation counter. Once the stagnation counter exceeds a 
certain threshold �, xi is judged to be stagnant. The territory of 
xi will become smaller and smaller until xi is replaced by a trial 
vector or xi is stagnant. The mechanism of the shrinking 
territory makes the detection process very stable. Fig. 3 records 
the changes of the stagnation counter and the territory of a 
target vector xi. The dash circles represent the territory of xi. 
Four trial vectors are compared with xi in serial order. After the 
comparisons, the stagnation counter becomes three and xi’s 
territory becomes the smallest dash circle. The 4th trial vector 
does not affect xi’s stagnation counter since it is out of xi’s 
territory at the time the comparison is conducted. 

The detection of a converged subpopulation takes a number 
of steps after the finding of a stagnant individual. Fig. 4 
illustrates the procedures. The grey dash lines are used to 

denote contours of the problem landscape. For a stagnant 
individual xi (represented by the grey circle), we first find out 
its nearest neighbor (the No. 1 individual) in the population. 
Then, a hill-valley method [25] is used to test whether there is 
a valley between xi and its nearest neighbor. If the answer is no, 
then xi and its neighbor belong to a same peak. The No. 1 
individual is labelled “converged”. Next, we proceed to find 
the nearest unlabeled neighbor of the No. 1 individual and 
repeat the above steps. The process ends when we reach an 
individual (the No. 6 individual in the example) that belongs to 
a different niche. This way, a converged subpopulation is 
recognized. At the end of each iteration, the converged 
subpopulations are stored in an archive and reinitialized to 
search for other optima. 

D. Random Walk Mutation-based DE with an External 
Archive and Local Parameter Adaptation (RW-DEAR-LP) 
The pseudo of the algorithm that incorporates the above 

components is presented in Algorithm 1. At each iteration, the 
selection of the parameter vectors takes O(Np2) time. The 
detection of converged subpopulation takes no more than O(Np) 
time. Therefore, the total time complexity of the algorithm is 
O(Np2). It is important to note that distance information is 
necessary for inducing stable niching behavior. Due to the 
calculation of distances, the time complexities of most of the 
multimodal algorithms described in Section II are O(Np2). 
From this viewpoint, the random walk mutation does not 
impose serious burden on the algorithm’s complexity.  

IV. EXPERIMENTS 
In this section, we carry out experiments to investigate the 

effect of the random walk mutation strategy and the archive 
technique. Further, the integrated algorithm (RW-DEAR-LP) is 
compared with a number of state-of-the-art multimodal 
algorithms to demonstrate its performance.  

A. Experimental Setup 
1) Test Functions: The CEC2013 benchmark function set 

[26] is adopted in this paper to study the performance of 
multimodal algorithms. The function set contains 12 
multimodal functions. F1-F5 are simple low-dimensional 
multimodal functions with a small number of optima. F6-F8 
are scalable multimodal functions with a large number of 
optima. In particular, the number of optima for F6 and F7 is 
determined by the dimensionality. F9-F12 are scalable 
composite multimodal functions. They are much more 
complex than those basic functions. Detailed descriptions of 
the function set can be found in [26]. 

2) Parameter Settings: An algorithm terminates when the 
given number of fitness evaluations (FEs) is exhausted. The 
maximum numbers of FEs for the test functions are provided 

Algorithm 1 RW-DEAR-LP 
1:  G=0; 
2:  Generate an initial population P0={x1, x2, …, xNp} by 
randomly sampling from the search space; 
3:  Evaluate the fitness values of the individuals; 
4:  FEs=NP; 
5:  AR=�; 
6:  while FEs<MaxFEs do 
7:    for xi in PG do 
8:     Use the random walk mutation strategy, with the 
control parameter generated using (9), to generate a trial 
vectors ui; 
9:       Evaluate the fitness values of the trial vectors ui,; 
10:     FEs=FEs+1; 
11:     Compare ui with the nearest individual xj in the PG; 
12:     if ui is better than xj then 
13:            Replace xj with ui; 
14:     else if dis(ui, xj)<xj.R then 
15:            xj.stag = xj.stag+1; //xj.stag: stagnation counter 
16:            xj.R = dis(ui, xj); // xj.R: radius of xj’s territory 
17:            if xj.stag>� then 
18:                Attach the label ‘converged’ to the individuals 
that belong to the same subpopulation as xj;  
19:            end if 
20:      end if 
21:   end for 
22:   for xi in PG do 
23:        if xi is labeled ‘converged’ then 
24:              Add xi to the archive AR; 
25:              Reinitialize xi; 
26:        else 
27:             Update �Fi using (10); 
28:        end if 
29:   end for 
30:   G=G+1; 
31: end while 

TABLE I 
MAXFES USED FOR 3 RANGES OF TEST FUNCTIONS 

Range of functions MaxFEs 
F1 to F5 (1D or 2D) 5.00E+04 

F6 to F11 (2D) 2.00E+05 
F6 to F12 (3D or higher) 4.00E+05 
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in Table I [26]. In addition to the multimodal algorithms 
described in Section II, several PSO-based multimodal 
algorithms (r2pso, r3pso [12], FERPSO [13], LIPS [14]) are 
also compared in this paper. The parameters of the compared 
algorithms are set according to the literature. The population 
size Np is fixed at 100 for all the test algorithms. For DE-
based multimodal algorithms, Cr and F are set to 0.9 and 0.5 
respectively. For RW-DEAR-LP, the threshold value � of the 
archive technique is empirically set to 10. 

3) Performance Measure: Two popular performance 
measures for multimodal optimization, i.e., peak ratio (PR) 
and success rate (SR), are adopted. PR is the percentage of 
successful located peaks and SR is the percentage of 
successful runs [26]. To determine whether a peak is located, 
we need to specify an accuracy level ε. Five levels of accuracy 

{1E-01, 1E-02, 1E-03, 1E-04, 1E-05} are used in the 
following experiment. Each algorithm runs 50 times for each 
multimodal function. 

B. Comparison with DE/nrand/1 
We first compare the random walk mutation-based DE 

(RW-DE) with DE/nrand/1. The PRs and SRs of the algorithms 
under five accuracy levels are presented in Table II. The better 
results are marked in bold. RW-DE outperforms DE/nrand/1 in 
most of the test functions in terms of PR regardless of the 
setting of ε. The random walk mutation strategy offers many 
advantages to the search of multimodal landscapes. It can 
exploit multiple regions effectively since both neighborhood 
and fitness information is incorporated into the selection of 
parameter vectors. The performance of RW-DE on high-

TABLE  II 
EXPERIMENTAL RESULTS OF RW-DE AND DE/NARN/1 

Level of 
accuracy 

1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05 
DE/nrand/1 RW-DE DE/nrand/1 RW-DE DE/nrand/1 RW-DE DE/nrand/1 RW-DE DE/nrand/1 RW-DE 

Function PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR 
F1(1D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F2(1D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F3(1D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F4(2D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F5(2D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F6(2D) 0.611  0.000  1.000  1.000  0.611  0.000  1.000 1.000 0.611 0.000 0.952 0.780 0.611 0.000 0.333  0.080  0.000  0.000 0.000 0.000 
F7(2D) 0.387  0.000  0.698  0.000  0.387  0.000  0.674 0.000 0.386 0.000 0.672 0.000 0.383 0.000 0.669  0.000  0.376  0.000 0.666 0.000 
F6(3D) 0.211  0.000  0.555  0.000  0.211  0.000  0.535 0.000 0.211 0.000 0.492 0.000 0.211 0.000 0.380  0.000  0.211  0.000 0.252 0.000 
F7(3D) 0.104  0.000  0.277  0.000  0.104  0.000  0.268 0.000 0.104 0.000 0.268 0.000 0.102 0.000 0.268  0.000  0.099  0.000 0.267 0.000 
F8(2D) 0.998  0.980  1.000  1.000  0.998  0.980  1.000 1.000 0.998 0.980 1.000 1.000 0.998 0.980 1.000  1.000  0.998  0.980 1.000 1.000 
F9(2D) 0.667  0.000  0.967  0.800  0.667  0.000  0.910 0.560 0.667 0.000 0.880 0.460 0.667 0.000 0.867  0.420  0.667  0.000 0.853 0.380 
F10(2D) 0.845  0.180  0.918  0.420  0.833  0.160  0.783 0.080 0.805 0.100 0.660 0.000 0.805 0.100 0.603  0.000  0.793  0.080 0.545 0.000 
F11(2D) 0.667  0.000  0.687  0.000  0.667  0.000  0.680 0.000 0.667 0.000 0.667 0.000 0.663 0.000 0.663  0.000  0.663  0.000 0.657 0.000 
F11(3D) 0.667  0.000  0.667  0.000  0.667  0.000  0.667 0.000 0.663 0.000 0.667 0.000 0.663 0.000 0.667  0.000  0.663  0.000 0.667 0.000 
F12(3D) 0.505  0.000  0.470  0.000  0.498  0.000  0.425 0.000 0.480 0.000 0.340 0.000 0.460 0.000 0.320  0.000  0.438  0.000 0.320 0.000 
F11(5D) 0.593  0.000  0.660  0.000  0.587  0.000  0.657 0.000 0.573 0.000 0.653 0.000 0.553 0.000 0.653  0.000  0.540  0.000 0.653 0.000 
F12(5D) 0.360  0.000  0.275  0.000  0.325  0.000  0.263 0.000 0.305 0.000 0.260 0.000 0.285 0.000 0.258  0.000  0.260  0.000 0.255 0.000 

F11(10D) 0.380  0.000  0.497  0.000  0.323  0.000  0.497 0.000 0.287 0.000 0.493 0.000 0.247 0.000 0.493  0.000  0.217  0.000 0.493 0.000 
F12(10D) 0.220  0.000  0.335  0.000  0.180  0.000  0.298 0.000 0.148 0.000 0.275 0.000 0.140 0.000 0.268  0.000  0.130  0.000 0.253 0.000 
F12(20D) 0.200  0.000  0.285  0.000  0.180  0.000  0.268 0.000 0.155 0.000 0.263 0.000 0.138 0.000 0.263  0.000  0.133  0.000 0.263 0.000 

 
TABLE  III 

EXPERIMENTAL RESULTS OF RW-DE AND RW-DEAR 
Level of  
accuracy 

1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05 
RW-DE RW-DEAR RW-DE RW-DEAR RW-DE RW-DEAR RW-DE RW-DEAR RW-DE RW-DEAR 

Function PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR 
F1(1D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F2(1D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F3(1D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F4(2D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F5(2D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F6(2D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 0.952 0.780 0.993 0.940 0.333 0.080 0.804  0.540  0.000  0.000 0.000 0.000 
F7(2D) 0.698  0.000  1.000  1.000  0.674  0.000  0.957 0.200 0.672 0.000 0.954 0.180 0.669 0.000 0.948  0.120  0.666  0.000 0.928 0.060 
F6(3D) 0.555  0.000  0.534  0.000  0.535  0.000  0.506 0.000 0.492 0.000 0.473 0.000 0.380 0.000 0.389  0.000  0.252  0.000 0.238 0.000 
F7(3D) 0.277  0.000  0.988  0.620  0.268  0.000  0.480 0.000 0.268 0.000 0.474 0.000 0.268 0.000 0.466  0.000  0.267  0.000 0.443 0.000 
F8(2D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F9(2D) 0.967  0.800  1.000  1.000  0.910  0.560  0.993 0.960 0.880 0.460 0.930 0.620 0.867 0.420 0.867  0.360  0.853  0.380 0.800 0.160 
F10(2D) 0.918  0.420  0.910  0.400  0.783  0.080  0.738 0.040 0.660 0.000 0.545 0.000 0.603 0.000 0.393  0.000  0.545  0.000 0.248 0.000 
F11(2D) 0.687  0.000  0.960  0.760  0.680  0.000  0.783 0.020 0.667 0.000 0.713 0.000 0.663 0.000 0.690  0.000  0.657  0.000 0.680 0.000 
F11(3D) 0.667  0.000  0.993  0.960  0.667  0.000  0.667 0.000 0.667 0.000 0.667 0.000 0.667 0.000 0.667  0.000  0.667  0.000 0.657 0.000 
F12(3D) 0.470  0.000  0.983  0.900  0.425  0.000  0.495 0.000 0.340 0.000 0.390 0.000 0.320 0.000 0.375  0.000  0.320  0.000 0.368 0.000 
F11(5D) 0.660  0.000  1.000  1.000  0.657  0.000  0.667 0.000 0.653 0.000 0.667 0.000 0.653 0.000 0.667  0.000  0.653  0.000 0.663 0.000 
F12(5D) 0.275  0.000  0.688  0.100  0.263  0.000  0.323 0.000 0.260 0.000 0.300 0.000 0.258 0.000 0.278  0.000  0.255  0.000 0.268 0.000 

F11(10D) 0.497  0.000  1.000  1.000  0.497  0.000  0.667 0.000 0.493 0.000 0.667 0.000 0.493 0.000 0.667  0.000  0.493  0.000 0.657 0.000 
F12(10D) 0.335  0.000  0.435  0.020  0.298  0.000  0.300 0.000 0.275 0.000 0.278 0.000 0.268 0.000 0.265  0.000  0.253  0.000 0.193 0.000 
F12(20D) 0.285  0.000  0.535  0.020  0.268  0.000  0.413 0.000 0.263 0.000 0.413 0.000 0.263 0.000 0.398  0.000  0.263  0.000 0.200 0.000 
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dimensional multimodal functions (F11-F12) is also quite well, 
owing to the exploration ability provided by the random walk.  

C. Effect of the archive 
In this part, we study the effect of the proposed archive 

technique. The archive integrated version of the proposed 
algorithm (RW-DEAR) is compared with the one without 
(RW-DE). The results are shown in Table III, with better 
results marked in bold. It can be seen that the archive technique 
can improve the algorithm’s performance in most of the test 
functions, especially when the accuracy level is set to 1E-01 
and 1E-02. To demonstrate the effect of the archive, we 
divided the search space into 20×20 grids and record the 
number of FEs spent on each grid. The experiment is 
conducted on F6(2D) and F8(2D). The contour plots of the 
function landscapes are given in Fig. 5 (a)-(b) while the results 
of RW-DE and RW-DEAR are shown in Fig. 5 (c)-(d) and (e)-
(f) respectively. The brightness of a grid represents the 
percentage of FEs spent on it. It can be seen that RW-DEAR 
can search the problem spaces more evenly than RW-DE. This 
is because by using the archive technique, converged 
subpopulations are detected and reinitialized to search for other 
optima. Hence, RW-DEAR can avoid the waste of FEs on 
those fully exploited regions and explore the search space more 
thoroughly. 

D. Overall Performance 
We continue to study the performance of RW-DEAR-LP. 

The algorithm is compared with a number of state-of-the-art 
multimodal algorithms. The accuracy level ε is fixed at 1E-04. 
The peak ratios obtained by the algorithms are listed in Table 
IV. For each test function, the ranks of the multimodal 
algorithms are provided in parentheses. The total ranks 
(summation of the individual ranks) are given in the last row 
of the table. From Table IV, it can be seen that the results 
obtained by RW-DEAR-LP are very competitive. RW-DEAR-
LP ranks first in most of the test functions. Its superiority is 
evident when dealing with high-dimensional composite 
multimodal functions (F9-F12). Fig. 6 gives the convergence 
speeds (number of optima found versus FEs) of the 
multimodal algorithms on F11-F12. RW-DEAR-LP can locate 
more optima using less FEs. In addition, the overall 
performance (total rank) of RW-DEAR-LP turns out to be the 
best. The performance of RW-DEAR-LP owes to the fine 
search ability provided by the random walk mutation strategy. 
Meanwhile, the preservation of the exploration ability and the 
use of an external archive guarantee the algorithm’s high 
performance in complex multimodal functions.  

V. CONCLUSION 
A random walk mutation strategy was proposed in this 

paper for DE to handle multimodal problems. The mutation 
strategy is distinguished by the way in which parameter vectors 
are chosen and is able to find a balance between the 
algorithm’s exploitation and exploration abilities. Both 
neighborhood and fitness information is incorporated in the 
strategy to enhance the algorithm’s fine search ability. 
Meanwhile, the algorithm’s exploration ability is preserved by 
performing a random walk process. To accelerate the 
convergence speed of subpopulations, a local parameter 
adaptation method is employed. Further, an archive technique 
was developed to detect converged subpopulations. To avoid 
wasting limited fitness evaluations, the converged 
subpopulations are then reinitialized to search the problem 
space thoroughly. Experiments conducted in the paper show 
that the proposed algorithm, RW-DEAR-LP, is able to exhibit 
high performance in many multimodal problems. 
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TABLE  IV 
COMPARISON WITH STATE-OF-THE-ART MULTIMODAL ALGORITHMS 

Algorithm r2pso r3pso LIPS FERPSO CDE SDE ShDE NCDE NSDE NShDE dADE/nrand/1 RW-DEAR-LP

F1(1D) 1(1) 1(1) 1(1) 0.5(11) 1(1) 0.96(10) 0.5(11) 1(1) 1(1) 1(1) 1(1) 1(1) 
F2(1D) 1(1) 1(1) 1(1) 0.992(10) 1(1) 1(1) 0.636(12) 1(1) 0.984(11) 1(1) 1(1) 1(1) 
F3(1D) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 
F4(2D) 1(1) 0.995(7) 1(1) 0.76(10) 0.98(9) 0.6(11) 0.025(12) 1(1) 1(1) 0.985(8) 1(1) 1(1) 
F5(2D) 1(1) 1(1) 1(1) 1(1) 1(1) 0.51(12) 0.82(11) 1(1) 1(1) 1(1) 1(1) 1(1) 
F6(2D) 0.563(5) 0.708(4) 0.722(3) 0.331(7) 0.139(9) 0.502(6) 0(12) 0.028(10) 0.27(8) 0.009(11) 0.984(2) 1(1) 
F7(2D) 0.416(7) 0.375(8) 0.479(6) 0.178(10) 0.726(4) 0.202(9) 0.03(12) 0.688(5) 0.13(11) 0.826(2) 0.823(3) 0.951(1) 
F6(3D) 0.010(11) 0.109(6) 0.199(5) 0.055(9) 0.549(3) 0.074(7) 0(12) 0.503(4) 0.057(8) 0.044(10) 0.967(2) 0.981(1) 
F7(3D) 0.067(8) 0.097(7) 0.125(6) 0.029(9) 0.273(4) 0.027(10) 0.003(12) 0.262(5) 0.022(11) 0.374(3) 0.432(2) 0.499(1) 
F8(2D) 0.97(6) 0.938(8) 0.993(5) 0.602(10) 1(1) 0.807(9) 0.078(12) 1(1) 0.405(11) 0.962(7) 1(1) 1(1) 
F9(2D) 0.703(5) 0.717(4) 0.857(1) 0.347(11) 0.667(8) 0.433(10) 0.093(12) 0.81(3) 0.67(7) 0.68(6) 0.667(8) 0.827(2) 
F10(2D) 0.6(5) 0.688(3) 0.795(1) 0.23(10) 0(12) 0.283(9) 0.065(11) 0.418(7) 0.49(6) 0.33(8) 0.74(2) 0.603(4) 
F11(2D) 0.653(7) 0.657(6) 0.697(1) 0.35(11) 0.667(2) 0.423(10) 0.05(12) 0.603(9) 0.63(8) 0.663(5) 0.667(2) 0.667(2) 
F11(3D) 0.207(11) 0.547(8) 0.657(6) 0.27(9) 0.667(1) 0.213(10) 0.01(12) 0.66(5) 0.657(6) 0.667(1) 0.667(1) 0.667(1) 
F12(3D) 0.093(11) 0.23(8) 0.42(3) 0.1(10) 0.523(2) 0.133(9) 0.04(12) 0.263(6) 0.343(5) 0.26(7) 0.627(1) 0.373(4) 
F11(5D) 0(12) 0.043(10) 0.163(7) 0.15(8) 0.667(1) 0.11(9) 0.013(11) 0.643(5) 0.53(6) 0.663(4) 0.667(1) 0.667(1) 
F12(5D) 0(12) 0.015(8) 0.215(6) 0.01(10) 0.003(11) 0.08(7) 0.013(9) 0.243(5) 0.263(3) 0.25(4) 0.403(1) 0.348(2) 

F11(10D) 0(10) 0(10) 0.033(8) 0(10) 0.187(6) 0.033(8) 0.163(7) 0.31(3) 0.19(5) 0.293(4) 0.633(2) 0.667(1) 
F12(10D) 0(9) 0(9) 0.015(8) 0(9) 0(9) 0.06(6) 0.07(5) 0.098(3) 0.093(4) 0.113(2) 0.018(7) 0.248(1) 
F12(20D) 0(7) 0(7) 0(7) 0(7) 0(7) 0(7) 0.125(4) 0.24(3) 0.125(4) 0.245(2) 0.005(6) 0.365(1) 
total rank 131 117 71 173 93 161 202 79 118 88 46 29 

 

 
                                   (a)                                                            (b)                                                            (c)                                                            (d) 
Fig. 6. Convergence speeds of the multimodal algorithms on composite multimodal functions. (a) F11(3D) (b) F11(5D) (c) F11(10D) (d) F12(20D). 
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