
Differential Evolution with Random Walk Mutation
and an External Archive for Multimodal Optimization

Yu-Hui Zhang, Meng-Ting Li, Yue-Jiao Gong* and Jun Zhang

Department of Computer Science, Sun Yat-sen University, Guangzhou, China
Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education

Engineering Research Center of Supercomputing Engineering Software, Ministry of Education
*Corresponding Author: gongyuejiao@gmail.com

Abstract—Locating multiple optima of a problem is an
important and challenging task for many real-world applications.
In this paper, a random walk mutation strategy is proposed for
differential evolution (DE) to handle multimodal optimization
problems. The mutation strategy is able to find a balance
between exploitation and exploration. First, the neighborhood
and fitness information of individuals is incorporated into
mutation to guide the formation of donor vectors. This facilitates
the evolution of individuals toward their nearby optima. Second,
the exploration ability of the mutation strategy is preserved by
simulating a random walk process. Moreover, an archive
technique is designed to detect converged subpopulations. The
converged individuals are then reinitialized to search for other
optima. This enhances the algorithm’s exploration ability.
Meanwhile, found optima can be maintained throughout the
optimization process by using the archive technique. The random
walk mutation strategy and the archive technique are integrated
with DE to make a competitive multimodal algorithm. The
resulting algorithm is tested on a recently proposed benchmark
function set. Experimental results show that the proposed
algorithm is able to provide better performance than a number
of state-of-the-art multimodal algorithms.

I. INTRODUCTION
Many optimization problems have multiple high quality

solutions. These problems are commonly seen in real-world
applications and are known as multimodal optimization
problems. Some applications require that a problem solver
finds out all the optimal solutions to a given problem [1]. In
other applications, finding multiple optima of a problem is
beneficial. First, when it happens that some solutions cannot be
realized due to physical constraints, we can quickly switch to
other high quality solutions without causing serious
performance loss. Second, multiple distinct solutions may
provide us some useful information about the problem being
solved. Third, the probability of getting stuck in one local
attraction is decreased if the goal of optimizers is to locate
multiple optima.

One of the most promising approaches for solving
multimodal problems is evolutionary algorithm (EA). EAs [2]-
[4] are population-based stochastic optimization techniques
inspired by evolutionism. EAs such as genetic algorithm (GA)
[4] and differential evolution (DE) [6], are effective algorithms
for solving various kinds of optimization problems. However,
these algorithms are originally designed to search for a single

optimal solution. Modifications must be made before they can
be used to handle multimodal problems. EAs have inherent
advantages over traditional optimization approaches owing to
their population-based search strategy. To tackle multimodal
problems, techniques known as “niching” are proposed in the
literature. Famous niching techniques include crowding [7],
clearing [8], restricted tournament selection [9], fitness sharing
[10], and speciation [11]. They are integrated into classical
EAs to solve multimodal problems. Generally, they modify the
behavior of EAs such that multiple optima can be detected and
maintained simultaneously.

Niching techniques can be roughly divided into two groups,
i.e., generic niching techniques and specialized niching
techniques. Generic niching techniques generally modify the
selection mechanism of an EA so as to maintain population
diversity and avoid all individuals converge to a single
optimum. They can be integrated with different kinds of EAs to
make a class of multimodal algorithms. Some early niching
techniques (crowding, speciation, fitness sharing) belong to
this category. In comparison, a specialized niching technique is
tailored for a specific kind of EA. Specialized niching
techniques change the way in which offspring population is
generated. By using these techniques, subpopulations are
formed automatically within basins of attractions. Each
subpopulation will finally converge to one possible optimum.
Some recently proposed multimodal algorithms ([12]-[16])
belong to this category. It is noteworthy that the two groups of
niching techniques can be used together to make more
powerful multimodal algorithms. For example, Qu et al [17]
proposed a neighborhood mutation strategy and integrate it
with crowding, speciation, and fitness sharing. Experimental
results reported in [17] show that the integrated algorithms are
very competitive.

One key challenge in designing niching techniques is to
find a balance between local solution exploitation and global
exploration. DE is efficient in performing global search [6].
However, when dealing with multimodal functions, it is
important to enhance the algorithm’s exploitation ability while
at the same time preserving its exploration ability. Note that a
niching DE generally divides its population into multiple
subpopulations, it would make the algorithm more effective if
sufficient efforts are made to exploit the inner regions bounded
by the individuals of each subpopulation. Motivated by the
findings, we propose a random walk mutation based DE (RW-
DE) to handle multimodal functions. The strategy simulates the

This work was supported in part by the National High-Technology
Research and Development Program (863 Program) of China under Grant
2013AA01A212, in part by the National Science Fund for Distinguished
Young Scholars under Grant 61125205, and in part by the National Natural
Science Foundation of China under Grant 6120002 and Grant 61502542.

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.260

1868

random walk process to choose the parameter vectors (xr1, xr2,
and xr3) that used to generate donor vectors. The random walk
mutation is tailored in a way that encourages each individual to
evolve toward its nearby optimum. Like the neighborhood
mutation strategy [17], the proposed strategy is cooperated
with the crowding technique to increase the algorithm’s ability
of maintaining multiple optima.

To accelerate the convergence speeds of subpopulations, a
local parameter adaptation method is employed. Noticing that
different subpopulations may have different convergence
speeds, it is a waste of computational resource if the converged
subpopulations are kept taking fitness evaluations away.
Therefore, an archive technique is designed to detect and store
converged subpopulations. With the external archive, the
proposed algorithm can not only maintain found optima until
the end of the search, but also enhance the algorithm’s
exploration ability. Experiments have been conducted to
investigate the effect of the random walk mutation strategy and
the archive technique. In addition, the overall performance of
the proposed algorithm on a population benchmark function set.
The experimental results demonstrate the effectiveness of the
proposed algorithm.

The rest of this paper is organized as follows. Section II
reviews the basic DE and its variants for multimodal
optimization. Section III gives a detailed description of the
proposed algorithm. Experimental setup and numerical results
are presented in Section IV. Finally, concluding remarks are
given in Section V.

II. BACKGROUND

A. Differential Evolution
Differential evolution (DE) [6] is a simple yet powerful

optimization technique proposed by Storn and Price. It is
efficient in solving various global optimization problems [18].
Like other EAs, DE is a population-based stochastic search
technique. It maintains a population of Np individuals
(candidate solutions) during the search process. Unlike other
EAs, DE mutates individuals by using the differences between
randomly sampled pairs of individuals from the population. DE
has four main steps, i.e., initialization, mutation,
recombination, and selection. The last three steps are repeated
until the termination criterion is satisfied.

DE starts by scattering Np individuals {xi | i=1,2,…,Np}
over the search space. At each iteration, for each target vector
xi, we generate a donor vector vi using the following formula:

 1 2 3()i r r rv x F x x= + ⋅ − (1)

where r1, r2, and r3 are mutually exclusive integers chosen
from {1, 2, …, Np}\i. F is a scale factor. Then, we generate a
trial vector by combining the components of target vector xi
and donor vector vi:

,

,
,

, if or

, otherwise
i j

i j
i j

v randj Cr j k
u

x

≤ =��= �
��

 (2)

where Cr is the crossover rate that decides whether a
component should come from xi or vi. The selection process is

based on a comparison between the trial vector ui and the target
vector xi. If the fitness value of ui is better than that of xi, then
ui will take the place of xi in the next iteration.

DE is a promising candidate for multimodal optimization.
Some generic niching techniques have been incorporated into
DE to tackle multimodal problems. In addition, there are
niching techniques tailored for DE.

B. Generic Niching Techniques and Their Integration with
DE
1) Crowding: Crowding method, proposed by De Jong in

1975 [19], is one of the earliest niching techniques. The idea is
that similar individuals in the population must compete with
one other for limited resources. The similarity is generally
measured by the Euclidean distance between individuals. An
offspring is compared with CF randomly sampled individuals
in the population, where CF is an integer parameter called
crowding factor. The nearest rival will be replaced if the
offspring has better fitness. This approach is advantageous to
the diversity maintenance. However, replacement errors occur
when we do the sampling. To reduce the replacement error, a
deterministic crowding method is later proposed by Mahfoud
[20]. It eliminates the parameter CF. An offspring is compared
with the nearest individuals in the population. In a later study,
Thomsen [7] proposed to extend DE with the crowding
mechanism (CDE) to tackle multimodal problems.

2) Speciation: The idea of speciation [11] is to divide the
population into a number of species according to the distance
information. Each species is formed around a dominated
individual called species seed. A species seed is first
identified. Then, individuals whose distance to the species
seed is less than a threshold value rs are assigned to the
species. The threshold value rs (called niche radius) controls
the range of every species. The evolutionary operators of EAs
(e.g. crossover and mutation) are performed within each
species. In a later study, Li [21] proposed a speciation-based
DE (SDE) applying the above speciation concept.

3) Fitness sharing:The fitness sharing method is an
effective niching technique proposed by Holland [22]. It is
later extended by Goldberg and Richardson [10]. The idea is
that an individual should share information with other
individuals that are close to it. Specifically, the shared fitness
of the ith individual is computed as follows:

1

()()
()Np

ijj

fit ishfit i
sh d=

=
�

 (3)

where the sharing function is defined as:

 share share1 () , if
()

0, otherwise
ij ij

ij
d d

sh d
ασ σ� − <�= �

��
 (4)

where dij is the distance between individuals xi and xj. �share is a
threshold value called sharing radius. � is a constant called
sharing level. In a later study, Thomsen [7] integrated the

1869

fitness sharing concept with DE and proposed a sharing DE
(ShDE).

C. Specialized Niching Techniques Tailored for DE
Most of the specialized niching techniques concentrate on

distributing offspring over a number of niches. This
mechanism can help exploit the region of attraction that has
been detected by the parental population. Some of the niching
techniques are described in this subsection. Epitropakis et al.
[15] proposed two mutation strategies to handle multimodal
functions. For target vector xi, instead of choosing the base
vector randomly, the individual closest to xi is selected. The
strategies are called DE/nrand/1 and DE/nrand/2 respectively.
They can be formulated as follows:

 1 2()i NNi r rv x F x x= + ⋅ − (5)

 1 2 3 4() ()i NNi r r r rv x F x x F x x= + ⋅ − + ⋅ − (6)

where xNNi is the closest individual to xi. The donor vector
generated by the formula is likely to be in the vicinity of xi.
Hence, the strategies are beneficial to the preservation of
population distribution. In the follow-up work, Epitropakis et
al. [16] combine the first mutation strategy (DE/nrand/1) with
an adaptive parameter control method and a dynamic archive
technique to make a more competitive multimodal algorithm.
The resulting algorithm, called dADE/nrand/1, turns out to be
very effective.

To improve the niching performance of existing DE-based
multimodal algorithms, Qu et al. [17] proposed a neighborhood
mutation strategy. In the strategy, the generation of a donor
vector is limited to the neighborhood of its corresponding
target vector. More specifically, for target vector xi, the
parameter vectors (xr1, xr2, and xr3) are randomly chosen from
the m nearest neighbors of xi, instead of from the entire
population. The parameter m is used to control the
neighborhood size. It is suggested to set between 1/20 and 1/5
of the population size Np. The mutation strategy is then
integrated with three existing algorithms, i.e., CDE, SDE, and
ShDE. Experimental results reported in [17] show that the
neighborhood mutation based algorithms (NCDE, NSDE, and
NShDE) significantly outperform the original algorithms.

From the above descriptions, it can be observed that the
way of choosing parameter vectors (xr1, xr2, and xr3) plays a

very important part on DE’s niching performance. This paper
is devoted to finding a better way of choosing parameter
vectors that will make DE more effective in multimodal
optimization. To this end, we propose a random walk mutation
strategy. Different from aforementioned methods, the mutation
strategy simulates a random process while choosing the
parameter vectors. It not only takes into the localities of
individuals, but also their fitness.

III. THE PROPOSED ALGORITHM

A. Random Walk Mutation
In the standard DE, several parameter vectors are randomly

picked from the entire population to generate a donor vector vi.
If the parameter vectors are far from one another, the length of
the difference vector will be very large. This prevents
premature local convergence and enhances DE’s global search
ability. However, this strategy is not efficient when dealing
with multimodal functions, since multiple optima need to be
located simultaneously. To facilitate multiple convergence, a
random walk mutation strategy is proposed in this paper. We
regard the process of choosing parameter vectors as a random
walk. Here, a random walk refers to a path that consists of a
series of successive random steps. The term random walk was
introduced by Karl Person [23] in 1905 and it serves as a
fundamental model for many stochastic activities in different
fields (e.g., ecology, economics, computer science, and
physics).

The random walk mutation strategy is illustrated in Fig. 1.
Starting from the target vector xi, we take random steps
successively to choose parameter vectors. More specifically,
the vector xr1 is chosen from xi’s k1 nearest neighbors, where
k1 is a random integer between 5%Np and 25%Np. Each
neighbor ni,j (j∈[1, k1]) of xi is assigned a selection probability,
which is calculated as:

 ,
, 1

,1

()

()

i j
i j k

i mm

nfit n
P

nfit n=

=
�

 (7)

where nfit(ni,j) is the normalized fitness of the ith neighbor. It is
computed as:

 ,
,

()
() i j

i j
fit n worstfit

nfit n
bestfit worstfit

−
=

−
 (8)

In (8), bestfit and worstfit are the best and worst fitness values
in the current population respectively. xr1 is chosen using a
roulette wheel based on the probabilities. By analogy, xr2 is
chosen from xr1’s k2 nearest neighbors and xr3 is chosen from
xr2’s k3 nearest neighbors. k2 and k3 are two random integers
within [5%Np, 25%Np].

xi

xr1

xr2

xr3

pi,1

pi,k1 pr1,k2

pr1,1 pr2,1

pr2,k3

Fig. 1. Illustration of the random walk mutation strategy.

1870

The mutation strategy makes use of both fitness and
neighborhood information to select the parameter vectors. On
one hand, the donor vector is very likely to be in the vicinity of
its target vector. The offspring (trial vector) will have more
chances to approach the optimum close to its parent. This
facilitates the exploitation of candidate regions located by the
parental population. On the other hand, the donor vector can
also ‘walk’ very far from the target vector. The offspring will
have some chances to explore “new continents”. This preserves
DE’s exploration ability and it would make the algorithm more
effective in complex high dimensional multimodal functions.
Hence, the strategy is able to find a balance between the
algorithm’s exploitation and exploration abilities. The effect of
the mutation strategy is demonstrated in Fig. 2, where blue
circles represent the parental population. The parental
population consists of 100 individuals. It can be seen that
clustering tendency has emerged in the parental population.
500 trial vectors (denoted by red crosses) are generated by
using the random walk mutation strategy. From the figure, it
can be seen that the distribution of the parental population is
well preserved by the offspring. Most of the offspring tend to
exploit the promising regions located by their parents.
Meanwhile, efforts have also been paid to explore some
unknown areas.

B. Local Parameter Adaption
The population is divided into multiple subpopulations so

as to locate multiple optima. The suitable scale factors F for the
subpopulations may vary. Therefore, a local adaptive
parameter tuning method is developed to find the suitable scale
factors and to increase the convergence speed of
subpopulations. The method is a modification of the adaptation
scheme proposed in [24]. It is specially designed for the
parameter tuning of multimodal algorithms. Instead of using a
location parameter of the Cauchy distribution for the whole
population, each individual maintains its own �Fi. The scale
factor for target vector xi is generated using the following
formula:

 Cauchy(,0.1)FiFi μ= (9)

The parameter �Fi is updated at the end of each generation as:

 0.9 0.1 mean ()Fi Fi L Fiu u S= ⋅ + ⋅ (10)

where meanL(SFi) is the Lehmer mean of the elements in set SFi.
SFi contains successful Fs that belong to the 5%Np nearest
neighbors of xi. Here, Fi is called a successful scale factor if the
trial vector generated by Fi has successfully replaced a target
vector.

C. Archive Technique
Similarly, the convergence speeds of the subpopulations

may vary. It would degrade the performance of multimodal
algorithms if the subpopulation that have already converged
are taking up computational resources (fitness evaluations). To
make good use of limited fitness evaluations, an archive
technique is developed: The technique is used to detect
converged subpopulation. Once a converged subpopulation is
recognized, it is stored in an external archive and then
reinitialized to search for other optima. This mechanism not
only avoid the waste of fitness evaluations, but also enhance
the algorithm’s exploration ability. Besides, the utilization of
the external archive ensures that optima found in previous
generations can be maintained throughout the optimization
process.

The process of detecting a converged subpopulation is
described as follows. For each individual xi in the population,
we maintain a stagnation counter and a radius R that represents
the range of xi’s territory. The stagnation counter (i.e., the
number of comparisons conducted since xi’s last improvement)
is initialized to 0 and the radius is set to infinite. After a trial
vector uj has been generated, it is compared with the nearest
individual in the population. Suppose that xi is the individual
nearest to uj. If ui is better than xi, then uj takes the place of xi
and its stagnation counter and radius are set to 0 and infinite

Fig. 2. Offspring distribution using the random walk mutation.

1

2

3

4

Fig. 3. Detection of a stagnant individual.

1

2

3

4 5

6

Fig. 4. Detection of a converged subpopulation.

1871

respectively. Otherwise, xi prevails. In this case, we calculate
the distance dij between xi and uj. If dij is less than the radius R
(i.e., uj intrudes into xi’s territory), then we narrow the territory
of xi down to a circle (or a hyper-sphere) of radius R=dij and
increase xi’s stagnation counter by one. If dij is larger than R, uj
is out of xi’s territory and thus nothing happens to the
stagnation counter. Once the stagnation counter exceeds a
certain threshold �, xi is judged to be stagnant. The territory of
xi will become smaller and smaller until xi is replaced by a trial
vector or xi is stagnant. The mechanism of the shrinking
territory makes the detection process very stable. Fig. 3 records
the changes of the stagnation counter and the territory of a
target vector xi. The dash circles represent the territory of xi.
Four trial vectors are compared with xi in serial order. After the
comparisons, the stagnation counter becomes three and xi’s
territory becomes the smallest dash circle. The 4th trial vector
does not affect xi’s stagnation counter since it is out of xi’s
territory at the time the comparison is conducted.

The detection of a converged subpopulation takes a number
of steps after the finding of a stagnant individual. Fig. 4
illustrates the procedures. The grey dash lines are used to

denote contours of the problem landscape. For a stagnant
individual xi (represented by the grey circle), we first find out
its nearest neighbor (the No. 1 individual) in the population.
Then, a hill-valley method [25] is used to test whether there is
a valley between xi and its nearest neighbor. If the answer is no,
then xi and its neighbor belong to a same peak. The No. 1
individual is labelled “converged”. Next, we proceed to find
the nearest unlabeled neighbor of the No. 1 individual and
repeat the above steps. The process ends when we reach an
individual (the No. 6 individual in the example) that belongs to
a different niche. This way, a converged subpopulation is
recognized. At the end of each iteration, the converged
subpopulations are stored in an archive and reinitialized to
search for other optima.

D. Random Walk Mutation-based DE with an External
Archive and Local Parameter Adaptation (RW-DEAR-LP)
The pseudo of the algorithm that incorporates the above

components is presented in Algorithm 1. At each iteration, the
selection of the parameter vectors takes O(Np2) time. The
detection of converged subpopulation takes no more than O(Np)
time. Therefore, the total time complexity of the algorithm is
O(Np2). It is important to note that distance information is
necessary for inducing stable niching behavior. Due to the
calculation of distances, the time complexities of most of the
multimodal algorithms described in Section II are O(Np2).
From this viewpoint, the random walk mutation does not
impose serious burden on the algorithm’s complexity.

IV. EXPERIMENTS
In this section, we carry out experiments to investigate the

effect of the random walk mutation strategy and the archive
technique. Further, the integrated algorithm (RW-DEAR-LP) is
compared with a number of state-of-the-art multimodal
algorithms to demonstrate its performance.

A. Experimental Setup
1) Test Functions: The CEC2013 benchmark function set

[26] is adopted in this paper to study the performance of
multimodal algorithms. The function set contains 12
multimodal functions. F1-F5 are simple low-dimensional
multimodal functions with a small number of optima. F6-F8
are scalable multimodal functions with a large number of
optima. In particular, the number of optima for F6 and F7 is
determined by the dimensionality. F9-F12 are scalable
composite multimodal functions. They are much more
complex than those basic functions. Detailed descriptions of
the function set can be found in [26].

2) Parameter Settings: An algorithm terminates when the
given number of fitness evaluations (FEs) is exhausted. The
maximum numbers of FEs for the test functions are provided

Algorithm 1 RW-DEAR-LP
1: G=0;
2: Generate an initial population P0={x1, x2, …, xNp} by
randomly sampling from the search space;
3: Evaluate the fitness values of the individuals;
4: FEs=NP;
5: AR=�;
6: while FEs<MaxFEs do
7: for xi in PG do
8: Use the random walk mutation strategy, with the
control parameter generated using (9), to generate a trial
vectors ui;
9: Evaluate the fitness values of the trial vectors ui,;
10: FEs=FEs+1;
11: Compare ui with the nearest individual xj in the PG;
12: if ui is better than xj then
13: Replace xj with ui;
14: else if dis(ui, xj)<xj.R then
15: xj.stag = xj.stag+1; //xj.stag: stagnation counter
16: xj.R = dis(ui, xj); // xj.R: radius of xj’s territory
17: if xj.stag>� then
18: Attach the label ‘converged’ to the individuals
that belong to the same subpopulation as xj;
19: end if
20: end if
21: end for
22: for xi in PG do
23: if xi is labeled ‘converged’ then
24: Add xi to the archive AR;
25: Reinitialize xi;
26: else
27: Update �Fi using (10);
28: end if
29: end for
30: G=G+1;
31: end while

TABLE I
MAXFES USED FOR 3 RANGES OF TEST FUNCTIONS

Range of functions MaxFEs
F1 to F5 (1D or 2D) 5.00E+04

F6 to F11 (2D) 2.00E+05
F6 to F12 (3D or higher) 4.00E+05

1872

in Table I [26]. In addition to the multimodal algorithms
described in Section II, several PSO-based multimodal
algorithms (r2pso, r3pso [12], FERPSO [13], LIPS [14]) are
also compared in this paper. The parameters of the compared
algorithms are set according to the literature. The population
size Np is fixed at 100 for all the test algorithms. For DE-
based multimodal algorithms, Cr and F are set to 0.9 and 0.5
respectively. For RW-DEAR-LP, the threshold value � of the
archive technique is empirically set to 10.

3) Performance Measure: Two popular performance
measures for multimodal optimization, i.e., peak ratio (PR)
and success rate (SR), are adopted. PR is the percentage of
successful located peaks and SR is the percentage of
successful runs [26]. To determine whether a peak is located,
we need to specify an accuracy level ε. Five levels of accuracy

{1E-01, 1E-02, 1E-03, 1E-04, 1E-05} are used in the
following experiment. Each algorithm runs 50 times for each
multimodal function.

B. Comparison with DE/nrand/1
We first compare the random walk mutation-based DE

(RW-DE) with DE/nrand/1. The PRs and SRs of the algorithms
under five accuracy levels are presented in Table II. The better
results are marked in bold. RW-DE outperforms DE/nrand/1 in
most of the test functions in terms of PR regardless of the
setting of ε. The random walk mutation strategy offers many
advantages to the search of multimodal landscapes. It can
exploit multiple regions effectively since both neighborhood
and fitness information is incorporated into the selection of
parameter vectors. The performance of RW-DE on high-

TABLE II
EXPERIMENTAL RESULTS OF RW-DE AND DE/NARN/1

Level of
accuracy

1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05
DE/nrand/1 RW-DE DE/nrand/1 RW-DE DE/nrand/1 RW-DE DE/nrand/1 RW-DE DE/nrand/1 RW-DE

Function PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR
F1(1D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F2(1D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F3(1D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F4(2D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F5(2D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F6(2D) 0.611 0.000 1.000 1.000 0.611 0.000 1.000 1.000 0.611 0.000 0.952 0.780 0.611 0.000 0.333 0.080 0.000 0.000 0.000 0.000
F7(2D) 0.387 0.000 0.698 0.000 0.387 0.000 0.674 0.000 0.386 0.000 0.672 0.000 0.383 0.000 0.669 0.000 0.376 0.000 0.666 0.000
F6(3D) 0.211 0.000 0.555 0.000 0.211 0.000 0.535 0.000 0.211 0.000 0.492 0.000 0.211 0.000 0.380 0.000 0.211 0.000 0.252 0.000
F7(3D) 0.104 0.000 0.277 0.000 0.104 0.000 0.268 0.000 0.104 0.000 0.268 0.000 0.102 0.000 0.268 0.000 0.099 0.000 0.267 0.000
F8(2D) 0.998 0.980 1.000 1.000 0.998 0.980 1.000 1.000 0.998 0.980 1.000 1.000 0.998 0.980 1.000 1.000 0.998 0.980 1.000 1.000
F9(2D) 0.667 0.000 0.967 0.800 0.667 0.000 0.910 0.560 0.667 0.000 0.880 0.460 0.667 0.000 0.867 0.420 0.667 0.000 0.853 0.380
F10(2D) 0.845 0.180 0.918 0.420 0.833 0.160 0.783 0.080 0.805 0.100 0.660 0.000 0.805 0.100 0.603 0.000 0.793 0.080 0.545 0.000
F11(2D) 0.667 0.000 0.687 0.000 0.667 0.000 0.680 0.000 0.667 0.000 0.667 0.000 0.663 0.000 0.663 0.000 0.663 0.000 0.657 0.000
F11(3D) 0.667 0.000 0.667 0.000 0.667 0.000 0.667 0.000 0.663 0.000 0.667 0.000 0.663 0.000 0.667 0.000 0.663 0.000 0.667 0.000
F12(3D) 0.505 0.000 0.470 0.000 0.498 0.000 0.425 0.000 0.480 0.000 0.340 0.000 0.460 0.000 0.320 0.000 0.438 0.000 0.320 0.000
F11(5D) 0.593 0.000 0.660 0.000 0.587 0.000 0.657 0.000 0.573 0.000 0.653 0.000 0.553 0.000 0.653 0.000 0.540 0.000 0.653 0.000
F12(5D) 0.360 0.000 0.275 0.000 0.325 0.000 0.263 0.000 0.305 0.000 0.260 0.000 0.285 0.000 0.258 0.000 0.260 0.000 0.255 0.000

F11(10D) 0.380 0.000 0.497 0.000 0.323 0.000 0.497 0.000 0.287 0.000 0.493 0.000 0.247 0.000 0.493 0.000 0.217 0.000 0.493 0.000
F12(10D) 0.220 0.000 0.335 0.000 0.180 0.000 0.298 0.000 0.148 0.000 0.275 0.000 0.140 0.000 0.268 0.000 0.130 0.000 0.253 0.000
F12(20D) 0.200 0.000 0.285 0.000 0.180 0.000 0.268 0.000 0.155 0.000 0.263 0.000 0.138 0.000 0.263 0.000 0.133 0.000 0.263 0.000

TABLE III

EXPERIMENTAL RESULTS OF RW-DE AND RW-DEAR
Level of
accuracy

1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05
RW-DE RW-DEAR RW-DE RW-DEAR RW-DE RW-DEAR RW-DE RW-DEAR RW-DE RW-DEAR

Function PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR
F1(1D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F2(1D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F3(1D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F4(2D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F5(2D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F6(2D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.952 0.780 0.993 0.940 0.333 0.080 0.804 0.540 0.000 0.000 0.000 0.000
F7(2D) 0.698 0.000 1.000 1.000 0.674 0.000 0.957 0.200 0.672 0.000 0.954 0.180 0.669 0.000 0.948 0.120 0.666 0.000 0.928 0.060
F6(3D) 0.555 0.000 0.534 0.000 0.535 0.000 0.506 0.000 0.492 0.000 0.473 0.000 0.380 0.000 0.389 0.000 0.252 0.000 0.238 0.000
F7(3D) 0.277 0.000 0.988 0.620 0.268 0.000 0.480 0.000 0.268 0.000 0.474 0.000 0.268 0.000 0.466 0.000 0.267 0.000 0.443 0.000
F8(2D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F9(2D) 0.967 0.800 1.000 1.000 0.910 0.560 0.993 0.960 0.880 0.460 0.930 0.620 0.867 0.420 0.867 0.360 0.853 0.380 0.800 0.160
F10(2D) 0.918 0.420 0.910 0.400 0.783 0.080 0.738 0.040 0.660 0.000 0.545 0.000 0.603 0.000 0.393 0.000 0.545 0.000 0.248 0.000
F11(2D) 0.687 0.000 0.960 0.760 0.680 0.000 0.783 0.020 0.667 0.000 0.713 0.000 0.663 0.000 0.690 0.000 0.657 0.000 0.680 0.000
F11(3D) 0.667 0.000 0.993 0.960 0.667 0.000 0.667 0.000 0.667 0.000 0.667 0.000 0.667 0.000 0.667 0.000 0.667 0.000 0.657 0.000
F12(3D) 0.470 0.000 0.983 0.900 0.425 0.000 0.495 0.000 0.340 0.000 0.390 0.000 0.320 0.000 0.375 0.000 0.320 0.000 0.368 0.000
F11(5D) 0.660 0.000 1.000 1.000 0.657 0.000 0.667 0.000 0.653 0.000 0.667 0.000 0.653 0.000 0.667 0.000 0.653 0.000 0.663 0.000
F12(5D) 0.275 0.000 0.688 0.100 0.263 0.000 0.323 0.000 0.260 0.000 0.300 0.000 0.258 0.000 0.278 0.000 0.255 0.000 0.268 0.000

F11(10D) 0.497 0.000 1.000 1.000 0.497 0.000 0.667 0.000 0.493 0.000 0.667 0.000 0.493 0.000 0.667 0.000 0.493 0.000 0.657 0.000
F12(10D) 0.335 0.000 0.435 0.020 0.298 0.000 0.300 0.000 0.275 0.000 0.278 0.000 0.268 0.000 0.265 0.000 0.253 0.000 0.193 0.000
F12(20D) 0.285 0.000 0.535 0.020 0.268 0.000 0.413 0.000 0.263 0.000 0.413 0.000 0.263 0.000 0.398 0.000 0.263 0.000 0.200 0.000

1873

dimensional multimodal functions (F11-F12) is also quite well,
owing to the exploration ability provided by the random walk.

C. Effect of the archive
In this part, we study the effect of the proposed archive

technique. The archive integrated version of the proposed
algorithm (RW-DEAR) is compared with the one without
(RW-DE). The results are shown in Table III, with better
results marked in bold. It can be seen that the archive technique
can improve the algorithm’s performance in most of the test
functions, especially when the accuracy level is set to 1E-01
and 1E-02. To demonstrate the effect of the archive, we
divided the search space into 20×20 grids and record the
number of FEs spent on each grid. The experiment is
conducted on F6(2D) and F8(2D). The contour plots of the
function landscapes are given in Fig. 5 (a)-(b) while the results
of RW-DE and RW-DEAR are shown in Fig. 5 (c)-(d) and (e)-
(f) respectively. The brightness of a grid represents the
percentage of FEs spent on it. It can be seen that RW-DEAR
can search the problem spaces more evenly than RW-DE. This
is because by using the archive technique, converged
subpopulations are detected and reinitialized to search for other
optima. Hence, RW-DEAR can avoid the waste of FEs on
those fully exploited regions and explore the search space more
thoroughly.

D. Overall Performance
We continue to study the performance of RW-DEAR-LP.

The algorithm is compared with a number of state-of-the-art
multimodal algorithms. The accuracy level ε is fixed at 1E-04.
The peak ratios obtained by the algorithms are listed in Table
IV. For each test function, the ranks of the multimodal
algorithms are provided in parentheses. The total ranks
(summation of the individual ranks) are given in the last row
of the table. From Table IV, it can be seen that the results
obtained by RW-DEAR-LP are very competitive. RW-DEAR-
LP ranks first in most of the test functions. Its superiority is
evident when dealing with high-dimensional composite
multimodal functions (F9-F12). Fig. 6 gives the convergence
speeds (number of optima found versus FEs) of the
multimodal algorithms on F11-F12. RW-DEAR-LP can locate
more optima using less FEs. In addition, the overall
performance (total rank) of RW-DEAR-LP turns out to be the
best. The performance of RW-DEAR-LP owes to the fine
search ability provided by the random walk mutation strategy.
Meanwhile, the preservation of the exploration ability and the
use of an external archive guarantee the algorithm’s high
performance in complex multimodal functions.

V. CONCLUSION
A random walk mutation strategy was proposed in this

paper for DE to handle multimodal problems. The mutation
strategy is distinguished by the way in which parameter vectors
are chosen and is able to find a balance between the
algorithm’s exploitation and exploration abilities. Both
neighborhood and fitness information is incorporated in the
strategy to enhance the algorithm’s fine search ability.
Meanwhile, the algorithm’s exploration ability is preserved by
performing a random walk process. To accelerate the
convergence speed of subpopulations, a local parameter
adaptation method is employed. Further, an archive technique
was developed to detect converged subpopulations. To avoid
wasting limited fitness evaluations, the converged
subpopulations are then reinitialized to search the problem
space thoroughly. Experiments conducted in the paper show
that the proposed algorithm, RW-DEAR-LP, is able to exhibit
high performance in many multimodal problems.

REFERENCES
[1] E. Cuevas, M. González, D. Zaldívar, and M. Pérez-Cisneros, “Multi-

ellipses detection on images inspired by collective animal behavior,”
Neural Computing and Applications, vol. 24, no. 5, pp. 1019-1033, 2014

[2] T. Back, D. Fogel, and Z. Michalewicz, Handbook of Evolutionary
Computation. Oxford, U.K.: Oxford Univ. Press, 1997.

[3] Y.-J. Gong, W.-N. Chen, Z.-H. Zhan, J. Zhang, Y. Li, Q. Zhang, and J.-
J. Li, “Distributed Evolutionary Algorithms and Their Models: A Survey
of the State-of-the-Art,” Applied Soft Computing, vol. 34, pp. 286-300,
2015.

[4] Y.-J. Gong, J.-J. Li, Y. Zhou, Y. Li, H.S.-H. Chung, Y.-H. Shi, and J.
Zhang, “Genetic Learning Particle Swarm Optimization,” IEEE Trans.
on Cybern., In Press.

[5] D. Whitley,“A genetic algorithm tutorial,” Statist. Comput., vol. 4, pp.
65–85, 1994.

[6] R. Storn and K. V. Price, “Differential evolution: A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optimization, vol. 11, no. 4, pp. 341–359, 1995.

 (a) (b)

 (c) (d)

 (e) (f)
Fig. 5. Effect of the external archive. (a) Contour plot of F6(2D) (b) Contour
plot of F8(2D). (c)-(f): percentage of FEs spent on each grid. (c) RW-DE
F6(2D). (d) RW-DE F8(2D). (e) RW-DEAR F6(2D). (f) RW-DEAR F8(2D).

1874

[7] R. Thomsen, “Multimodal optimization using crowding-based
differential evolution,” in Proc. IEEE Congr. Evol. Comput., Jun. 2004,
pp. 1382–1389.

[8] A. Petrowski, “A clearing procedure as a niching method for genetic
algorithms,” in Proc. 3rd IEEE Congr. Evol. Computat., May 1996, pp.
798–803.

[9] G. R. Harik, “Finding multimodal solutions using restricted tournament
selection,” in Proc. 6th Int. Conf. Genet. Algorithms, 1995, pp. 24–31.

[10] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for
multimodal function optimization,” in Proc. 2nd Int. Conf. Genet.
Algorithms, 1987, pp. 41–49.

[11] A. Petrowski, “A clearing procedure as a niching method for genetic
algorithms,” in Proc. 3rd IEEE Congr. Evol. Comput., May 1996, pp.
798–803.

[12] X. Li, “Niching without niching parameters: Particle swarm
optimization using a ring topology,” IEEE Trans. Evol. Computat., vol.
14, no. 1, pp. 150–169, Feb. 2010.

[13] X. Li, “A multimodal particle swarm optimizer based on fitness
Euclidean-distance ration,” in Proc. Genet. Evol. Computat. Conf.,
2007, pp. 78–85.

[14] B. Y. Qu, P. N. Suganthan, and S. Das, “A distance-based locally
informed particle swarm model for multi-modal optimization,” IEEE
Trans. Evol. Comput., vol. 17, no. 3, pp. 387–402, Jun. 2013.

[15] M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, “Finding
multiple global optima exploiting differential evolution’s niching
capability,” in IEEE Symposium on Differential Evolution (SDE), April
2011, pp. 1–8.

[16] M. G. Epitropakis, X. Li, and E. K. Burke, “A dynamic archive niching
differential evolution algorithm for multimodal optimization,” in Proc.
Congr. Evol. Comput., Cancun, Mexico, 2013, pp. 79–86.

[17] B. Y. Qu, P. N. Suganthan, and J. J. Liang, “Differential evolution with
neighborhood mutation for multimodal optimization,”IEEE Trans.Evol.
Comput., vol. 16, no. 5, pp. 601–614, Oct. 2012.

[18] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31,
Feb. 2011.

[19] K. A. De Jong, “An analysis of the behavior of a class of genetic
adaptive systems,” Doctoral dissertation, Comput. Commun. Sci., Univ.
Michigan, Ann Arbor, MI, 1975.

[20] S. Mahfoud, “Niching methods for genetic algorithms,” Doctoral
dissertation, Comput. Sci., Univ. Illinois, Urbana, IL, 1995.

[21] X. Li, “Efficient differential evolution using speciation for multimodal
function optimization,” in Proc. Conf. Genet. Evol. Comput., 2005, pp.
873–880.

[22] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: University of Michigan Press, 1975.

[23] K. Pearson, “The problem of the random walk,” Nature, vol. 72, pp.294-
203, 1905.

[24] J. Zhang and A. Sanderson, “JADE: Adaptive differential evolution with
optional external archive,”IEEE Trans. Evol. Comput., vol. 13, no. 5, pp.
945–958, Oct. 2009.

[25] R. Ursem, “Multinational evolutionary algorithms,” in Proc. IEEE
Congr. Evol. Computat., 1999, pp. 1633–1640.

[26] X. Li, A. Engelbrecht, and M. G. Epitropakis, “Benchmark functions for
cec’2013 special session and competition on niching methods for
multimodal function optimization,” Evolutionary Computation and
Machine Learning Group, RMIT University, Melbourne, Australia,
Tech. Rep., 2013.

TABLE IV
COMPARISON WITH STATE-OF-THE-ART MULTIMODAL ALGORITHMS

Algorithm r2pso r3pso LIPS FERPSO CDE SDE ShDE NCDE NSDE NShDE dADE/nrand/1 RW-DEAR-LP

F1(1D) 1(1) 1(1) 1(1) 0.5(11) 1(1) 0.96(10) 0.5(11) 1(1) 1(1) 1(1) 1(1) 1(1)
F2(1D) 1(1) 1(1) 1(1) 0.992(10) 1(1) 1(1) 0.636(12) 1(1) 0.984(11) 1(1) 1(1) 1(1)
F3(1D) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
F4(2D) 1(1) 0.995(7) 1(1) 0.76(10) 0.98(9) 0.6(11) 0.025(12) 1(1) 1(1) 0.985(8) 1(1) 1(1)
F5(2D) 1(1) 1(1) 1(1) 1(1) 1(1) 0.51(12) 0.82(11) 1(1) 1(1) 1(1) 1(1) 1(1)
F6(2D) 0.563(5) 0.708(4) 0.722(3) 0.331(7) 0.139(9) 0.502(6) 0(12) 0.028(10) 0.27(8) 0.009(11) 0.984(2) 1(1)
F7(2D) 0.416(7) 0.375(8) 0.479(6) 0.178(10) 0.726(4) 0.202(9) 0.03(12) 0.688(5) 0.13(11) 0.826(2) 0.823(3) 0.951(1)
F6(3D) 0.010(11) 0.109(6) 0.199(5) 0.055(9) 0.549(3) 0.074(7) 0(12) 0.503(4) 0.057(8) 0.044(10) 0.967(2) 0.981(1)
F7(3D) 0.067(8) 0.097(7) 0.125(6) 0.029(9) 0.273(4) 0.027(10) 0.003(12) 0.262(5) 0.022(11) 0.374(3) 0.432(2) 0.499(1)
F8(2D) 0.97(6) 0.938(8) 0.993(5) 0.602(10) 1(1) 0.807(9) 0.078(12) 1(1) 0.405(11) 0.962(7) 1(1) 1(1)
F9(2D) 0.703(5) 0.717(4) 0.857(1) 0.347(11) 0.667(8) 0.433(10) 0.093(12) 0.81(3) 0.67(7) 0.68(6) 0.667(8) 0.827(2)
F10(2D) 0.6(5) 0.688(3) 0.795(1) 0.23(10) 0(12) 0.283(9) 0.065(11) 0.418(7) 0.49(6) 0.33(8) 0.74(2) 0.603(4)
F11(2D) 0.653(7) 0.657(6) 0.697(1) 0.35(11) 0.667(2) 0.423(10) 0.05(12) 0.603(9) 0.63(8) 0.663(5) 0.667(2) 0.667(2)
F11(3D) 0.207(11) 0.547(8) 0.657(6) 0.27(9) 0.667(1) 0.213(10) 0.01(12) 0.66(5) 0.657(6) 0.667(1) 0.667(1) 0.667(1)
F12(3D) 0.093(11) 0.23(8) 0.42(3) 0.1(10) 0.523(2) 0.133(9) 0.04(12) 0.263(6) 0.343(5) 0.26(7) 0.627(1) 0.373(4)
F11(5D) 0(12) 0.043(10) 0.163(7) 0.15(8) 0.667(1) 0.11(9) 0.013(11) 0.643(5) 0.53(6) 0.663(4) 0.667(1) 0.667(1)
F12(5D) 0(12) 0.015(8) 0.215(6) 0.01(10) 0.003(11) 0.08(7) 0.013(9) 0.243(5) 0.263(3) 0.25(4) 0.403(1) 0.348(2)

F11(10D) 0(10) 0(10) 0.033(8) 0(10) 0.187(6) 0.033(8) 0.163(7) 0.31(3) 0.19(5) 0.293(4) 0.633(2) 0.667(1)
F12(10D) 0(9) 0(9) 0.015(8) 0(9) 0(9) 0.06(6) 0.07(5) 0.098(3) 0.093(4) 0.113(2) 0.018(7) 0.248(1)
F12(20D) 0(7) 0(7) 0(7) 0(7) 0(7) 0(7) 0.125(4) 0.24(3) 0.125(4) 0.245(2) 0.005(6) 0.365(1)
total rank 131 117 71 173 93 161 202 79 118 88 46 29

 (a) (b) (c) (d)
Fig. 6. Convergence speeds of the multimodal algorithms on composite multimodal functions. (a) F11(3D) (b) F11(5D) (c) F11(10D) (d) F12(20D).

1875

