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Abstract— Cultural Algorithms are computational models of 
social evolution based upon principles of Cultural Evolution. A 
Cultural Algorithm composed of a Belief Space consisting of a 
network of active and passive knowledge sources and a Population 
Space of agents. The agents are connected via a social fabric over 
which information used in agent problem solving is passed. The 
knowledge sources in the Belief Space compete with each other in 
order to influence the decision making of agents in the Population 
Space. Likewise, the problem solving experiences of agents in the 
Population Space are sent back to the Belief Space and used to 
update the knowledge sources there. It is a dual inheritance system 
in which both the Population and Belief spaces evolve in parallel. 

In this paper we compare three different social fabrics 
(homogeneous, heterogeneous and Sub-Cultures) over a wide range 
of problem complexities. The performances of these three different 
evolutionary approaches are compared relative to a variety of 
benchmark landscapes of varying entropy, from static to chaotic. 
We show that as the number of independent processes (layers) that 
are involved in the production of a landscape increases, the more 
advantageous subcultures are in directing the population to a 
solution. Such landscapes are often characteristic of deep learning 
problems in which patterns are generated by the interaction of 
many simple interactions. While sub-cultured approaches can 
emerge in a given problem, they do not have to. It is shown that for 
single layer generators for a landscape or image, sub-cultures do 
not effectively emerge since they are not needed to solve such 
problems. 

I. INTRODUCTION 

Cultural Algorithms are computational models of complex 
cultural systems.  A complex system can be defined as a system 
made up of a group of heterogeneous agents who interact and 
adapt with their environment and each other [18]. The separate 
behaviors of the heterogeneous agents when aggregated together 
can cause higher-level behaviors to emerge from the group as a 
whole which work to solve problems facing the group. In 
summary, complex systems are composed of different layers of 
interaction and in each layer there may be different problems to 
be solved. A solution to one problem at a level can be integrated 
with the solutions to problems solved at other levels.  

The social fabric term was introduced into the Cultural 
Algorithm by Reynolds and Ali [1] in order to build connections 
among the individuals in the Population Space of a Cultural 
Algorithm. These connections formed networks that allow the 
knowledge to be transferred from an individual (source) to a 
connected individual (destination). The social fabric for a 
Population Space can be constructed from homogeneous 
networks, heterogeneous networks, or both. They termed it the 
social fabric since the connections could be torn or broken if not 
kept up. 

In order to test the impact of social fabrics on Cultural 
Algorithm problem solving an optimization problem landscape 
generator developed by Morrison and De Jong was employed 
[7]. The landscape generator produced landscapes of varying 
degrees of entropy by combining surface produced by individual 
generator processes. A static landscape was produced by a single 
generator, a periodic landscape by the convolution of two 
separate generators, while a chaotic landscape was produced by 
the convolution of a large number of individual generators. Deep 
learning problems are often associated with problems of this 
type. 

Previously, Ali [1] and Che [13] used static homogeneous 
social fabrics in Cultural Algorithms. Both Ali and Che [13] 
showed that some of the homogeneous topologies operated 
better with specific complexity class problems than others. Also, 
[15], the performance of Cultural Algorithms had been 
examined with using both homogeneous and heterogeneous 
social fabrics over the complete range of Langton’s’ 
optimization problem complexities [5]. It was concluded that 
heterogeneous topologies worked well at solving chaotic class 
problems, but their relative performance decreased with 
problems of lower complexity or fixed complexity. In contrast, 
homogeneous topologies work well at solving  low or fixed class 
problems, but their performance decreased as the complexity of 
the problem increases.  

Based upon these results  it was suggested that a Cultural 
System will benefit by the use of multiple topologies when faced 
with a diverse set of problem complexities. As a result Kobti [8] 
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suggested   an approach with multiple population spaces, each 
with its own homogeneous topology and an associated Belief 
Space. 

One of the manifestations of cultural systems, particularly in 
recent times, has been the emergence of sub-cultures.  Each 
subculture is characterized by a topology and a set of concepts 
and information that are passed through the topology. In this 
work,  a single  Population Space with multiple topologies is 
employed. Each topology is viewed as a subculture. The Belief 
Space keeps information about the performance of each 
subculture as a combination of a topology and a knowledge 
source. The topologies compete with each other to find patterns 
in a problem landscape. The more generators that combined to 
produce a landscape, the more underlying patterns there are for 
each topology to undercover. Such problems that require many 
learning layers such as pattern recognition problems in 
economic systems are suitable problems for this approachThis 
sub-cultured social fabric is compared with the performance of 
systems that use the homogeneous and heterogeneous social 
fabrics. 

In the next section, the Cultural Algorithm framework is 
described. In Section 3, the homogeneous topologies are 
described with a little more detail about how they operate among 
the Population Space. In Section 4,  the heterogeneous 
topologies and their influence on the performance of Cultural 
Algorithms are presented. The Sub-Cultured model will be given 
in detail in Section 5. The experimental framework will be given 
in detail in section 6. The results of the experiments and analysis 
will be given in section 7 and the conclusions presented in 
section 8. 

II. THE CULTURAL ALGORITHM FRAMEWORK 

The Cultural Algorithm (CA) is an evolutionary 
computational model derived from conceptual models of the 
Cultural Evolutionary process [9] [10]. The Population Space, 
Belief Space, and Communication Protocol between the 
Population and the Belief Space are the three major components 
of this model, as shown in Fig. 1. The Cultural Algorithms have 
been used to solve problems in natural languages [19], multi 
agent systems [3] [4] [11] [14] [18], and game programming [6] 
[12] [16]. 

Population 

Belief Space 

Accept() 

Influence() 

Update() 

Obj() 

Generate() 

Select() 

 

Fig. 1. Cultural Algorithms Framework. 

The Belief Space is a network of knowledge sources that 
represent different categories of knowledge. The five classes of 
knowledge currently implemented are: Situational, Normative, 
Domain, Temporal, and Topographic.The Situational knowledge 
keeps track of the individuals who exhibit the best behavior in 
the population. The Normative knowledge provides standards 
for individual behaviors to ensure that the individual is still 
within the scope of the system. The Domain knowledge contains 
the knowledge about the problem domain that can be used to 
predict relationships between problem variables. Temporal 
knowledge is useful in dynamic environment to store all changes 
in the problem landscape, such as the direction of the population 
behaviors either towards convergence or divergence. 
Topographical Knowledge gives a distribution of landscape 
values over feasible and infeasible regions of the search space. 

The basic program of the Cultural Algorithm is shown in 
Fig. 2, where P (t) and B (t) represents the Population Space and   
the Belief Space at time t, respectively. Obj() and accept() 
functions needs to be executed at the end of each iteration. Obj() 
is the performance function, which is used to evaluate the 
performance of each individual in the Population Space. Then, a 
group of individuals will be chosen  to update the Knowledge 
Sources in the Belief Space using the Acceptance Function, 
accept(). The Acceptance Function selects the best elements to 
update, but in some cases the Acceptance Function selects from 
different performance categories in order to explore all results of 
the population. Updating the Belief Space occurs via the update 
() function. In the Belief Space, there are many kinds of 
Knowledge Sources. Some sources are updated by the Update 
Function directly and some of them indirectly by the interaction 
with other updated sources. Next, the influence () function 
transmits the updated knowledge from the Knowledge Sources 
in the Belief Space to the individuals that reside in the 
Population Space to direct their performance. Transferring the 
experiences between the Belief Space and the Population Space 
is called the Communication Protocol. 

 

Fig. 2. Outlined Program of Cultural Algorithm. 

The Cultural Algorithms repeatedly produce a new 
generation, and update the Belief Space until the termination 
condition is satisfied. The Cultural Algorithm is flexible since it 
can look for small scale and large scale solutions and run in 
static and dynamic environments [1]. The termination conditions 
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can reflect the number of generations used, or the convergence 
to a desired solution. 

III. HOMOGENEOUS TOPOLOGIES 

In the earliest Cultural Algorithms individuals acted 
independently and were influenced by a single Knowledge 
Source [17].  Ali [1] introduced three homogeneous topologies 
and Che [13] introduced three more into the Cultural Algorithm 
to allow the Population Space’s individuals to communicate– 
making six possible homogeneous topologies: lbest (ring), gbest 
(global), square, octagon, hexagon, and sixteen sided. Fig. 3 
displays some of these homogeneous topologies. 

Homogeneous topologies worked well in solving problem 
landscapes of low entropy, but performance degraded as the 
complexity of the problem increased. Here, complexity reflects 
the number of generating layers used to produce the landscape. 
Fig. 4 shows the relationship between the problem class and the 
average number of generations to find the solution using a 
homogeneous octagon topology. The value of A (discussed in 
detail in section five) relates to the problem entropy such that 
1.01, 3.35, and 3.99 respectively represent fixed, periodic and 
chaotic problem classes [9]. μ is the average number of 
generations used to find the solution. As can be seen in the 
figure, as the entropy increases,   more steps are needed to find 
the solution. 

 
(a) Ring topology.  (b) Square topology.   (c) Global topology. 

        
(d) Hexagon Topology.     (e) Octagon Topology. 

Fig. 3. The Homogeneous Topologies Used in the Previous Models. 

 
Fig. 4. Homogeneous Octagon Topology Used in Solving Three Different 
Problem Classes. 

IV. HETEROGENEOUS TOPOLOGIES 

The heterogeneous topology set consists of the six 
homogenous topologies [19] mentioned earlier, working 
together in the Population Space. An individual can change the 
topology hat they are  using in each generation. Two wheels 
were used to configure the system in each generation. One is 
used to select the Knowledge Source and the other for the 
topologies. The topology wheel is spun first for each individual 
to establish their connections with others. Next, the Knowledge 
Source wheel is spun to select a Knowledge source to direct the 
individual A graphical description of the algorithm is given in 
Figure 5. 

 

Fig. 5. Heterogeneous Model. 

. Step one constructs the selection wheel for the topologies 
based upon their previous performance. The area under the 
wheel for each topology is its normalized average performance 
in the previous generation. In step 2 this wheel is used to select a 
topology for each individual in the population..  Next in step 3 
the Knowledge Source wheel is updated based upon the previous 
performance of the Knowledge Sources. This wheel is then used 
in step four to generate the direct influence for each individual in 
the population and collect the direct influence Knowledge 
Sources for its neighbors. In step five, a weighted majority win 
conflict resolution rule is used to determine the winning 
Knowledge Source for each individual if the Knowledge 
Sources of its neighbors are different from its own.. The weight 
of each Knowledge source is based on the average fitness of the 
Knowledge source in directing individuals in the previous 
generation. The individual will then use the Knowledge Source 
with the highest score to influence it in the subsequent 
generation. The individuals are then modified and evaluated in 
the performance environment. The results are used to update the 
selection wheels and the process starts again for the next 
generation. 
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The Heterogeneous topology increases the performance of 
solving the problems by increasing the complexity of problem 
classes. Chaos landscapes are best exploited by heterogeneous 
networks, whereas static landscapes are best exploited by single 
homogeneous topologies. Heterogeneous topologies  produce a 
social organization that is better able to exploit landscape 
produced by multiple generators than a single homogeneous  
topology.Keeping the Knowledge Sources and topology wheels 
separate from one another hides the  relationship between the 
Knowledge Sources and the topologies used from the influence 
function selection process. Since Sub-Cultures can each contain 
a distinct organization topology along with a selective interest in 
knowledge sources relevant to their activities, it was of interest 
to see how this new information effects the performance. 

V. SUB-CULTURED HETEROGENEOUS TOPOLOGIES 

In the previous model the selection of the Topology and 
Knowledge Source was done independently of each other. 
However, subcultures can be characterized by their use of a 
social fabric  topology that supports the Knowledge Sources  
used  In the subculture model here the system learns to configure 
a subculture by identifying Knowledge Source Topology 
combinations that work well together.  

This is done through the use of X by Y matries where X is 
the number of possible topological building blocks, and Y is the 
number of supporting Knowledge Sources. Here, the matrices 
will be of dimension 6 by 5. For each of the 6 topologies, 
information about its performance when paired with one of the 
five knowledge sources can be collected. 

 Thus, each cell (c[x, y]) in row x and column y contains a 
real value which represents the average fitness of the individuals 
who use topology x and Knowledge Source y and can be 
calculated by the following equations: 

             (1) 

         (2) 

N is the number of individuals; m is the number of 
individuals who use topology x and Knowledge Source y; Ti is 
the topology that connects individual i to other individuals; Ki is 
the Knowledge Source selected by individual i; and fi is the 
fitness value of individual i. Equation (1) determines how many 
individuals are using topology x and following knowledge 
source y. Equation (2) calculates the average of fitness values of 
the individuals that use topology x and knowledge source y. 

 

Fig. 6. Sub-Cultured Heterogeneous Model. 

The Sub-cultured algorithm is shown graohhically in Figure 
6 above. The Knowledge Source wheel will be divided into n 
wheels, where n is the number of topologies. Each wheel gives 
the individuals’ average fitness of the Knowledge Sources for a 
specific topology. After the individual selects the topology, they 
will get the direct Knowledge Source by spinning the 
Knowledge Sources wheel related to its selected topology. Fig. 6 
demonstrates how the process has been changed for the new 
Sub-Cultured heterogeneous model. Step one reflects the 
selection of one of the fixed topologies for use in a generation 
based upon the previous performance of each topology using a 
roulette wheel approach. The area under the wheel for each 
topology is its normalized average performance in the previous 
generation. The selected topology is then used to condition the 
selection one of the Knowledge Source wheels. Then, for each 
topology there is a separate wheel, shown in step three, which is 
used to select the Knowledge Source that is used to influence 
each individual based upon the past performance of the 
Knowledge Sources for the selected topology. Thus, there are 
six separate Knowledge Source wheels, one for each topology 
that is used for a generation. The wheel is used in step four in 
order to generate the direct influence for each individual in the 
population and collect the direct influence Knowledge Sources 
for its neighbors. In step five, the weighted majority win conflict 
resolution rules are used to determine the winning Knowledge 
Source for each individual as in the Heterogeneous model. The 
individuals are then modified and evaluated. The results are used 
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to update the selection wheels and the process starts again for 
the next generation. 

It is important to realize that although sub-cultures can 
emerge in this model, they do not have to. It may turn out that 
there is no significant performance dependence between the 
Knowledge Source and the Topologies. In that case the evolved 
matrices will not differ from those produced by the 
heterogeneous approach. The goal in the experiments is to 
identify those problem classes in which sub-suclutred 
configurations are likely to emerge. 

VI. EXPERIMENTAL FRAMEWORK 

The Cones World Generator [7] will be used to produce 
evolutionary problems in arbitrary complexities. Multi-
dimensional landscape can be generated by scattering cones in 
different heights, slopes, and locations over the landscape. 
Therefore, the Cones World generator follows two stages to 
generate an evolutionary landscape:  A static step, in which 
cones are placed on a landscape. Then, cones are combined to 
produce a continuous functional landscape using a max function. 
If two cones overlap, the maximum of the two will be taken. The 
second stage, then iteratively go through the landscape and 
dynamically adjust the cone parameters will be adjusted. The 
base landscape is given by the equation 

))(*(max)...,,,( 2

,2,221 ij

n

i ijjkjn CxRHxxxf ��� �����    (3) 

Where k is the number of cones, n is the dimensionality 
(2D), Hj is height of cone j, Rj is slope of cone j, and Cj, i is the 
coordinate of cone j in dimension i. The values for each cone 
(Hj, Rj, and Cj, i) are randomly generated based on user specified 
ranges. The second step is to specify the dynamics, which gives 
the ability of deterministically changing the values of Cones’ 
parameters like the slope, height, and location. The changes of 
Cone’s parameters will be managed by the logistic function [7]:  

Yi = A * Yi-1 * (1 - Yi-1)   (4) 

Where, A is a constant with a range between 1.0 and 4.0, and 
Yi is the value at iteration i. A bifurcation map of this function is 
provided in Fig. 7. This Figure shows relationship between the 
given values of A, and the logistic function results Y. A can be a 
single value (a small step-size change in the Cone’s parameter), 
a double value (two step-size changes in the Cone’s parameter), 
and an interval of values (many step-size changes in the Cone’s 
parameters). It can be applied numerous time to produce a 
deeply nested performance landscape. That landscape can be 
viewed as an image form which distinctive patterns can be 
abstracted. As such, subcultures are viewed here as vehicles for 
deep social learning.  

Morrison and Jong attached a logistic function with a 
specified A value to each parameter in the cones world. They 
gave the Cone’s World four parameters: height, slope, x-axis 
location, and y-axis location. Three values of A were selected in 
order to test the behavior of the Cultural system in three 

different problem situations. The red, blue and green lines in 
Fig. 7 represent the chosen values of A. The values for A = (1.4, 
1.8, 2.2 and 2.6) represent the one step-landscape generation and 
simulates the Fixed class problems. The periodic class problems 
can be simulated using a two-step generation process, using A  
values of 3.1, 3.2, 3.3 and 3.4 for A were chosen. Finally, 
chaotic class problems are produced by many generators due to 
the bifurcations, so A = (3.6, 3.7, 3.8 and 3.9) are a good choice 
for that. Fixed, periodic, and chaotic class problems are 
described and proposed by Langton [5]. 

 

Fig. 7. Logistic Function Y with Characteristic A Values. 

TABLE I. The performance Comparison of the Social Fabric TopologIES 
for POPULATION SIZE 50. 

 

E
nt

ro
py

 

Homogeneous  Heterogeneous Sub-Cultures 

 α μ σ μ σ μ σ 

Fi
xe

d 

1.4 92.38 37.24 170.20 60.86 147.36 76.61 
1.8  112.10 29.41 210.72 102.96 206.16 132.10 
2.2  133.48 21.92 241.88 102.42 209.48 64.86 
2.6  140.92 90.90 205.14 198.78 211.90 157.36 

Pe
ri

od
ic

 3.1  229.08 170.41 248.90 154.21 231.76 125.01 
3.2  375.28 379.88 324.78 257.11 230.72 108.98 
3.3 329.68 239.43 271.70 160.49 178.72 57.55 
3.4 325.60 212.87 236.38 121.49 206.58 101.39 

C
ha

ot
ic

 3.6 369.40 423.24 288.84 314.08 195.90 202.33 
3.7 468.44 359.44 373.68 290.78 264.88 133.98 
3.8 518.82 306.92 326.00 93.35 260.16 98.29 
3.9 482.06 386.87 358.46 198.20 287.32 213.89 

 

In order to test how these problem categories are reflected by 
differences in the corresponding social organization of the 
Cultural systems needed to solve them, an example set of four 
landscapes from each of the three basic classes fixed (A=1.4, 
1.8, 2.2 and 2.6), periodic (A=3.1, 3.2, 3.3 and 3.4) and chaotic 
(A=3.6, 3.7, 3.8 and 3.9) will be generated. The task here  will 
be to measure the Sub-Cultured Heterogeneous Performance and 
compare it with the Homogeneous and Heterogeneous 
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topologies’ performance in solving problems from different 
complexity classes. The Square topology was selected to 
represent  the Homogeneous social fabric category because it 
outperformed the other homogeneous topologies in previous 
experiments. 

Each complexity (1.4, 1.8, 2.2, 2.6, 3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 
3.8 and 3.9) has five randomly generated example Landscapes. 
A combination of ten independent runs for each landscape (from 
the generated example Landscapes) was tested on each of the 
proposed Homogeneous, Heterogeneous, and Sub-Cultured 
topologies. Fifty runs will be conducted as a total for each of the 
topologies on each of the complexities. Three population sizes 
were used to add more variability to our experiments. The 
population are 50, 75 and 100. 

 

TABLE II. THE PERFORMANCE COMPARISON OF THE SOCIAL FABRIC 
TOPOLOGIES FOR POPULATION SIZE 75. 

 

E
nt

ro
py

 

Homogeneous  Heterogeneous Sub-Cultures 

 α μ σ μ σ μ σ 

Fi
xe

d 

1.4 88.64 54.50 100.34 41.59 117.18 65.70 
1.8  116.52 70.92 198.24 158.44 165.74 92.24 
2.2  134.70 44.58 175.94 84.79 151.64 70.71 
2.6  109.10 71.32 190.26 239.41 127.12 92.21 

Pe
ri

od
ic

 3.1  143.24 108.76 204.50 147.15 124.66 76.70 
3.2  279.82 283.60 186.10 128.20 156.14 89.76 
3.3 225.10 126.25 181.02 93.61 161.66 63.29 
3.4 224.86 134.49 171.44 84.02 143.98 77.58 

C
ha

ot
ic

 3.6 249.86 266.87 177.60 165.32 142.86 148.46 
3.7 286.44 240.85 224.18 195.38 191.84 138.56 
3.8 332.14 190.71 258.14 222.91 207.86 67.01 
3.9 329.46 311.18 274.62 218.82 230.00 150.70 

 

VII. RESULTS AND ANALYSIS 

In this section, the use of Sub-Cultured heterogeneous 
topologies will be compared with the homogeneous and 
heterogeneous topologies for the social fabrics. Their effect on 
the Knowledge Sources within the three complexity categories 
will also be tested (fixed, periodic, and chaotic categories). 

Tables I, II, and III summarize the experimental results. Each 
row represents the entropy of the generated problem landscape. 
The homogeneous, heterogeneous and Sub-Cultures columns 
represent the individuals’ interaction approach that was used to 
weave the social fabric. The Entropy column gives the 
complexity used in each of in the runs. The values in Columns 
(3 and 4), (5 and 6) and (7 and 8) give the average and standard 
deviation of the number of generations needed to solve a 
problem in the 50 runs using homogeneous, heterogeneous, and 
Sub-Cultured topologies, respectively. 

For Static problems, the heterogeneous and Sub-Cultured 
versions are in general outperformed by the homogeneous 
topologies, as shown in the darkened cells of Tables I, II,  and 
III under the homogeneous column (μ). 

 

TABLE III. THE PERFORMANCE COMPARISON OF THE SOCIAL 
FABRIC TOPOLOGIES FOR POPULATION SIZE 100. 

 

E
nt

ro
py

 

Homogeneous  Heterogeneous Sub-Cultures 

 α μ σ μ σ μ σ 

Fi
xe

d 

1.4 68.50 45.40 91.86 68.78 88.9 90.11 
1.8  83.32 45.98 135.98 218.49 78.36 25.07 
2.2  117.56 64.80 128.58 44.78 97.96 43.31 
2.6  106.82 128.94 191.7 265.00 93.82 118.70 

Pe
ri

od
ic

 3.1  114.82 88.75 196.82 106.93 124.34 101.88 
3.2  217.48 212.11 157.92 120.56 116.22 70.53 
3.3 182.20 105.84 162.08 59.03 123.84 80.19 
3.4 157.32 84.55 115.92 67.17 121.76 67.18 

C
ha

ot
ic

 3.6 160.14 151.08 115.08 105.21 87.72 62.09 
3.7 349.74 199.34 251.16 213.43 169.3 144.08 
3.8 353.28 250.50 230.16 128.75 196.18 165.80 
3.9 331.94 264.44 248.64 186.93 220.76 161.91 

 

The presence of just a single generator function did not 
require the additional complexity of either a heterogeneous 
topology or the emergence of Sub-Cultures. Their presence in an 
environment produced by just one generator process does not 
contribute to the effectiveness of the optimization process for 
those landscapes. 

For the periodic class, (problems with A= 3.2, 3.3 and 3.4) as 
shown in Tables I, II,  and III, the Sub-Cultured Heterogeneous 
configurations  outperformed all of the other topologies in terms 
of the average number of steps needed to solve the problem.  

TABLE IV. STATISTICAL T-TESTS (TWO TAIL TEST, ALPHA = 
0.05) BETWEEN SUB-CULTURES AND HOMOGENEOUS FOR 

POPULATION SIZE 50.  

A
-V

al
ue

 

C
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cu
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d 
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e 

H
et

er
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eo
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vs
 

H
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C
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cu
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d 
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e 
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s 
H
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C
al

cu
la

te
d 

t-
va

lu
e 

Su
b-

cu
ltu

re
s v

s 
H

om
og

en
eo

us
 

Fi
xe

d 

1.4 7.71 Reject 1.65 Accept 4.56 Reject 

1.8 6.51 Reject 0.19 Accept 4.91 
Reject 

2.2 7.31 Reject 1.88 Accept 7.84 Reject 

2.6 2.07 Reject 0.188 Accept 2.76 Reject 

Pe
ri

od
ic

 3.1 0.60 Accept 0.61 Accept 0.08 Accept 

3.2 0.77 Accept 2.38 Reject 
2.58 

Reject 

3.3 1.42 Accept 3.85 Reject 4.33 Reject 

3.4 2.57 Reject 1.33 Accept 3.56 
Reject 
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C
ha

ot
ic

 3.6 1.08 Accept 1.75 Accept 
2.61 

Reject 

3.7 1.44 Accept 2.40 Reject 3.75 
Reject 

3.8 4.25 Reject 3.43 Reject 5.67 
Reject 

3.9 2.01 Reject 1.72 Accept 3.11 Reject 

 

For periodic class problems with entropy 3.1, Sub-Cultures 
outperformed the heterogeneous topologies and were very close 
to the homogeneous topologies’ average number of generations.   
In fact, the Sub-Cultures were more effective than the 
homogeneous topologies in solving problems with entropy 3.1 
for population size 75 as shown in Fig. 9, but were not for 
population sizes 50 and 100 as shown in Fig. 10 and Fig. 11.  
Overall, Sub-Cultures were the most effective topology in 
solving problems from the periodic class once a certain level of 
complexity was reached, A=3.2, and were gradually 
transitioning into a dominant position  prior to that point as 
illustrated at A=3.1. 

For chaotic class problems, when the number of generators 
becomes large, the utility of Sub-Cultures is effectively 
increased. The presence of Sub-Cultures in this chaotic 
environment does impact the number of generations needed to 
solve a problem successfully.  The last 4 rows of Tables I, II and 
III show that Sub-Cultures were the most effective approach in 
solving chaotic class problems in terms of the number of 
generations. It may be that the presence of Sub-Cultures allows 
the system to focus on a solution once it is in the ballpark of the 
sub-cultures and distribute it to other subcultures for use.  

The average number of generations needed to solve 
problems with entropies from fixed class problems (1.4, 1.8, 2.2 
and 2.6), periodic class problems (3.1, 3.2, 3.3 and 3.4), and 
chaotic class problems (3.6, 3.7, 3.8 and 3.9) for homogeneous, 
heterogeneous and Sub-Cultures topologies are given in Fig. 8 
through 10. The results suggest that when the number of layers 
of generators (complexity) increases, multiple networks are 
needed to focus on parts of the landscape instead of exploring 
the landscape as a single unit. Homogeneous topologies explore 
the landscape as a coherent unit but Sub-Cultured topology 
explores the landscape with small groups of individuals that 
form Sub-Cultures over parts of the landscape. Therefore, Sub-
Cultures topology can solve problems efficiently when more 
layers of complexity added to the landscape and are not likely to 
emerge for shallow layered problems or images.  

Several preliminary observations can be drawn from the 
three figures: (1). There is a level of complexity beyond which 
the heterogeneous and Sub-Cultures topologies outperform the 
homogeneous topologies for the population sizes 50, 75 and 100, 
(2). 

 

Fig. 8. The Average Number of Generations Comparison 
between Homogeneous, Heterogeneous and Sub-cultures 
for Population Size 50. 

 

Fig. 9. The Average Number of Generations Comprison between 
Homogeneous, Heterogeneous and Sub-cultures for Population 
Size 75. 

Sub-Cultures outperformed or equaled the heterogeneous 
approach for every given entropy except the simplest, (3). Sub-
Cultures and heterogeneous topologies outperformed the 
homogeneous topology in chaotic problems class, (4). The 
number of generations taken to solve the problem with Sub-
Cultures is less dependent on population size and landscape 
complexity than for the other two approaches, and 5). There 
appears to be a singularity, or region of complexity, where the 
best heterogeneous approach and the homogeneous approach 
perform at the same level. The former dominates after that and 
the latter strategy before that. 

In Table IV the statistical significance of the performances 
between the two heterogeneous configurations and the best 
performing homogeneous topology in terms of the number of 
generations used for successfully solved problems is explored. 
As can be seen, for the fixed class the square homogeneous 
topology uses significantly more generations per solved problem 
than either heterogeneous or Sub-cultured  approaches. The 
latter two configurations do not exhibit any statistical difference 
in terms of the number of generations used between them. 

For the periodic class, Sub-Cultures use significantly fewer 
generations than either the heterogeneous or homogeneous 
topologies. There is a statistically significant difference in the 
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number of generations used by the latter two approaches for 
entropy 3.4. It is clear that the presence of the Sub-Cultural 
structure in the heterogeneous topology is the key to its 
improved performance there. 

In the chaotic situation with many generators, heterogeneity 
in the topologies becomes more important since both 
heterogeneous and Sub-cultured categories outperformed the 
homogeneous one. There was no observed statistical difference 
in performance between the two latters classes which suggests 
that Sub-Cultures do not have a significant impact on the 
number of generation used to solve a problem successfully. 
However, the presence of Sub-Cultures tends to reduce the 
standard deviation of the number of generations used to get a 
solution, even though it was not tested for significance here.  

 

Fig. 10. The Average Number of Generations Comprison between 
Homogeneous, Heterogeneous and Sub-cultures for Population 
Size 100. 

Predictability can be measured by standard deviations. In this 
section, the number of generations’ standard deviations for each 
of the topologies (homogeneous, heterogeneous and Sub-
Cultures) on different levels; (1) entropy values level as shown 
in Tables I, II and III; and (2) topologies (homogeneous, 
heterogeneous and Sub-Cultures) level is collected in Table V. 

For entropies 1.4, 1.8, 2.2 and 2.6 and population sizes of 50 
and 75 found in Tables I and II, homogeneous topologies were 
the most predictable by showing the lowest standard deviation in 
terms of the number of generations needed to solve fixed class 
problems. In the periodic and chaotic classes, problems with 
population sizes 50 and 75, Sub-Cultured topologies were the 
most predictable with the lowest standard deviation for entropies 
3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 3.8 and 3.9 that are shown in Tables I 
and II. In the runs with population sizes of 100, homogeneous 
topologies were the most predictable for entropies 1.4 and 3.1, 
but the Sub-Cultured topologies were the most predictable for 
the rest of generator values. Heterogeneous topologies were 
more predictable than homogeneous topologies for entropies 3.2, 
3.3, 3.4, 3.6, 3.7, 3.8 and 3.9 as shown in Tables I, II and III.  

Again the value 3.1 is a critical entropy point in terms of 
social configurations and the use of Sub-cultured approach. The 
following conclusion can be extracted from Tables I through IV: 

(1). Homogeneous topologies were more predictable than 
heterogeneous topologies for entropies less than or equal to 3.1; 
(2). Sub-Cultured topologies were the most predictable for 
entropies greater or equal to 3.1 for population sizes 50 and 75. 
For population size 100, Sub-Cultured topologies were the most 
predictable for entropies greater than the critical entropy point 
3.1; and (3) homogeneous topologies were the most predictable 
for entropies that were either less than 3.1 of population sizes 50 
and 75, or less than or equal 3.1 of population size 100. 

Table V shows the standard deviation of all runs for the 
homogeneous, heterogeneous, and Sub-Cultured topologies 
using the population sizes 50, 75 and 100.  As shown in the 
table, heterogeneous topologies were more predictable than the 
homogenous topologies for all runs over all of the entropies that 
were used in the experiments. The Sub-Cultured topologies 
possessed the lowest overall standard deviation of all of the 
topologies tested. As such, it served to tie individuals closer 
together even as the problems that they were solving became 
more complex. 

TABLE V. THE STANDARD DEVIATION COMPARISON OF THE 
HOMOGENEOUS, HETEROGENEOUS AND SUB-CULTURES 

SOCIAL FABRIC TOPOLOGIES FOR ALL RUNS. 

Standard Deviation (All Runs) 
Population 

size Homogeneous heterogeneous Sub-cultures 

50 280.62 183.87 124.42 

75 186.12 150.82 95.68 

100 172.74 144.43 103.45 

VIII. CONCLUSIONS AND FUTURE WORK 

In this paper, a Sub-Cultured heterogeneous topology was 
compared with other Homogeneous and hHeterogeneous 
topologies over twelve entropy values (1.4, 1.8, 2.2, 2.6, 3.1, 
3.2, 3.3, 3.4, 3.6, 3.7, 3.8 and 3.9). The results of the statistical 
tests conducted suggest in computational terms two basic ways 
why Sub-Cultures can emerge successfully in certain social 
situations. First, with multiple pattern generators in the search 
space, the Sub-Cultures can be useful in sorting out the different 
patterns produced by each generator, assuming of course that 
there are not too many. Second, the presence of Sub-Cultures 
tends to reduce the overall variability in the problem solving 
process along with dampening down the impact of increased 
problem complexity.  

Homogeneous topologies were more efficient and 
predictable in problems class produced by a single generator 
layer with the tested entropies 1.4, 1.8, 2.2 and 2.6. Entropy 
value 3.1 was a critical point (or singularity) for the topologies 
to start defining their trends in solving different problem 
categories. Sub-cultures showed the highest predictability and 
efficiency in periodic and chaotic problems classes as was 
shown previously for entropies 3.2, 3.3, 3.4, 3.6, 3.7, 3.8 and 
3.9. 
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The results suggest the Sub-cultures emerge as the number of 
generators producing the image or performance landscape 
increases. One advantage to reduce the variability in the 
performance within a population since diversity is partitioned 
into different subcultural groups. 

In future work the goal will be to map real world problems 
into these complexity classes to that one can predict what social 
networks will be most effective. Possible set of problem 
categories can be image recognition from the Engineering realm, 
and the recognition Economic patterns from the social realm. 
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