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Abstract— 
 In this paper, we present a modified version of firefly 

algorithm that shows considerable potential in solving discrete 
logarithm problem, a mathematical function used in public-key 
cryptography like Diffie-Hellman Key Exchange and ElGamal 
Encryption. Firefly Algorithm has been experimentally proved to 
have outperformed a number of metaheuristics like the popular 
Particle Swarm Optimization. While solving the problem of 
finding discrete logarithm, we also evaluate the effectiveness of 
the algorithm and its modified version in solving such 
cryptographic problems. Observations show significant potential 
of Firefly Algorithm in solving small instances of the problem, 
while it calls for further research in scaling up the effectiveness 
of the algorithm in solving bigger instances of the problem. 
Simultaneously, we also analyze the convergence of the modified 
algorithm.  

I. MOTIVATION 
The discrete logarithm problem (DLP) [1] finds frequent 

applications in public-key cryptography [2], notably in Digital 
Signatures [2], ElGamal Encryption [3], and Diffie-Hellman 
Key Exchange [2]. The problem can be mathematical put as 
following. Given a multiplicative group G modulo prime p 
with g and y being t eh elements of the group where g is the 
generator of the prime p, the problem requires to find such an 
integer x � [0, p) that satisfies the following equation: 

                           � � ����	
��
                                     (1) 

It is worth noting that the DLP is a one way mathematical 
function [3] similar to the factoring problem, which makes it 
computationally difficult to compute the answer. Essentially, a 
one-way mathematical function is easy to compute in one 
direction, but computationally difficult to do so in the reverse 
direction. The problem of discrete exponentiation is an easy 
task and can be computed efficiently using exponentiation by 
squaring for instance. However, computing the inverse 
problem of discrete logarithm is computationally hard. Modern 
cryptography relies on such mathematical functions. 

Quite notably, there have been exact algorithms in literature 
devised for solving DLP, namely Baby-Giant Step Algorithm  

[4], Pollard’s Rho Algorithm [5], Pollard’s Lambda 
Algorithm [6], Pohlig-Hellman Algorithm [7], Index Calculus 
Algorithm [8], Number Field Sieve [9], and Function Field 
Sieve [10]. A brief survey of the current state of art can be 
found in [11]. The Number Field Sieve is the fastest known 
algorithm for computing discrete logarithms on prime fields. 
Its asymptotic time complexity is given by �� ��� � ���� � ����� , 
where 

����� �� � ��� � � ! 	�"
#�$%& �
'�$%& $%& �
�('�       (2) 

Further, Cheon [12] showed that, for g being an element of 
prime order p in an abelian group and x � )�, if g, ��, and ��* 
are given for a positive divisor d of � + ", we can compute the 
secret x in , �$%& ��- ��

. ! /
��  group operations using 

, ��0� 1�. � /
2�  memory. If ��3��4 � 5� "� 6� 7 � 

  are 
provided for a positive divisor d of p+1, x can be computed in 
in , �$%&��- ��

. ! /
��  group operations using 

, ��0� 1�. � /
2� memory. 

Consider Shank’s algorithm, if p = 
170141183460469231731687303715884105727, it would take 
1.14824E21 steps for it to solve for 
 � " . The memory 
complexity of Shank’s algorithm is , 8�#.  

Such exact algorithms although guarantee the optimality of 
solutions obtained, incur huge cost upon memory and runtime 
for computationally hard problems. To deal with this, there 
exist a class of approximation algorithms like metaheuristics, 
which although don’t guarantee the optimality of solutions 
obtained, provide reasonably approximate and acceptable 
solutions in reasonable (strictly speaking, polynomial) time. 

Metaheuristics serve five main purposes [13]: 
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1. Solving problems quickly, 

2. Solving large complex problems, and 

3. Obtaining robust algorithms. 

While the first two points are about “problems”, obtaining 
robust algorithms depend on the sensitivity of the algorithm 
against input instances and its parameters. In general, 
robustness of an algorithm can be defined as how sensitive the 
algorithm is against small deviations in the input data or 
parameters of the algorithm. In the metaheuristic community, 
robustness also measures the performance of the algorithms 
given different types of inputs. In case of stochastic algorithms, 
robustness can be measured as the average deviation of the 
behavior of the algorithm over different runs of the algorithm 
on the “same” instance. For more understanding, one may refer 
to [13]. Metaheuristics, in general, are easy to design and 
implement, and at the same time they are flexible in nature, 
which is why it makes them so popular in their usage. 

Some of the most notable swarm intelligence 
metaheuristics are Ant Colony Optimization (ACO) [14], 
Artificial Bee Colony (ABC) [15], Particle Swarm 
Optimization (PSO) [16], and Firefly Algorithm [17]. These 
algorithms have been successfully implemented and tested on 
many NP-Hard and NP-Complete problems like Traveling 
Salesman Problem, Knapsack Problem, Set Covering, Clique 
Problem, Hamiltonian-Cycle Problem, Vehicle Routing, Subset 
Problem, etc. 

Speaking of cryptographic problems, the problem with the 
design of objective functions for problems of cryptography is 
that the nature of the function is binary – correct/incorrect [18], 
Hence solving problems like prime factorization and DLP is 
difficult owing to the difficulty in the optimal design of 
objective functions. In literature, there exists some 
contributions towards solving these problems using 
metaheuristics as discussed later. 

There has been a growing interest among the researchers in 
employing metaheuristics for solving hard mathematical 
functions like the prime factorization problem and the DLP 
problem. As far as DLP is concerned, the first and only such 
contribution is one due to Laskari [19] where the author made 
use of Differential Evolution and PSO. There has been a 
growing interest in the research community towards exploring 
and exploiting the potential metaheuristics have in solving 
problems of cryptography like prime factorization [26], [27], 
[28], [29], [30] and [18]. A constructive critic study on such 
algorithms being applied to such problems can be found in 
[31]. 

This paper introduces a modified version of the Firefly 
Algorithm to adapt it for usage of such problems like DLP 
itself, and further evaluate the algorithm’s effectiveness both in 
terms of performance and convergence. Summing up, our 
contributions are the following: 

• Establishing the superiority of firefly algorithm 
over PSO. 

• Using Firefly Algorithm for solving discrete 
logarithm problem, which is represented as an 
integer programming problem. 

• Significant improvement of performance the 
modified version of the algorithm as compared to 
the classical firefly algorithm when used for 
problems like DLP.  

• We also establish the convergence property of the 
algorithm, which to the best of our knowledge, is 
the first such contribution in general, to the theory 
of convergence of firefly algorithm in terms of 
theory and not just empirical analysis. 

This paper is divided into the following sections: Section II 
presents the design of the solution proposed in a high level 
view. Section III gives a brief introduction to the Firefly 
Algorithm and our modified chaotic version of the algorithm. 
Section IV describes with the formulation of the objective 
function for DLP. Section V provides the test cases which we 
tested upon. Section VI presents experiments and observations. 
In Section VII, we provide a convergence analysis of the 
algorithm thus applied to DLP. We finally conclude about our 
results and future work in Section VIII. 

II. DESIGN 
In this paper, we present DLP as an instance of integer 

programming problem (IPP) [20] which essentially converts 
the problem to a discrete optimization problem. The DLP can 
be formulated as a single variable integer programming 
problem. Let us define 9��
 as:  

                            9��
 � � + ��                                      (3) 

We model our objective function around h(x) which is 
discussed later in Section III. Fig. 1 presents the function plot 
for � � "5"� � � :� � � ";� <��
 � 9��
�	
��
.  

We use a modified chaotic firefly algorithm (M-CFA) for 
DLP with some modifications introduced into the classical 
firefly algorithm: 

1. We always move a firefly stochastically towards the 
global best firefly in any iteration.  

2. When a firefly overshoots the domain space during its 
movement, we distribute the firefly in the domain space 
randomly instead of clamping the firefly to the boundary value 
of the search domain.  

3. Introduce chaotic factor (using logistic maps) in the 
parameters of the algorithm. 

Preliminary experimentation suggested superiority of 
chaotic firefly algorithm over other swarm based 
metaheuristics like PSO, hence we have concentrated our work 
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on further analysis and refinement of the algorithm to suit 
problems like DLP. 

III. FIREFLY ALGORITHM 
The Firefly Algorithm [17] is a recent addition to the family 

of swarm-based metaheuristics. It is inspired by the flashing 
behavior of the fireflies. The less bright fireflies get attracted 
towards brighter fireflies taking into account the media around 
the problem domain. Three assumptions are made while 
designing the algorithm: 

1. All fireflies are unisex, such that each firefly gets 
attracted to all other fireflies. 

2. The attractiveness factor is proportional to the 
brightness of the firefly. A less bright firefly will get 
attracted to a brighter firefly. Also, as the distance 
between two fireflies increase, the attractiveness 
factor  

 
Fig. 1: Function plot of <��
 � �:� + ";
�	
�"5"
 

 
between them reduces since the intensity of brightness 
reduces, which is inversely proportional to the square 
of the distance between the fireflies. 

3. Landscape of the problem domain also affects the 
movement of the fireflies. That is, a media with a 
large absorption coefficient will reduce the intensity 
of brightness of the fireflies, thereby hampering 
movement.  

 
The firefly algorithm has been exploited to solve a number 

of hard optimization problems. Suppose there are N fireflies, 
that is, N candidate solutions. Each candidate solution xi has a 
cost associated with it which is obtained from the objective 
function of the problem under consideration. The objective 
function determines the brightness function =>  of each firefly: = � <��>
 

Based on the computed fitness values, the less bright firefly 
gets attracted and moves towards the brighter one. At the 
source, the brightness is higher than any other point in the 
environment. This brightness decreases with increase in the 

distance between any two fireflies. At the same time, 
surrounding media absorbs some amount of light determined 
by an absorption coefficient, �. For two fireflies i and j, the 
fitness values vary inversely with distance between the two 
fireflies rij. Since light intensity follows the inverse square law, 
we have the light intensity as a function of the distance 
between any two fireflies, r, as: 
 
                                           =�?
 � @ABC                                       (4) 
 
where =D is the light intensity at the source. By incorporating 
the media absorption coefficient �, light intensity can be 
represented in the Gaussian Form as: 

          =�?
 � =D�(EBC                                 (5) 
The attractiveness function thus becomes: 

            F�?
 � FD�(EBC                             (6) 
where FD is the attractiveness value at r = 0.  
      

In our case we always move the fireflies towards the 
brightest firefly, and the dimension of the problem is just one 
since DLP is a single variable problem. Hence the movement 
equation is formulated as: 
 
       �>G� � H�> ! F��IJKL + �>
 ! MN�?0O
> + 5-P
Q           (7) 
 
where randi is a random number in [0,1) generated for the ith  
firefly. The term with � is called the randomization parameter. 
S is the scaling parameter equal to the difference between the 
upper and lower bounds on x. The solution is floored to obtain 
an integral solution. The distance between two fireflies is 
calculated by their Cartesian distance.       

Also, in our approach, we randomize the solution vectors 
which happen to cross the boundary limits of the domain space 
during any iteration, instead of freezing them to the boundary 
values. 

Following is the algorithm code for the modified version of 
the firefly algorithm: 

 
Initialize the algorithm parameters �, � and �.  
while (t < Maximum_Generation) 
 for i = 1 : n 
      if  (f(xi) < f(xbest)) 

      Compute the attractiveness values from Eq. (7)  
            Move firefly i towards the current best fire fly in 

accordance with Eq.(7)  
          If the firefly moves out of the boundary of domain 

space during any iteration, distribute the 
firefly randomly in the domain space. 
Evaluate the new fitness values and update 
the solutions  

         end if 
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 end for 
     Update � and � in accordance with Eq. (9) and Eq.(10). 

Rank the according to their fitness values and find the 
current best firefly 

end while 

IV. ADAPTATION OF M-CFA FOR DLP 

A. Objective Function 
We define our objective function as: 

              <��
 � R9��
�	
�� �������4<�9��
 S 5� + 9��
�	
�� 4<�9��
 T 5              (8) 

where h(x) is the function defined earlier in Eq. (3), and we 
are given the values of p, y and g. g is the generator of the 
prime p. We need to figure out the value of x in the interval [0, 
p-2] for which the Eq. (1) satisfies. Now with this objective 
function, we have DLP as an integer programming problem to 
optimize for. 

B. Integer Programming 
The movement equation of the firefly algorithm consists of 

an attraction term and a randomization term. The equation 
produces a real value which is floored to obtain an integral 
solution as described in Eq. (7). 

C. Parameters and Chaos 
We introduce chaos [21] in the parameters � and � using 

Logistic Maps [22, 23], and update them after each iteration as 
follows: 

                         MLG� � U�ML�" + ML
                              (9) 
                          VLG� � UWVL�" + VL
                            (10) 
where t is the sample time, U�  and UW  are the control 

parameters  [0, 4]. 
The incorporation of chaos in the parameters has been well 

studied in [24]. Basically, it helps the algorithm to escape any 
local minima if it gets trapped in. There are other Chaotic 
Maps as well which can be incorporated for the same problem. 
Logistic Maps are simple to implement and provide similar 
results as other maps do, which were verified in the course of 
experimentation. 

V. TEST CASES 
Following table presents the test cases we used for our 

experiments. These test cases are derived from [19]. The test 
cases were verified before commencing our experiments. The 
experiments performed are preliminary in nature since the 
objective was to understand the potential of the algorithm and 
further tuning it, followed by convergence analysis.  

TABLE I: TEST CASES FOR EXPERIMENTS 

Test Case p g y x 
T1 1009 11 337 784 
T2 2003 5 558 1552 

T3 3001 14 1001 2032 
T4 4001 3 1334 3999 
T5 9973 11 3324 5658 
T6 10007 5 3336 3816 
T7 99991 6 33330 72140 
T8 500029 6 166676 365276 
T9 1000003 2 333334 245724 

 
For each test case, we evaluate 8� $%& � [5] to represent 

the number of steps needed to solve DLP theoretically, for 
example, by Shank’s Algorithm. We shall compare this with 
our approach using M-CFA. 

TABLE II: NUMBER OF STEPS TAKEN BY SHANK’S ALGORITHM 

Test Case p 8� $%& � 
T1 1009 316.97 
T2 2003 490.87 
T3 3001 632.79 
T4 4001 756.90 
T5 9973 1326.59 
T6 10007 1329.34 
T7 99991 5252.15 
T8 500029 13387.09 
T9 1000003 19931.60 

VI. OBSERVATIONS 
      We experimented our method on Java 1.7.0_25; Java 
HotSpot™ Client VM 23.25-b01 on NetBeans IDE 7.3.1 on a 
64 bit OS, x64-based processor, Windows 8 version 6.2, 
Intel® Core™ i5-3210 CPU @ 2.50 GHz 2.50 GHz, 4.00 GB 
(3.88 GB usable) RAM with no networks attached. 

We set the M-CFA parameters as � = 0.6, � = 0.01, �0 = 
1.0, and μ = 4.0.We compare the performance of the algorithm 
with the global variant of Particle Swarm Optimization. We 
set the algorithm parameters as w (inertia weight) = 0.2, c1 
(cognitive factor) = c2 (social factor) = 2. We also 
experimented with other values, but we achieved best results 
with the parameters used in the experiments. 

For each dataset, 50 trials are taken and hit ratio is 
calculated accordingly with each hit corresponding to a 
success in computing x. The mean iterations is calculated on 
the basis of the iterations obtained only in the success 
scenarios. 

The observations of our experiment are shown below in 
the observation table. SS represents the swarm size for the 
firefly algorithm and PSO, MAX-ITER represents the 
maximum number of iterations for the given test case and MI 
represents the mean number of iterations computed. Note that 
the mean iterations are calculated on the basis of the iterations 
obtained only in the successful scenarios. 
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TABLE III: COMPARISON BETWEEN PSO AND M-CFA PERFORMANCE: HIT 
RATIO (HR) AND MEAN ITERATIONS (MI) FOR TEST CASES T1-T9.  

Test 
Case 

SS MAX-
ITER. 

PSO M-CFA

HR MI HR MI

T1 30 500 41/50 204.98 50/50 44.96

T2 45 500 43/50 147.23 50/50 54.96

T3 55 500 34/50 170.94 50/50 55.10

T4 70 700 31/50 119.68 50/50 128.12

T5 100 1000 32/50 90.62 50/50 102.26

T6 100 1000 26/50 57.19 50/50 97.82

T7 350 2000 16/50 286.81 50/50 225.98

T8 750 3500 14/50 1006.93 50/50 424.62

T9 1000 5000 2/50 174.00 50/50 905.96

 

We observe that M-CFA beats the global variant of PSO 
with a much greater efficiency factor, which suggests the 
superiority of M-CFA over PSO. Interestingly, the algorithm’s 
hit ratio reduces as soon as our domain goes beyond 108.  
Following is the new case we tested (T10) the algorithm upon: 

     p = 10486717, g = 7, y= 546423, for which x = 645613. 
MAX-ITER = 7500 

With increasing number of fireflies, the hit ratio increases 
considerably. We achieved a 48/50 hit ratio when the firefly 
population is increased to 5000 in T10 wit mean iterations of 
2286.85 as compared to the 35/50 hit ratio with 2695.25 mean 
iterations when the number of fireflies being 2000, and 25/50 
hit ratio with 2677.92 mean iterations and 1200 fireflies for 
the same test case T10. This shows that given sufficient 
resources, the algorithm has potential to solve the DLP 
problem. 

Below is the graph that shows the variation in the number 
of iterations and number of fireflies for p = 1000003, g = 2 and 
y = 333334. The mean iterations is calculated for 10 successful 
trials for a given firefly population without setting any 
condition for maximum allowable iterations. The firefly 
population is arithmetically increased by 10 for each set of 10 
trials. The graph clearly depicts a trade-off between the mean 
iterations and the number of fireflies, which suggests that an 
optimal choice of maximum iterations and firefly population is 
essential for efficiency of the algorithm adapted for DLP. 

 
Fig. 2: Variation in the number of iterations and number of fireflies for p = 

1000003, g = 2 and y = 333334 
The modified version of the FA where we move each 

firefly only towards the global best firefly also has a 
significant advantage over the classical firefly as shown 
below: 

 
 

 Fig. 3: Time Complexity Analysis of Classical Chaotic FA versus M-CFA 

The solid line depicts the Modified Chaotic Firefly 
Algorithm (M-CFA) we have adapted for DLP and the dotted 
line represents the classical firefly algorithm with the same 
parameters and chaos. The graph is computed based on the 9 
test cases mentioned in the observation table. The time is 
calculated (in milliseconds) over 10 trials with successful hits 
without the limit on the maximum number of iterations. The 
graph clearly depicts that the modified version of the firefly 
algorithm possess the property of scalability and is almost 
constant in nature with a very slight increase in slope after 7th 
test case, whereas the classical algorithm shows an exponential 
increase in the time to reach to the solution. Both the 
approaches gave similar hit ratios but different scalability. This 
presents a crisp idea that the modified version of our chaotic 
firefly algorithm possesses huge promising potential in solving 
DLP owing to its scalability. The classical firefly algorithm’s 
performance closely represents the Taylor’s expansion of 
exponential around 8 (retaining terms upto 7th degree) where x 
represents the input size coupled with a factor of firefly 
population: 

                 X4�� � � �Y
ZD�D �! � �[

\WD �!� �]
�WD �!��^

W� �!� �_
� �! ��C

W �! ��� ! �"            (11) 
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The graph of the above estimation is shown below: 

 
Fig. 4: Taylor’s expansion of exponential around 8 

 
So, we can predict the order of time that the classical firefly 

algorithm will take for a given firefly population to converge to 
the solution as in Eq. (10), in contrast to almost constant (with 
slight increase in slope) order of time of M-CFA. Based on the 
time computed, the observation table below presents the 
improvement percentage for each test case over 10 trials of 
successful hits: 

TABLE IV: COMAPRISON BETWEEN CLASSICAL FIREFLY ALGORITHM AND M-
CFA FOR DLP BASED ON TIME ANALYSIS AND IMPROVEMENT PERCENTAGE  

 
Test 
Case 

Mean Time for 
Classical FA 

with Chaos (in 
ms) 

Mean Time for 
M-CFA (in ms) 

 

Improvement 
Percentage 

T1 17.9 5.6 219.64%

T2 34.4 9.5 262.10%

T3 162.5 13.4 1112.69%

T4 551.6 37.5 1371.00%

T5 626.6 23.4 2577.78%

T6 6610.0 52.2 1166.28%

T7 9256.8 549.4 1584.90%

T8 72613.4 4466.7 1525.66%

T9 282564.2 4739.7 5861.65%

 

VII. CONVERGENCE ANALYSIS 
To understand the convergence of the algorithm, we make 

use of the theory behind discrete dynamical systems [25]. 
Dynamical systems are about the evolution of quantities under 
consideration over time, which can occur over time or in 
discrete time steps. In case of discrete time steps, we describe 
the system as discrete dynamical system.  

To model the evolution, we take snapshots of the system at 
a sequence of discrete time stamps, thereby recording the state 
of the system. The state variables evolve through the state 
space.  
     The movement equation of the fireflies can be transformed 
in the form of a vector matrix as follows: 

 

            `�LG�
�L
" a � `" + F 5 F�IJKL ! M�N��?0O
> + 5-P
" 5 55 5 " a ` �L

�L(�
" a���    (12)                   

 
Let A the matrix as: 

                      b � `" + F 5 F�IJKL ! M�N��?0O
> + 5-P
" 5 55 5 " a              (13) 

 
 According to Cayley-Hamilton’s Theorem, every matrix 

satisfies its own characteristic equation. So the characteristic 
equation of the matrix A is: 
 
                                          |�I – A| = 0                                 (14)                  
where � is the set of eigenvalues that satisfies the 
characteristic equation, and I is the identity matrix. 
    So the characteristic equation for our recurrence relation 
becomes: 

                  

cd ! F + " 5 F�IJKL ! M�N��?0O
> + 5-P
" d 55 5 d + " c � 5            (15)          

 
         d�d + "
�d ! F + "
 � 5                                     

(16)            
 

Hence, we get d  = {0, 1, " + F }. 0 and 1 are trivial 
solutions. The other solution is d = " + F, which is less than 
1. Since every eigenvalue is between 0 and 1, hence we have a 
stable discrete dynamical system. 
     Now for any iterative method to be convergent, the spectral 
radius � should lie in the interval (0,1). Hence, we have: 
 
                                     e" + Fe T "                                    (17)                   

or,  
                                     5 T F T 6                                      (18)                   

 
So the condition for the convergence of our algorithm is 

that F should lie in the interval (0, 2).   
 
     The explicit recurrence relation of Eq. (7) can therefore be 
given as: 
                  ��X ! "
 � f� ! fW�" + F
L                            (19)    

 
where k1

 and k2 are constants determined from the initial 
conditions of the problem in concern.  
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     Now since F  (0,2), therefore e" + Fe is always less than 
1. Now for t � �, � converges to k1. Hence, the algorithm 
converges to the required solution, and therefore the algorithm 
is convergent in nature when 5 T F T 6. 
      We verified our results on the same data set. We set the 
maximum iterations to 10,000 in each case. In each test case, 
it failed to converge to a solution. 

 One may question that showing convergence in infinite 
time steps does not bear much practical importance, however, 
the basic idea behind showing the convergence of the 
algorithm is that the algorithm is “convergent” in nature. 
Analytically, the algorithm showed to hit a success in all the 
test cases described earlier. 

A further insight into the stability of the system can be 
achieved by talking about the stationary state. The stationary 
state for a general discrete system �LG� � <��L
 is a �g � <��g
. 
So, if evaluate the stationary state for our movement equation, 
it comes out to be as: 

                   �g � �IJKL ! Bhi.jk>lhL>ji�LJBk
m                     (20) 

Hence we do see here the stationary point is close to the 
best value, which is obvious. However, it also depends on the 
randomization and attractiveness factor. This suggests that a 
fine tuning of the algorithm can lead to effectiveness and 
efficiency. Any deviation from the parameters can lead to 
divergence. Parameter setting hence become a critical part of 
the algorithm. 

VIII. CONCLUSION 
     The observations clearly show the potential that the Firefly 
Algorithm possesses in solving the Discrete Logarithm 
Problem. The success ratios of each data set is impressive 
which depicts that fine tuning and parameter selection can 
lead to more accuracy and scalability. The convergence 
analysis show that the algorithm is convergent in nature for 
0<�<2. Given sufficient resources to the Firefly Algorithm, 
the algorithm possesses a significant potential in cracking 
through the DLP. The most significant advantage of adapting 
metaheuristics like Firefly Algorithm is that such algorithms 
can be easily parallelized and therefore can be used to test on 
bigger numbers. Further investigation needs to be done on 
bigger dataset. 
     A significant advantage that algorithms like Firefly 
Algorithm is that they can be easily parallelized and thereby 
can reduce the computational time of execution. It is worth 
noting that how firefly algorithm is able to solve the problem 
(though on small instances as tested) even though the nature of 
problem is binary in nature. The question then becomes: What 
characteristic of the objective function makes it so suitable for 
the firefly algorithm, and vice versa. Often, defining and clear 
understanding of the behavior of such algorithms are difficult 
to evaluate theoretically, though empirical analysis shows a 
significant potential of the algorithm.  

      As a part of our future work, we intend to pursue a 
comprehensive investigation about how metaheuristics in 
general perform in finite field, rings and finite groups, 
including groups derived from elliptic curve cryptography. 
While approximation algorithms provide an “approximate” yet 
practically acceptable solutions, there is no such concept of 
“near” or “approximate” solution in a finite field. Hence, it 
then becomes imperative to study the behavioral nature of the 
metaheuristics on theoretical grounds rather than mere 
empirical grounds. This, as a result, would elicit opinions on 
how metaheuristics can be transformed or modified to be 
applied on problems of cryptography in which the algebraic 
structures belong to finite fields, rings and groups.  
      On the other hand it also becomes equally important as to 
how one can design an effective objective function for such 
binary problems to which the answer is just a “yes” or “no”. 
As discussed in Section II, it makes sense to transform a 
binary problem like DLP to an optimization problem, whereon 
metaheuristics can come into picture to solve the problem. It 
is, however, because of the nature of the problem and/or the 
inability to evolve a “good” fitness function that these 
problems of cryptography are difficult to solve without using 
sufficient memory and runtime resources.  
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