

A Modified Chaotic Firefly Algorithm for Solving

Discrete Logarithm Problem and Analysis

Mohit Mishra, Utkarsh Chaturvedi, K. K. Shukla
Dept. of Computer Science and Engineering

IIT (BHU) Varanasi
Varanasi, India

{mohit.mishra.cse11,
utkarsh.chaturvedi.cse11}iitbhu.ac.in,

kkshukla.cse@iitbhu.ac.in

R. V. Yampolskiy
Dept. of Computer Engineering and Computer Science

University of Louisville
Louisville, KY USA

roman.yampolskiy@louisville.edu

Abstract—
 In this paper, we present a modified version of firefly

algorithm that shows considerable potential in solving discrete
logarithm problem, a mathematical function used in public-key
cryptography like Diffie-Hellman Key Exchange and ElGamal
Encryption. Firefly Algorithm has been experimentally proved to
have outperformed a number of metaheuristics like the popular
Particle Swarm Optimization. While solving the problem of
finding discrete logarithm, we also evaluate the effectiveness of
the algorithm and its modified version in solving such
cryptographic problems. Observations show significant potential
of Firefly Algorithm in solving small instances of the problem,
while it calls for further research in scaling up the effectiveness
of the algorithm in solving bigger instances of the problem.
Simultaneously, we also analyze the convergence of the modified
algorithm.

I. MOTIVATION
The discrete logarithm problem (DLP) [1] finds frequent

applications in public-key cryptography [2], notably in Digital
Signatures [2], ElGamal Encryption [3], and Diffie-Hellman
Key Exchange [2]. The problem can be mathematical put as
following. Given a multiplicative group G modulo prime p
with g and y being t eh elements of the group where g is the
generator of the prime p, the problem requires to find such an
integer x � [0, p) that satisfies the following equation:

 � � ����	
��
 (1)

It is worth noting that the DLP is a one way mathematical
function [3] similar to the factoring problem, which makes it
computationally difficult to compute the answer. Essentially, a
one-way mathematical function is easy to compute in one
direction, but computationally difficult to do so in the reverse
direction. The problem of discrete exponentiation is an easy
task and can be computed efficiently using exponentiation by
squaring for instance. However, computing the inverse
problem of discrete logarithm is computationally hard. Modern
cryptography relies on such mathematical functions.

Quite notably, there have been exact algorithms in literature
devised for solving DLP, namely Baby-Giant Step Algorithm

[4], Pollard’s Rho Algorithm [5], Pollard’s Lambda
Algorithm [6], Pohlig-Hellman Algorithm [7], Index Calculus
Algorithm [8], Number Field Sieve [9], and Function Field
Sieve [10]. A brief survey of the current state of art can be
found in [11]. The Number Field Sieve is the fastest known
algorithm for computing discrete logarithms on prime fields.
Its asymptotic time complexity is given by �� ��� � ���� � ����� ,
where

����� �� � ��� � � ! 	�"
#�$%& �
'�$%& $%& �
�('� (2)

Further, Cheon [12] showed that, for g being an element of
prime order p in an abelian group and x �)�, if g, ��, and ��*
are given for a positive divisor d of � + ", we can compute the
secret x in , �$%& ��- ��

. ! /
�� group operations using

, ��0� 1�. � /
2� memory. If ��3��4 � 5� "� 6� 7 �

 are
provided for a positive divisor d of p+1, x can be computed in
in , �$%&��- ��

. ! /
�� group operations using

, ��0� 1�. � /
2� memory.

Consider Shank’s algorithm, if p =
170141183460469231731687303715884105727, it would take
1.14824E21 steps for it to solve for
 � " . The memory
complexity of Shank’s algorithm is , 8�#.

Such exact algorithms although guarantee the optimality of
solutions obtained, incur huge cost upon memory and runtime
for computationally hard problems. To deal with this, there
exist a class of approximation algorithms like metaheuristics,
which although don’t guarantee the optimality of solutions
obtained, provide reasonably approximate and acceptable
solutions in reasonable (strictly speaking, polynomial) time.

Metaheuristics serve five main purposes [13]:

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.262

1885

1. Solving problems quickly,

2. Solving large complex problems, and

3. Obtaining robust algorithms.

While the first two points are about “problems”, obtaining
robust algorithms depend on the sensitivity of the algorithm
against input instances and its parameters. In general,
robustness of an algorithm can be defined as how sensitive the
algorithm is against small deviations in the input data or
parameters of the algorithm. In the metaheuristic community,
robustness also measures the performance of the algorithms
given different types of inputs. In case of stochastic algorithms,
robustness can be measured as the average deviation of the
behavior of the algorithm over different runs of the algorithm
on the “same” instance. For more understanding, one may refer
to [13]. Metaheuristics, in general, are easy to design and
implement, and at the same time they are flexible in nature,
which is why it makes them so popular in their usage.

Some of the most notable swarm intelligence
metaheuristics are Ant Colony Optimization (ACO) [14],
Artificial Bee Colony (ABC) [15], Particle Swarm
Optimization (PSO) [16], and Firefly Algorithm [17]. These
algorithms have been successfully implemented and tested on
many NP-Hard and NP-Complete problems like Traveling
Salesman Problem, Knapsack Problem, Set Covering, Clique
Problem, Hamiltonian-Cycle Problem, Vehicle Routing, Subset
Problem, etc.

Speaking of cryptographic problems, the problem with the
design of objective functions for problems of cryptography is
that the nature of the function is binary – correct/incorrect [18],
Hence solving problems like prime factorization and DLP is
difficult owing to the difficulty in the optimal design of
objective functions. In literature, there exists some
contributions towards solving these problems using
metaheuristics as discussed later.

There has been a growing interest among the researchers in
employing metaheuristics for solving hard mathematical
functions like the prime factorization problem and the DLP
problem. As far as DLP is concerned, the first and only such
contribution is one due to Laskari [19] where the author made
use of Differential Evolution and PSO. There has been a
growing interest in the research community towards exploring
and exploiting the potential metaheuristics have in solving
problems of cryptography like prime factorization [26], [27],
[28], [29], [30] and [18]. A constructive critic study on such
algorithms being applied to such problems can be found in
[31].

This paper introduces a modified version of the Firefly
Algorithm to adapt it for usage of such problems like DLP
itself, and further evaluate the algorithm’s effectiveness both in
terms of performance and convergence. Summing up, our
contributions are the following:

• Establishing the superiority of firefly algorithm
over PSO.

• Using Firefly Algorithm for solving discrete
logarithm problem, which is represented as an
integer programming problem.

• Significant improvement of performance the
modified version of the algorithm as compared to
the classical firefly algorithm when used for
problems like DLP.

• We also establish the convergence property of the
algorithm, which to the best of our knowledge, is
the first such contribution in general, to the theory
of convergence of firefly algorithm in terms of
theory and not just empirical analysis.

This paper is divided into the following sections: Section II
presents the design of the solution proposed in a high level
view. Section III gives a brief introduction to the Firefly
Algorithm and our modified chaotic version of the algorithm.
Section IV describes with the formulation of the objective
function for DLP. Section V provides the test cases which we
tested upon. Section VI presents experiments and observations.
In Section VII, we provide a convergence analysis of the
algorithm thus applied to DLP. We finally conclude about our
results and future work in Section VIII.

II. DESIGN
In this paper, we present DLP as an instance of integer

programming problem (IPP) [20] which essentially converts
the problem to a discrete optimization problem. The DLP can
be formulated as a single variable integer programming
problem. Let us define 9��
 as:

 9��
 � � + �� (3)

We model our objective function around h(x) which is
discussed later in Section III. Fig. 1 presents the function plot
for � � "5"� � � :� � � ";� <��
 � 9��
�	
��
.

We use a modified chaotic firefly algorithm (M-CFA) for
DLP with some modifications introduced into the classical
firefly algorithm:

1. We always move a firefly stochastically towards the
global best firefly in any iteration.

2. When a firefly overshoots the domain space during its
movement, we distribute the firefly in the domain space
randomly instead of clamping the firefly to the boundary value
of the search domain.

3. Introduce chaotic factor (using logistic maps) in the
parameters of the algorithm.

Preliminary experimentation suggested superiority of
chaotic firefly algorithm over other swarm based
metaheuristics like PSO, hence we have concentrated our work

1886

on further analysis and refinement of the algorithm to suit
problems like DLP.

III. FIREFLY ALGORITHM
The Firefly Algorithm [17] is a recent addition to the family

of swarm-based metaheuristics. It is inspired by the flashing
behavior of the fireflies. The less bright fireflies get attracted
towards brighter fireflies taking into account the media around
the problem domain. Three assumptions are made while
designing the algorithm:

1. All fireflies are unisex, such that each firefly gets
attracted to all other fireflies.

2. The attractiveness factor is proportional to the
brightness of the firefly. A less bright firefly will get
attracted to a brighter firefly. Also, as the distance
between two fireflies increase, the attractiveness
factor

Fig. 1: Function plot of <��
 � �:� + ";
�	
�"5"

between them reduces since the intensity of brightness
reduces, which is inversely proportional to the square
of the distance between the fireflies.

3. Landscape of the problem domain also affects the
movement of the fireflies. That is, a media with a
large absorption coefficient will reduce the intensity
of brightness of the fireflies, thereby hampering
movement.

The firefly algorithm has been exploited to solve a number

of hard optimization problems. Suppose there are N fireflies,
that is, N candidate solutions. Each candidate solution xi has a
cost associated with it which is obtained from the objective
function of the problem under consideration. The objective
function determines the brightness function => of each firefly: = � <��>

Based on the computed fitness values, the less bright firefly
gets attracted and moves towards the brighter one. At the
source, the brightness is higher than any other point in the
environment. This brightness decreases with increase in the

distance between any two fireflies. At the same time,
surrounding media absorbs some amount of light determined
by an absorption coefficient, �. For two fireflies i and j, the
fitness values vary inversely with distance between the two
fireflies rij. Since light intensity follows the inverse square law,
we have the light intensity as a function of the distance
between any two fireflies, r, as:

 =�?
 � @ABC (4)

where =D is the light intensity at the source. By incorporating
the media absorption coefficient �, light intensity can be
represented in the Gaussian Form as:

 =�?
 � =D�(EBC (5)
The attractiveness function thus becomes:

 F�?
 � FD�(EBC (6)
where FD is the attractiveness value at r = 0.

In our case we always move the fireflies towards the
brightest firefly, and the dimension of the problem is just one
since DLP is a single variable problem. Hence the movement
equation is formulated as:

 �>G� � H�> ! F��IJKL + �>
 ! MN�?0O
> + 5-P
Q (7)

where randi is a random number in [0,1) generated for the ith
firefly. The term with � is called the randomization parameter.
S is the scaling parameter equal to the difference between the
upper and lower bounds on x. The solution is floored to obtain
an integral solution. The distance between two fireflies is
calculated by their Cartesian distance.

Also, in our approach, we randomize the solution vectors
which happen to cross the boundary limits of the domain space
during any iteration, instead of freezing them to the boundary
values.

Following is the algorithm code for the modified version of
the firefly algorithm:

Initialize the algorithm parameters �, � and �.
while (t < Maximum_Generation)
 for i = 1 : n
 if (f(xi) < f(xbest))

 Compute the attractiveness values from Eq. (7)
 Move firefly i towards the current best fire fly in

accordance with Eq.(7)
 If the firefly moves out of the boundary of domain

space during any iteration, distribute the
firefly randomly in the domain space.
Evaluate the new fitness values and update
the solutions

 end if

1887

 end for
 Update � and � in accordance with Eq. (9) and Eq.(10).

Rank the according to their fitness values and find the
current best firefly

end while

IV. ADAPTATION OF M-CFA FOR DLP

A. Objective Function
We define our objective function as:

 <��
 � R9��
�	
�� �������4<�9��
 S 5� + 9��
�	
�� 4<�9��
 T 5 (8)

where h(x) is the function defined earlier in Eq. (3), and we
are given the values of p, y and g. g is the generator of the
prime p. We need to figure out the value of x in the interval [0,
p-2] for which the Eq. (1) satisfies. Now with this objective
function, we have DLP as an integer programming problem to
optimize for.

B. Integer Programming
The movement equation of the firefly algorithm consists of

an attraction term and a randomization term. The equation
produces a real value which is floored to obtain an integral
solution as described in Eq. (7).

C. Parameters and Chaos
We introduce chaos [21] in the parameters � and � using

Logistic Maps [22, 23], and update them after each iteration as
follows:

 MLG� � U�ML�" + ML
 (9)
 VLG� � UWVL�" + VL
 (10)
where t is the sample time, U� and UW are the control

parameters [0, 4].
The incorporation of chaos in the parameters has been well

studied in [24]. Basically, it helps the algorithm to escape any
local minima if it gets trapped in. There are other Chaotic
Maps as well which can be incorporated for the same problem.
Logistic Maps are simple to implement and provide similar
results as other maps do, which were verified in the course of
experimentation.

V. TEST CASES
Following table presents the test cases we used for our

experiments. These test cases are derived from [19]. The test
cases were verified before commencing our experiments. The
experiments performed are preliminary in nature since the
objective was to understand the potential of the algorithm and
further tuning it, followed by convergence analysis.

TABLE I: TEST CASES FOR EXPERIMENTS

Test Case p g y x
T1 1009 11 337 784
T2 2003 5 558 1552

T3 3001 14 1001 2032
T4 4001 3 1334 3999
T5 9973 11 3324 5658
T6 10007 5 3336 3816
T7 99991 6 33330 72140
T8 500029 6 166676 365276
T9 1000003 2 333334 245724

For each test case, we evaluate 8� $%& � [5] to represent

the number of steps needed to solve DLP theoretically, for
example, by Shank’s Algorithm. We shall compare this with
our approach using M-CFA.

TABLE II: NUMBER OF STEPS TAKEN BY SHANK’S ALGORITHM

Test Case p 8� $%& �
T1 1009 316.97
T2 2003 490.87
T3 3001 632.79
T4 4001 756.90
T5 9973 1326.59
T6 10007 1329.34
T7 99991 5252.15
T8 500029 13387.09
T9 1000003 19931.60

VI. OBSERVATIONS
 We experimented our method on Java 1.7.0_25; Java
HotSpot™ Client VM 23.25-b01 on NetBeans IDE 7.3.1 on a
64 bit OS, x64-based processor, Windows 8 version 6.2,
Intel® Core™ i5-3210 CPU @ 2.50 GHz 2.50 GHz, 4.00 GB
(3.88 GB usable) RAM with no networks attached.

We set the M-CFA parameters as � = 0.6, � = 0.01, �0 =
1.0, and μ = 4.0.We compare the performance of the algorithm
with the global variant of Particle Swarm Optimization. We
set the algorithm parameters as w (inertia weight) = 0.2, c1
(cognitive factor) = c2 (social factor) = 2. We also
experimented with other values, but we achieved best results
with the parameters used in the experiments.

For each dataset, 50 trials are taken and hit ratio is
calculated accordingly with each hit corresponding to a
success in computing x. The mean iterations is calculated on
the basis of the iterations obtained only in the success
scenarios.

The observations of our experiment are shown below in
the observation table. SS represents the swarm size for the
firefly algorithm and PSO, MAX-ITER represents the
maximum number of iterations for the given test case and MI
represents the mean number of iterations computed. Note that
the mean iterations are calculated on the basis of the iterations
obtained only in the successful scenarios.

1888

TABLE III: COMPARISON BETWEEN PSO AND M-CFA PERFORMANCE: HIT
RATIO (HR) AND MEAN ITERATIONS (MI) FOR TEST CASES T1-T9.

Test
Case

SS MAX-
ITER.

PSO M-CFA

HR MI HR MI

T1 30 500 41/50 204.98 50/50 44.96

T2 45 500 43/50 147.23 50/50 54.96

T3 55 500 34/50 170.94 50/50 55.10

T4 70 700 31/50 119.68 50/50 128.12

T5 100 1000 32/50 90.62 50/50 102.26

T6 100 1000 26/50 57.19 50/50 97.82

T7 350 2000 16/50 286.81 50/50 225.98

T8 750 3500 14/50 1006.93 50/50 424.62

T9 1000 5000 2/50 174.00 50/50 905.96

We observe that M-CFA beats the global variant of PSO
with a much greater efficiency factor, which suggests the
superiority of M-CFA over PSO. Interestingly, the algorithm’s
hit ratio reduces as soon as our domain goes beyond 108.
Following is the new case we tested (T10) the algorithm upon:

 p = 10486717, g = 7, y= 546423, for which x = 645613.
MAX-ITER = 7500

With increasing number of fireflies, the hit ratio increases
considerably. We achieved a 48/50 hit ratio when the firefly
population is increased to 5000 in T10 wit mean iterations of
2286.85 as compared to the 35/50 hit ratio with 2695.25 mean
iterations when the number of fireflies being 2000, and 25/50
hit ratio with 2677.92 mean iterations and 1200 fireflies for
the same test case T10. This shows that given sufficient
resources, the algorithm has potential to solve the DLP
problem.

Below is the graph that shows the variation in the number
of iterations and number of fireflies for p = 1000003, g = 2 and
y = 333334. The mean iterations is calculated for 10 successful
trials for a given firefly population without setting any
condition for maximum allowable iterations. The firefly
population is arithmetically increased by 10 for each set of 10
trials. The graph clearly depicts a trade-off between the mean
iterations and the number of fireflies, which suggests that an
optimal choice of maximum iterations and firefly population is
essential for efficiency of the algorithm adapted for DLP.

Fig. 2: Variation in the number of iterations and number of fireflies for p =

1000003, g = 2 and y = 333334
The modified version of the FA where we move each

firefly only towards the global best firefly also has a
significant advantage over the classical firefly as shown
below:

 Fig. 3: Time Complexity Analysis of Classical Chaotic FA versus M-CFA

The solid line depicts the Modified Chaotic Firefly
Algorithm (M-CFA) we have adapted for DLP and the dotted
line represents the classical firefly algorithm with the same
parameters and chaos. The graph is computed based on the 9
test cases mentioned in the observation table. The time is
calculated (in milliseconds) over 10 trials with successful hits
without the limit on the maximum number of iterations. The
graph clearly depicts that the modified version of the firefly
algorithm possess the property of scalability and is almost
constant in nature with a very slight increase in slope after 7th
test case, whereas the classical algorithm shows an exponential
increase in the time to reach to the solution. Both the
approaches gave similar hit ratios but different scalability. This
presents a crisp idea that the modified version of our chaotic
firefly algorithm possesses huge promising potential in solving
DLP owing to its scalability. The classical firefly algorithm’s
performance closely represents the Taylor’s expansion of
exponential around 8 (retaining terms upto 7th degree) where x
represents the input size coupled with a factor of firefly
population:

 X4�� � � �Y
ZD�D �! � �[

\WD �!� �]
�WD �!��^

W� �!� �_
� �! ��C

W �! ��� ! �" (11)

1889

The graph of the above estimation is shown below:

Fig. 4: Taylor’s expansion of exponential around 8

So, we can predict the order of time that the classical firefly

algorithm will take for a given firefly population to converge to
the solution as in Eq. (10), in contrast to almost constant (with
slight increase in slope) order of time of M-CFA. Based on the
time computed, the observation table below presents the
improvement percentage for each test case over 10 trials of
successful hits:

TABLE IV: COMAPRISON BETWEEN CLASSICAL FIREFLY ALGORITHM AND M-
CFA FOR DLP BASED ON TIME ANALYSIS AND IMPROVEMENT PERCENTAGE

Test
Case

Mean Time for
Classical FA

with Chaos (in
ms)

Mean Time for
M-CFA (in ms)

Improvement
Percentage

T1 17.9 5.6 219.64%

T2 34.4 9.5 262.10%

T3 162.5 13.4 1112.69%

T4 551.6 37.5 1371.00%

T5 626.6 23.4 2577.78%

T6 6610.0 52.2 1166.28%

T7 9256.8 549.4 1584.90%

T8 72613.4 4466.7 1525.66%

T9 282564.2 4739.7 5861.65%

VII. CONVERGENCE ANALYSIS
To understand the convergence of the algorithm, we make

use of the theory behind discrete dynamical systems [25].
Dynamical systems are about the evolution of quantities under
consideration over time, which can occur over time or in
discrete time steps. In case of discrete time steps, we describe
the system as discrete dynamical system.

To model the evolution, we take snapshots of the system at
a sequence of discrete time stamps, thereby recording the state
of the system. The state variables evolve through the state
space.
 The movement equation of the fireflies can be transformed
in the form of a vector matrix as follows:

 `�LG�
�L
" a � `" + F 5 F�IJKL ! M�N��?0O
> + 5-P
" 5 55 5 " a ` �L

�L(�
" a��� (12)

Let A the matrix as:

 b � `" + F 5 F�IJKL ! M�N��?0O
> + 5-P
" 5 55 5 " a (13)

 According to Cayley-Hamilton’s Theorem, every matrix

satisfies its own characteristic equation. So the characteristic
equation of the matrix A is:

 |�I – A| = 0 (14)
where � is the set of eigenvalues that satisfies the
characteristic equation, and I is the identity matrix.
 So the characteristic equation for our recurrence relation
becomes:

cd ! F + " 5 F�IJKL ! M�N��?0O
> + 5-P
" d 55 5 d + " c � 5 (15)

 d�d + "
�d ! F + "
 � 5

(16)

Hence, we get d = {0, 1, " + F }. 0 and 1 are trivial
solutions. The other solution is d = " + F, which is less than
1. Since every eigenvalue is between 0 and 1, hence we have a
stable discrete dynamical system.
 Now for any iterative method to be convergent, the spectral
radius � should lie in the interval (0,1). Hence, we have:

 e" + Fe T " (17)

or,
 5 T F T 6 (18)

So the condition for the convergence of our algorithm is

that F should lie in the interval (0, 2).

 The explicit recurrence relation of Eq. (7) can therefore be
given as:
 ��X ! "
 � f� ! fW�" + F
L (19)

where k1

 and k2 are constants determined from the initial
conditions of the problem in concern.

1890

 Now since F (0,2), therefore e" + Fe is always less than
1. Now for t � �, � converges to k1. Hence, the algorithm
converges to the required solution, and therefore the algorithm
is convergent in nature when 5 T F T 6.
 We verified our results on the same data set. We set the
maximum iterations to 10,000 in each case. In each test case,
it failed to converge to a solution.

 One may question that showing convergence in infinite
time steps does not bear much practical importance, however,
the basic idea behind showing the convergence of the
algorithm is that the algorithm is “convergent” in nature.
Analytically, the algorithm showed to hit a success in all the
test cases described earlier.

A further insight into the stability of the system can be
achieved by talking about the stationary state. The stationary
state for a general discrete system �LG� � <��L
 is a �g � <��g
.
So, if evaluate the stationary state for our movement equation,
it comes out to be as:

 �g � �IJKL ! Bhi.jk>lhL>ji�LJBk
m (20)

Hence we do see here the stationary point is close to the
best value, which is obvious. However, it also depends on the
randomization and attractiveness factor. This suggests that a
fine tuning of the algorithm can lead to effectiveness and
efficiency. Any deviation from the parameters can lead to
divergence. Parameter setting hence become a critical part of
the algorithm.

VIII. CONCLUSION
 The observations clearly show the potential that the Firefly
Algorithm possesses in solving the Discrete Logarithm
Problem. The success ratios of each data set is impressive
which depicts that fine tuning and parameter selection can
lead to more accuracy and scalability. The convergence
analysis show that the algorithm is convergent in nature for
0<�<2. Given sufficient resources to the Firefly Algorithm,
the algorithm possesses a significant potential in cracking
through the DLP. The most significant advantage of adapting
metaheuristics like Firefly Algorithm is that such algorithms
can be easily parallelized and therefore can be used to test on
bigger numbers. Further investigation needs to be done on
bigger dataset.
 A significant advantage that algorithms like Firefly
Algorithm is that they can be easily parallelized and thereby
can reduce the computational time of execution. It is worth
noting that how firefly algorithm is able to solve the problem
(though on small instances as tested) even though the nature of
problem is binary in nature. The question then becomes: What
characteristic of the objective function makes it so suitable for
the firefly algorithm, and vice versa. Often, defining and clear
understanding of the behavior of such algorithms are difficult
to evaluate theoretically, though empirical analysis shows a
significant potential of the algorithm.

 As a part of our future work, we intend to pursue a
comprehensive investigation about how metaheuristics in
general perform in finite field, rings and finite groups,
including groups derived from elliptic curve cryptography.
While approximation algorithms provide an “approximate” yet
practically acceptable solutions, there is no such concept of
“near” or “approximate” solution in a finite field. Hence, it
then becomes imperative to study the behavioral nature of the
metaheuristics on theoretical grounds rather than mere
empirical grounds. This, as a result, would elicit opinions on
how metaheuristics can be transformed or modified to be
applied on problems of cryptography in which the algebraic
structures belong to finite fields, rings and groups.
 On the other hand it also becomes equally important as to
how one can design an effective objective function for such
binary problems to which the answer is just a “yes” or “no”.
As discussed in Section II, it makes sense to transform a
binary problem like DLP to an optimization problem, whereon
metaheuristics can come into picture to solve the problem. It
is, however, because of the nature of the problem and/or the
inability to evolve a “good” fitness function that these
problems of cryptography are difficult to solve without using
sufficient memory and runtime resources.

REFERENCES
[1] McCurley, K. S. “The Discrete Logarithm Problem”, Proceedings of

Symposia in Applied Mathematics, vol. 42, pp. 49-74, 1990.
[2] Diffie, W., Hellman, W., “New Directions in Cryptography”, IEEE

Transactions on Information Theory, vol. 22 (6): 644–654, 1976.
[3] ElGamal, T, "A Public-Key Cryptosystem and a Signature Scheme

Based on Discrete Logarithms", IEEE Transactions on Information
Theory 31 (4): 469–472, 1985.

[4] S. Goldwasser and M. Bellare, Lecture Notes on Cryptography, July
2008, retrieved from http://cseweb.ucsd.edu/~mihir/papers/gb.pdf in
Jan-Feb 2013.

[5] D. Shanks, Class number, a theory of factorization and genera. In Proc.
Symp. Pure Math. 20, 1969, pages 415–440. AMS, Providence, R.I.,
1971.

[6] J. M. Pollard,. "Monte Carlo methods for index computation (mod p)".
Mathematics of Computation 32 (143): 918–924, 1978

[7] Mollin, Richard (2006-09-18). “An Introduction To Cryptography” (2nd
ed.). Chapman and Hall/CRC. p. 344

[8] L. Adleman, “A subexponential algorithm for the discrete logarithm
problem with applications to cryptography”, In 20th Annual Symposium
on Foundations of Computer Science, 1979

[9] Arjen K. Lenstra and H. W. Lenstra, Jr. (eds.). "The development of the
number field sieve". Lecture Notes in Math. (1993) 1554. Springer-
Verlag.

[10] L. Adleman, M. A. Huang, “Function Field Sieve Method for Discrete
Logarithms over Finite Fields”, Information and Computation, vol. 151,
issues 1 2, pp. 5-16, 25 May 1999.

[11] A. Odlyzko, “Discrete Logarithms: The past and the future”, Design.
Codes, and Cryptography, vol. 19, issue 2-3, pp. 129-145.

[12] Cheon, J. H., “Security Analysis of the Strong Diffie-Hellman
Problem”, EUROCRYPT 2006, LNCS 4004, pp. 1-11.

1891

[13] Talbi, E., “Metaheuristics From Design to Implementation”, John Wiley
& Sons, 2009.

[14] Dorigo, M., Birattari, M., Stutzle, T., “Ant Colony Optimization,” IEEE
Computational Intelligence Magazine, vol. 1 issue 4, pp. 28-39, Nov.
2006.

[15] Karoboga, D., Basturk, B., “A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC)
algorithm”, Journal of Global Optimization, Springer US, vol. 39, pp.
459-471, Nov. 2007.

[16] J. Kennedy, R. Eberhart, “Particle Swarm Optimization”, IEEE
International Conference on Neural Networks, Perth WA, 1995, vol. 4,
pp. 1942-1948.

[17] X. S. Yang, “Firefly algorithms for multimodal optimization”,
Stochastic Algorithms: Foundations and Applications, SAGA 2009,
Lecture Notes in Computer Sciences, vol. 5792, pp. 169-178, 2009.

[18] R. V. Yampolskiy, “Application of bio-inspired algoritm to the problem
of intger factorization”, International Journal of Bio-inspired
Computation. Vol. 2, No. 2, pp. 115-123, 2010

[19] E.C. Laskari et al, “The Discrete Logarithm Problem as an Optimization
Task: A First Study”, Proceedings of the IASTED International
Conference on Artificial Intelligence and Applications
(AIA 2004), Innsbruck, Austria, ACTA Press (IASTED 2004)

[20] Garfinkel, R. S., Nemhauser, G. L., “Integer Programming”, John Wiley
& Sons, New York, 1972.

[21] L. dos S. Coelho, D. L. de A. Bernert, V. C. Mariani, “A Chaotic Firefly
Algorithm Apllied to Reliability Redundancy Optimization”, 2011 IEEE
Congress on Evolutionary Computation (CEC), New Orleans LA, pp.
517-521, June 2011.

[22] T. S. Parker and L. O. Chua, “Practical numerical algorithms for chaotic
system,” Springer-Verlag, Berlin, Germany, 1989.

[23] S. H. Strogatz, Nonlinear dynamics and chaos, Perseus Publishing,
Massachussetts, 2000.

[24] Fister Jr, I., Perc, M., Kamal, S. M., Fister, I., “A review of chaos-based
firefly algorithms: Persepectives and research challenges”, Applied
Mathematics and Computation, Elsevier, vol252, pp. 155-165, 2015.

[25] Galor, O., “Discrete Dynamical Systems”, Springer, 2007.
[26] Chan, D. M., “Automatic generation of prime factorization algorithms

using genetic pro-gramming,” Genetic Algorithms and Genetic
Programming at Stanford. pp.52–57, Stanford Bookstore. Stanford,
California, 2002.

[27] Meletiou, G., Tasoulis, D. K., Vrahatis, M. N, “A first study of the
neural network approach to the RSA cryptosystem,” IASTED 2002
Conference on Artificial Intelligence, Banff, Can-ada, 2002, pp.483–
488.

[28] Jansen, B, Nakayama, K., “Neural networks following a binary
approach applied to the integer prime-factorization problem,” IEEE
International Joint Conference on Neural Networks (IJCNN), July 2005,
pp.2577–2582.

[29] Laskari, E. C., Meletiou, G. C., Tasoulis, D. K., Vrahatis, M. N.,
“Studying the performance of artificial neural networks on problems
related to cryptography,” Nonlinear Analysis: Real World Applications,
Vol. 7, pp.937–942, 2006.

[30] Mishra, M, Chaturvedi, U., Pal, S. K., “A Multithreaded Bound
Varying Chaotic Firefly Algorithm for Prime Factorization,” IEEE
International Advance Computing Confer-ence (IACC), Feb 2014,
Gurgaon, pp. 1321-1324.

[31] Mishra, M., Chaturvedi, U., Gupta, V., Shukla, K. K., Yampolskiy, R.
V., “A Study on the Limitations of Evolutionary Computation and Other
Bio-inspired Approaches for Integer Factoriztion“, In the proceedings of
2015 International Conference on Soft Computing and Software
Engineering, March 5-6, 2015, Berkeley, CA USA. In press.

1892

