5SCI 2015 Tutorial

http://github.com/cirg-up/cilib
G. Pampara and A.P. Engelbrecht

Please interrupt at any time if you have questions

IHH1 Things we fight, daily

COMPUTATIONAL INTELLIGENCE
LIBRARY

IHH1 Things we fight, daily

COMPUTATIONAL INTELLIGENCE
LIBRARY

Programming is all about managing finite processing resources and trying to describe solutions to
possibly complex problems.

3/181

IHH1 Things we fight, daily

COMPUTATIONAL INTELLIGENCE
LIBRARY

Things that add complexity:

IHH1 Things we fight, daily

COMPUTATIONAL INTELLIGENCE
LIBRARY

e Parallelism, Threading and concurrency

5/181

IHH1 Things we fight, daily

COMPUTATIONAL INTELLIGENCE
LIBRARY

e Managing application state

IHH1 Things we fight, daily

COMPUTATIONAL INTELLIGENCE
LIBRARY

e Complex object interactions

7/181

IHH1 Things we fight, daily

COMPUTATIONAL INTELLIGENCE
LIBRARY

e Different kinds of OO semantics (X and Y have similar but different OO implementations)

g /181

INIIE] Things we fight, daily

COMPUTATIONAL INTELLIGENCE
LIBRARY

Programming is all about managing finite processing resources and trying to describe solutions to
possibly complex problems.

Things that add complexity:

e Parallelism, Threading and concurrency

¢ Managing application state

¢ Complex object interactions

e Different kinds of OO semantics (X and Y have similar but different OO implementations)

e Pseudo-randomness on computers

9/181

INIIE] Things we fight, daily

COMPUTATIONAL INTELLIGENCE
LIBRARY

Programming is all about managing finite processing resources and trying to describe solutions to
possibly complex problems.

Things that add complexity:

e Parallelism, Threading and concurrency

¢ Managing application state

¢ Complex object interactions

e Different kinds of OO semantics (X and Y have similar but different OO implementations)
¢ Pseudo-randomness on computers

e Discrepancies between algorithm descriptions (within and out of published works) and the
actual implementations.

10 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

11 /181

What do we want?

I Wewant:

COMPUTATIONAL INTELLIGENCE
LIBRARY

e A way to talk about algorithms and their implementations, without necessarily troubling
ourselves with the complexities that make implementation difficult

13 /181

I Wewant:

COMPUTATIONAL INTELLIGENCE
LIBRARY

e A way to talk about algorithms and their implementations, without necessarily troubling
ourselves with the complexities that make implementation difficult

e We want a declarative process to describe things, worrying about how to "do” them at a later
stage

14 /181

INIFE]1 Cllib: Making sense of complexity

COMPUTATIONAL INTELLIGENCE
LIBRARY

INIFE]1 Cllib: Making sense of complexity

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cllib is a library designed to help with Cl research by providing a base set of functionality to make
usage simpler.

16 /181

INIFE]1 Cllib: Making sense of complexity

COMPUTATIONAL INTELLIGENCE
LIBRARY

Furthermore, we want to make implementation as simple as possible by removing the boring
parts that usually take up far too much time and are tricky to get right.

17 /181

INIFE]1 Cllib: Making sense of complexity

COMPUTATIONAL INTELLIGENCE
LIBRARY

Several things, however, are very important to get right:

18 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cllib: Making sense of complexity

o Correctness
Principled design to promote intuitive usage

e Experimental reproducability
Not being able to reproduce experimental results is utterly useless

e [ype safety

The ability to exploit types to prevent errors by making the construction of error states impossible

19 /181

INTIE] Cllib: Design changes

COMPUTATIONAL INTELLIGENCE
LIBRARY

Library first: No assumptions are made about how the code in this project is used

20 /181

INTIE] Cllib: Design changes

COMPUTATIONAL INTELLIGENCE
LIBRARY

Library first: No assumptions are made about how the code in this project is used

Reliance on pre-existing Libraries to simplify implementations:

e Scalaz: FP abstractions (lets see what happens with this and Cats)
e Spire: Numeric abstractions

e Monocle: Lens Library

21 /181

INTIE] Cllib: Design changes

COMPUTATIONAL INTELLIGENCE

Library first: No assumptions are made about how the code in this project is used

Huge benefits:

¢ User has choice of persistence for results: memory, files, database or cloud storage

.

L]

L]

Portions of library can simply be ignored if not needed
Greater focus on algorithms
Focused tests

Opt-in parallelism

22 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

IFTIY About Scala

COMPUTATIONAL INTELLIGENCE
LIBRARY

We decided on Scala for a very simple reason: familiarity with the JVM.
It's not that different from Java (on the runtime that is)

Scala features:

24 /181

IFTIY About Scala

COMPUTATIONAL INTELLIGENCE
LIBRARY

We decided on Scala for a very simple reason: familiarity with the JVM.
It's not that different from Java (on the runtime that is)

Scala features:

e Object-orientated / Functional hybrid language

25 /181

IFTIY About Scala

COMPUTATIONAL INTELLIGENCE
LIBRARY

We decided on Scala for a very simple reason: familiarity with the JVM.
It's not that different from Java (on the runtime that is)

Scala features:

e Static typing

26 /181

IFTIY About Scala

COMPUTATIONAL INTELLIGENCE
LIBRARY

We decided on Scala for a very simple reason: familiarity with the JVM.
It's not that different from Java (on the runtime that is)

Scala features:

e Supports local type inference

27 /181

IFTIY About Scala

COMPUTATIONAL INTELLIGENCE
LIBRARY

We decided on Scala for a very simple reason: familiarity with the JVM.
It's not that different from Java (on the runtime that is)

Scala features:

e Extensible (e.g: syntax)

28 /181

IFTIY About Scala

COMPUTATIONAL INTELLIGENCE
LIBRARY

We decided on Scala for a very simple reason: familiarity with the JVM.
It's not that different from Java (on the runtime that is)

Scala features:

e Allows for symbolic method names, including UTF-8

def 0 (x: String) =
"This is probably not a good idea, but it's completely valid, " + x

——_

29 /181

INIIE] OQuick intro to Scala syntax

COMPUTATIONAL INTELLIGENCE
LIBRARY

There are some difference in the syntax between Java and Scala, but these are in truth, minimal.

All types are defined after variable names

def foo(first: String, last: String): Person =

T ——

Everything is an expression, which yields a value. In blocks, the last expression is the value of the
entire block

val x: Int = {
println("I'm a statement that returns Unit")
List(1,2,3)
4

}

r_ _ﬁ

30 /181

Liliy Syntax: Class definitions

COMPUTATIONAL INTELLIGENCE

LIBRARY
Java Scala
public class Person { case class Person(

private final String first; first: String, last: String)

private final String last;

public Person(There Is always a primary constructor in
String name, String last) { Scala. This constructor is the class
this.first = first; definition
this.last = last; - .

1 Auxiliary constructors are required to call

the primary constructor.

public String getFirst() {
return this.first;

}

public String getlLast() {
return this.last;

}
}

T T —

31 /181

Liliy Syntax: General

COMPUTATIONAL INTELLIGENCE
LIBRARY

e Everything is an object and has a top type of Any, with a bottom type of Nothing

¢ [he end of line terminator:
o ; is not needed as the normal EOL character is \n

o Multiple expressions on the same line, however, use ; to separate individual expressions

e Linearization is used for multiple inheritance

class Dog extends Animal
with Lovalty
with Woofing
with Mammal

T e

e Variance annotations:
o List[+A] - +A Indicates covariance (i.e: subtypes)

o Array[A] - A indicates the type Is invariant

o class Contravariant[-A] - -Aindicates contravariance (i.e: supertypes)

32 /181

INIIE] Syntax: General (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

e The normal OO style access modifiers (private, protected, public) exist, plus a few extra
e The default access modifier is public

e Immutable values are defined using val. E.g: val x = 3

e Mutable variables are defined using var

¢ Methods are defined using def foo()

e [here are several uses for :
o Imports: import scala.collection._

o Hiding imports: import scala.Predef.{ any2stringadd => _, _ }
o Placeholder syntax:x => (_: Int) + x + 3
o Ignoring a value:val (x, _) = tuple

o Catch-all in pattern match

33 /181

INIIE] Syntax: General (3)

COMPUTATIONAL INTELLIGENCE
LIBRARY

e Scala has traits, which are like Java interfaces but can contain concrete method
implementations

trailt Adder {
def add(x: Int, y: Int) = x + vy
}

T — T II—

trait T[A] {
def foo(a: A): String
}

F_ _ﬁ

Trait like interfaces now exist in Java 8, but it's not quite enough

34 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Syntax: General (4)

e Multiple parameter groups are completely valid: def foo(a: Int)(b: Int)(c: Int): Double

e Implicit parameters are also allowed. These are parameters that the user need not provide, the
compiler will insert the "nearest” scoped implicit value. Must be the last parameter group:
def bar(x: String)(implicit X: Monoid[String]) = ...

35 /181

INIIE] Syntax: General (5)

COMPUTATIONAL INTELLIGENCE
LIBRARY

An important tool we need is parametricity

Type parameters can be added to class, def and type aliases: type C[A] = List[A]

36 /181

INIIE] Syntax: General (5)

COMPUTATIONAL INTELLIGENCE
LIBRARY

An important tool we need is parametricity
Type parameters can be added to class, def and type aliases: type C[A] = List[A]

Generic programming means we can write less code to do more

37 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Syntax: General (5)

An important tool we need is parametricity

Type parameters can be added to class, def and type aliases: type C[A] = List[A]

Scala also allows us to abstract over type constructors, which is also know as higher-kinded
polymorphism

def fooHigher[F[],A](fa: F[A]) =

——_ _——

The above function works for types like List, Set, Vector, but not for Map[A,B]

38 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Syntax: Pattern matching

Functional languages allow for "pattern matching”, whereby a data structure can be
deconstructed, without the need for reflection and in a way that the compiler can type-check for

you.
Pattern matching uses the match syntax:

scala> List(1,2,3) match {
| case x :: xs => 4

| }

<console>:8: warning: match may not be exhaustive.

It would fail on the following input: Nil
List(1,2,3) match {

M

res@: Int = 4
R

Just note that the first matching case in the list of patterns will be used. We'll look at pattern

matching in depth when we discuss Algebraic Data Types (ADTs)

39 /181

INIIE] REPL: Read Evaluate Print Loop

COMPUTATIONAL INTELLIGENCE
LIBRARY

Scala, Like most functional languages, has a REPL within which experimentation can happen
without needing to create an entire compiling program. It aids thinking dramatically!

A Garys-MacBook-Pro - -Dscala. color

Welcome to Scala version 2.11.6 (Java HotSpot(TM) 64-Bit Server WM, Java 1.83.0_48).
Type in expressions to have them evaluated.

Type :help for more information.

List(1,2,3).map(_ + 4)
: List[Int] = List(5, 6, 7)

List(1,2,3) + List(3,4,5)
: List[Int] = List(1l, 2, 3, 3, 4, 5)

def foo[A](x: A): A =X
» [AJ(x: A)A

foo(2)
: Int = 2

foo("2")
: String = 2

5

Functions

The ultimate tool

| “ |'|-1 Functions: First class values

COMPUTATIONAL INTELLIGENCE
LIBRARY

Functions are first class values in Scala, meaning that they can be passed around as you would
pass around an Int

val f: Int => String = (x: Int) => x.toString
T T TTTTT—_—_—_—_——

Functions can be returned as a result and / or can be passed in as input

def foo(x: Int => String): Int => List[Int] =

——_ __—

Functions that take and return functions are called Higher Order Functions (HOF)

42 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Functions: Partial application

Functions of many parameters may have some of these parameters bound to values, resulting in a
new function that requires the remaining parameters only

This is known as partial function application

// Using methods, this is the way
def add(x: Int)(y: Int) = x + vy // Multiple parameter groups
def add5 = add(5)()

// Using functions
val add = (x: Int) => (y: Int) => X + vy
val add5 = add(5)

It should be obvious that there is a similarity between the forms. Note that the latter is more
flexible

43 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Functions: Curried and uncurried

Currying (named after Haskell Curry) is the process where a function of many arguments is
transformed into a sequence of functions, taking a single argument each

Uncurrying is the "dual” process of currying, whereby a curried function is transformed into a
function taking a tuple of arguments

val curried: Int => Int => Int => Double
X =>y=>z=>(x+vy+2z)/ 0.5

val uncurried: (Int, Int, Int) => Double
(x, vy, 2) =>(x+vy +2)/ 0.5

T — D

44 /181

Lilia

COMPUTATIONAL INTELLIGENCE

Functions: Curried and uncurried

Currying (named after Haskell Curry) is the process where a function of many arguments is
transformed into a sequence of functions, taking a single argument each

Uncurrying is the "dual” process of currying, whereby a curried function is transformed into a
function taking a tuple of arguments

val curried: Int => Int => Int => Double
X =>y=>z=>(x+vy+2z)/ 0.5

val uncurried: (Int, Int, Int) => Double
(X, ¥y, 2) => (x+y +2z) /[0.5
Functions in Scala are right associative, so the curried function Int => Int => Double is
iIsomorphic (exactly the same) as Int => (Int => Double), where the latter has parenthesis

applied to make the binding explicit

45 /181

INIIE] Algebraic Data Types (ADTs)

COMPUTATIONAL INTELLIGENCE
LIBRARY

You already know a number of types, such as: Int, Double, List[Int]
Composite types are created in two forms, namely Product or Sum types

Product types multiply types together, producing types that are the combination of the sub types.
Examples are: normal classes, tuples and records

Sum types are also called disjoint types or discriminated unions. Example: Either[String,Int]

46 / 181

INIIE] Algebraic Data Types (ADTs)

COMPUTATIONAL INTELLIGENCE
LIBRARY

You already know a number of types, such as: Int, Double, List[Int]
Composite types are created in two forms, namely Product or Sum types

Product types multiply types together, producing types that are the combination of the sub types.
Examples are: normal classes, tuples and records

Sum types are also called disjoint types or discriminated unions. Example: Either[String,Int]

ADTs are known as "algebraic” types because they form a closed algebra which cannot be altered

47 /181

“'""-1 ADTs: Definition

COMPUTATIONAL INTELLIGENCE
LIBRARY

Languages such as Haskell support the creation of ADTs directly in the language.

Scala does support them, but the encoding is done using case classes / objects and sealed

sealed trait Option[A]
case class Some[A](a: A) extends Option[A]
case object None extends Option[Nothing]

T — T I——

48 / 181

"'"1-1 ADTs: Definition

COMPUTATIONAL INTELLIGENCE
LIBRARY

Languages such as Haskell support the creation of ADTs directly in the language.
Scala does support them, but the encoding is done using case classes / objects and sealed

sealed trait Option[A]

case class Some[A](a: A) extends Option[A]
case object None extends Option[Nothing]

There is a VERY important distinction here that we need to make upfront:

Because of how Scala encodes ADTs, using subtyping, direct instantiating of Some and None are

possible because Scala regards them as unique types themselves. These instances are of the types
Some. type and None. type but they really should be of the type: Option[A]

49 /181

"'"1-1 ADTs: Definition

COMPUTATIONAL INTELLIGENCE
LIBRARY

Languages such as Haskell support the creation of ADTs directly in the language.

Scala does support them, but the encoding is done using case classes / objects and sealed

sealed trait Option[A]
case class Some[A](a: A) extends Option[A]
case object None extends Option[Nothing]

T — R TREIDEE

There is a VERY important distinction here that we need to make upfront:

Because of how Scala encodes ADTs, using subtyping, direct instantiating of and are
possible because Scala regards them as unique types themselves. These instances are of the types
and but they really should be of the type:

When using ADT structures, like Option you always talk about things being option and not a Some /
None. Some(...) and None are called "data constructors” as they create data, but the type is Option

50 /181

INT1 ADTs: Why use them?

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs allow us to have a fixed set of operations
They cannot be extended further and encode something specific into the type system

ADTs are what is missing in many languages, which then introduce more language features to try
address this missing feature. ADTs are simple values and not language level semantics

Examples of language "things" added due to missing ADTs:

51 /181

INT1 ADTs: Why use them?

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs allow us to have a fixed set of operations
They cannot be extended further and encode something specific into the type system

ADTs are what is missing in many languages, which then introduce more language features to try
address this missing feature. ADTs are simple values and not language level semantics

Examples of language "things" added due to missing ADTs:

e Missing values -> the billion dollar mistake: null

52 /181

INT1 ADTs: Why use them?

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs allow us to have a fixed set of operations
They cannot be extended further and encode something specific into the type system

ADTs are what is missing in many languages, which then introduce more language features to try
address this missing feature. ADTs are simple values and not language level semantics

Examples of language "things" added due to missing ADTs:

e Descriptive errors -> exceptions

53 /181

INT1 ADTs: Why use them?

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs allow us to have a fixed set of operations
They cannot be extended further and encode something specific into the type system

ADTs are what is missing in many languages, which then introduce more language features to try
address this missing feature. ADTs are simple values and not language level semantics

Examples of language "things" added due to missing ADTs:

e Comparison semantics -> Using Int to compare values. 2732 possible values instead of the
needed 3

54 /181

INIIE] ADTs: Custom algebras

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs also play extremely nicely with pattern matching. Exhaustiveness checking from the pattern
matcher will also apply to ADTs

The closed nature means that in-variants can be encoded into the type system, giving you greater
guarantees

Cllib itself uses a number of ADTs:

55 /181

INIIE] ADTs: Custom algebras

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs also play extremely nicely with pattern matching. Exhaustiveness checking from the pattern
matcher will also apply to ADTs

The closed nature means that in-variants can be encoded into the type system, giving you greater
guarantees

Cllib itself uses a number of ADTs:

e Fit - Fitness value, either valid or Penalty

56 /181

INIIE] ADTs: Custom algebras

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs also play extremely nicely with pattern matching. Exhaustiveness checking from the pattern
matcher will also apply to ADTs

The closed nature means that in-variants can be encoded into the type system, giving you greater
guarantees

Cllib itself uses a number of ADTs:

e Position[A] - Position in the search space. Point or Solution

57 /181

INIIE] ADTs: Custom algebras

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs also play extremely nicely with pattern matching. Exhaustiveness checking from the pattern
matcher will also apply to ADTs

The closed nature means that in-variants can be encoded into the type system, giving you greater
guarantees

Cllib itself uses a number of ADTs:

e Bound[A] - Search space limits, either Open or Closed

58 /181

INIIE] ADTs: Custom algebras

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs also play extremely nicely with pattern matching. Exhaustiveness checking from the pattern
matcher will also apply to ADTs

The closed nature means that in-variants can be encoded into the type system, giving you greater
guarantees

Cllib itself uses a number of ADTs:

e Constraint[A,B] - Position constraints: <, >, <=, >=, ==and InInterval

59 /181

INIIE] ADTs: Custom algebras

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs also play extremely nicely with pattern matching. Exhaustiveness checking from the pattern
matcher will also apply to ADTs

The closed nature means that in-variants can be encoded into the type system, giving you greater
guarantees

Cllib itself uses a number of ADTs:

e Opt - Optimization scheme, either Min or Max

60 /181

INIIE] ADTs: Custom algebras

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs also play extremely nicely with pattern matching. Exhaustiveness checking from the pattern
matcher will also apply to ADTs

The closed nature means that in-variants can be encoded into the type system, giving you greater
guarantees

Cllib itself uses a number of ADTs:

e Eval[A] - Evaluation scheme for a given Position, can be Constrained or Unconstrained

61 /181

INIIE] ADTs: Custom algebras

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs also play extremely nicely with pattern matching. Exhaustiveness checking from the pattern
matcher will also apply to ADTs

The closed nature means that in-variants can be encoded into the type system, giving you greater
guarantees

Cllib itself uses a number of ADTs:

e RNG - type of PRNG, limited to CMWC

62 /181

INIIE] ADTs: Custom algebras

COMPUTATIONAL INTELLIGENCE
LIBRARY

ADTs also play extremely nicely with pattern matching. Exhaustiveness checking from the pattern
matcher will also apply to ADTs

The closed nature means that in-variants can be encoded into the type system, giving you greater
guarantees

Cllib itself uses a number of ADTs:

e Generator - random generators based on RNG, produce Int, Double or Boolean

63 /181

Typeclasses

Lilih Typeclasses: Open-world interfaces

COMPUTATIONAL INTELLIGENCE
LIBRARY

Lilih Typeclasses: Open-world interfaces

COMPUTATIONAL INTELLIGENCE
LIBRARY

e [ypeclasses allow for adhoc polymorphism

66 / 181

Lilih Typeclasses: Open-world interfaces

COMPUTATIONAL INTELLIGENCE
LIBRARY

e Serve to create a categorization of types

67 /181

Lilih Typeclasses: Open-world interfaces

COMPUTATIONAL INTELLIGENCE
LIBRARY

e Extend the functionality of a given type

68 /181

Lilih Typeclasses: Open-world interfaces

COMPUTATIONAL INTELLIGENCE
LIBRARY

¢ Does not involve inheritance, yay!

69 /181

Lilih Typeclasses: Open-world interfaces

COMPUTATIONAL INTELLIGENCE
LIBRARY

o Makes the compiler work for you and acts like a kind of proof-assistant

70 /181

Liliy Typeclasses: Definition

COMPUTATIONAL INTELLIGENCE
LIBRARY

Typeclasses are a kind of pattern in Scala, whereas they are first-class in languages like Haskell

Typeclasses in Scala are defined using a parameterized trait:

trait Show[A] {
def show(a: A): String
}

It's Important to recognize that the type in question, A, I1s passed to the function directly and is not
obtained from somewhere "'magical’

71 /181

I Typeclasses: Usage

COMPUTATIONAL INTELLIGENCE
LIBRARY

Ll Typeclasses: Usage

COMPUTATIONAL INTELLIGENCE
LIBRARY

e [ypeclasses are made useful by having "instances” defined for the class

73 /181

Ll Typeclasses: Usage

COMPUTATIONAL INTELLIGENCE
LIBRARY

e Each instance of the typeclass is an instance of the typeclass trait, with a given value for the
type parameter "hole”

74 /181

I Typeclasses: Usage

COMPUTATIONAL INTELLIGENCE
LIBRARY

e Each instance is defined as an implicit value

75 /181

Ll Typeclasses: Usage

COMPUTATIONAL INTELLIGENCE
LIBRARY

e Compiler will lookup typeclass instances based on the needed type, looking at the current
scoping

76 /181

Lilia Typeclasses: Usage

COMPUTATIONAL INTELLIGENCE
LIBRARY

e [ypeclasses are made useful by having "instances” defined for the class

e Each instance of the typeclass is an instance of the typeclass trait, with a given value for the
type parameter "hole”

e Each instance is defined as an implicit value

« Compiler will lookup typeclass instances based on the needed type, looking at the current
scoping

e Missing typeclass instance for a given type: failure in compilation

77 /181

Lilia Typeclasses: Usage

COMPUTATIONAL INTELLIGENCE
LIBRARY

e Typeclasses are made useful by having "instances” defined for the class

e Each instance of the typeclass is an instance of the typeclass trait, with a given value for the
type parameter "hole”

e Each instance is defined as an implicit value

« Compiler will lookup typeclass instances based on the needed type, looking at the current
scoping

e Missing typeclass instance for a given type: failure in compilation

implicit val intShow = new Show[Int] {
def show(a: Int) = a.toString

}

e — e

78 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Typeclasses: Usage (2)

Functions that work with a given typeclass, expressly define it as an implicit parameter or context
bound, resulting in a function that is "constrained”

def show[A](a: A)(implicit shower: Show[A]) = shower.show(a)

T ———

Context bounds are the same as an implicit parameter, except that the typeclass is not bound to a
name and the constraint is provided in the type parameter:

def show[A: Show](a: A) = implicitly[Show[A]].show(a)

F_

79 /181

Lilih Typeclasses: Usage (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Functions that work with a given typeclass, expressly define it as an implicit parameter or context
bound, resulting in a function that is "constrained”

def show[A](a: A)(implicit shower: Show[A]) = shower.show(a)

Context bounds are the same as an implicit parameter, except that the typeclass is not bound to a
name and the constraint is provided in the type parameter:

def show[A: Show](a: A) = implicitly[Show[A]].show(a)

_ﬁ

Of course, there is no limit to the number of constraints a function may have. Each typeclass
constraint adds a level of "strictness” to the function

80 /181

Lilih Typeclasses: Usage (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Functions that work with a given typeclass, expressly define it as an implicit parameter or context
bound, resulting in a function that is "constrained”

def show[A](a: A)(implicit shower: Show[A]) = shower.show(a)

T ———

Context bounds are the same as an implicit parameter, except that the typeclass is not bound to a
name and the constraint is provided in the type parameter:

def show[A: Show](a: A) = implicitly[Show[A]].show(a)

F_

Syntax may also be used to achieve the same result. Scalaz adds such syntax for a set of types

3.shows // Syntax that uses Show[Int]

T ——

81 /181

Lilly Typeclasses: So what is the point?

COMPUTATIONAL INTELLIGENCE
LIBRARY

e So we have declared functionality for a type, without actually changing the implementation
of the type

o The type A knows nothing about Show

e This is known as the open world assumption

e Very important: this is not subtyping
o Subtyping requires an implementation of a method for each extending class
o Typeclasses (aka adhoc polymorphism) allow the omission of implementations, which is

fantastic iIf a certain type shouldn't have an instance defined because the functionality

either doesn't make sense or if it is incorrect to have an instance defined (violation of
laws)

82 /181

INE] The Typeclassopedia

COMPUTATIONAL INTELLIGENCE
LIBRARY

As taken from research done in Haskell:

Functor Apply Scrmigroup

/ '

Comonad Apphcative Monod | Category
& Y l
Alternative Foldable Monad | : Armrow - AmowZero - AmowPlus
Traversable MonadFix MonadPlus ArmrowApply ArrowChoice Arrow Loop

e These structures allow better structure to functional programs
¢ [ypeclasses are not magical, but do provide a common nomenclature

e Defined in the scalaz library

83 /181

INIIE] Typeclasses: Semigroup

COMPUTATIONAL INTELLIGENCE
LIBRARY

Imagine having a set of objects, of type A, and a function that can combine two values of A into a
new value of type A.

This binary, two element, operator must always adhere to the associative law in order to behave
In a consistent manner

where - Is the binary operator and is also called append

84 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Typeclasses: Semigroup

Imagine having a set of objects, of type A, and a function that can combine two values of A into a
new value of type A.

This binary, two element, operator must always adhere to the associative law in order to behave
In a consistent manner

where - Is the binary operator and is also called append

You can imagine the number of possible instances that the semigroup structure may have

85 /181

Lillh Typeclasses: Semigroup (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

The representation in code:

trait Semigroup[A] {
def append(x: A, y: A): A
}

T — T —

86 /181

Lillh Typeclasses: Semigroup (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

The representation in code:

trait Semigroup[A] {
def append(x: A, y: A): A
}

T — e

Sample implementation

implicit val stringSemigroup = new Semigroup[String] {
def append(x: String, y: String) = x + vy
}

T — T —————

87 /181

Lilix Typeclasses: Monoid

COMPUTATIONAL INTELLIGENCE
LIBRARY

Monoid is a structure that builds on Semigroup by adding an identity element to the abstraction.
This operation is also called zero or identity. This mean that the following laws need to be

adhered to
a-+(b-c)=(a-+b) - c
a - 1d=1d - a3

88 /181

INIIE] Typeclasses: Monoid (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

In code:

trait Monold[A] extends Semigroup[A] {
def zero: A

}

T —— T

89 /181

INIIE1 Typeclasses: Monoid (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

In code:

trait Monold[A] extends Semigroup[A] {
def zero: A

}

T — D

Sample implementation

implicit val intMonoid = new Monoild[Int] {
def zero: Int = 0
def append(x: Int, y: Int) = x + vy

}

T — B—

90 / 181

INIIE] Typeclasses: Monoid (3)

COMPUTATIONAL INTELLIGENCE
LIBRARY

There are many monoids. Far more than what seem obvious at first

Very important to remember that monoids beget monoids! Given a Monoid[Int] and a
Monoid[List], Monoid[List[Int]] can be constructed

Monoid examples

e Int Addition: (0,+)

e Int Multiplication: (1,*)

e String concatenation: ("",+)

e Function composition: (identity, compose)
e List concatenation: (Nil, ++)

e efC

91 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Typeclasses: Functor

Functor represents a structure that allows you to transform (map) a value in the structure into a
value of another type (but still in the same structure), given a transformation function.

The structure is often called a "computational context®, which is an abstract notion, but there is
nothing else that really fits here.

92 /181

INIIE] Typeclasses: Functor (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Functors are structures that define a single function map

trait Functor[F[]] {
def map[A,B](fa: F[A])(f: A => B): F[B]
}

T — BEEE——

An instance for the Option ADT

implicit val optionFunctor = new Functor[Option] {
def map[A,B](fa: Option[A])(f: A => B): Option[B] =

fa match {
case Some(a) => Some(f(a))
case None => None
}
}

93 /181

INIIE1 Typeclasses: Functor (3)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Functor Instances, like normal functions, can be composed to create new Functor instances.
In essence, a Functor "LiIfts" a regular function into the context of the Functor

Functors operate on kinds of the shape * -> * where a type parameter is needed to create the
type, like

e Lists
® [rees

¢ Maps

Functor laws:

e map(fa)(id) === fa

e map(fa)(f compose g) === map(map(fa)(g))(f)

These laws prevent ridiculous definitions of map, and make it possible to predict how functions
behave.

94 /181

95 /181

INIFE] Aside: Parametricity

COMPUTATIONAL INTELLIGENCE
LIBRARY

def fun[A](a: A): A = ...

What is fun?
val x : List[Int] = ...
def foo[F[] : Functor](fs : F[Int]): F[Int] = ...

What is foo(x).length?

96 /181

Lilly Typeclasses: Applicative functor

COMPUTATIONAL INTELLIGENCE
LIBRARY

You can do a lot with map, but sometime you need more power

Consider

def parselInt(s: String): Option[Int] = ...

T ——

Now if you want to add two Ints together:

parseInt("5").map((x: Int) => (y: Int) => x + y)

——_

97 /181

Lilly Typeclasses: Applicative functor

COMPUTATIONAL INTELLIGENCE
LIBRARY

You can do a lot with map, but sometime you need more power

Consider

def parselInt(s: String): Option[Int] = ...
e R,

Now if you want to add two Ints together:

parseInt("5").map((x: Int) => (y: Int) => x + y)

So we get Option[Int => Int], but what now?

We need a more powerful map-like operation, one that allows us to kind of "map in the context”

98 /181

LIBRARY

It can be achieved by adding more power to Functor:

99 /181

"'l |'|-1 Typeclasses: Applicative functor (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

It can be achieved by adding more power to Functor:

trait Applicative[F[]] extends Functor[F] {
def <*>[A, B](fa: F[A])(f: F[A => B]): F[B] // This is also called "apply" or "ap"
}

I — R Eiiimm,

100 / 181

| .'l |'|-1 Typeclasses: Applicative functor (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

It can be achieved by adding more power to Functor:

Again, laws must be adhered to (Haskell-ish pseudo-code for space reasons):
e |dentity: pure identity <*> u === u
e Composition: pure (.) <*> u <*> v <*> y == u <*> (v <*> W)
e Homomorphism: pure f <*> pure x == pure (f x)

e Interchange:u <*> pure x == pure (\f -> f x) <*> u

101 / 181

| .'l |'|-1 Typeclasses: Applicative functor (3)

COMPUTATIONAL INTELLIGENCE
LIBRARY

So this allows for the composition we wanted:

(parseInt("5")).<*>(parseInt("Nope").map(x => (y: Int) => x + y))
T e e

But that's obviously horrible...

Sadly, the syntax of scala is actually working against us. As an example, the same example in
Haskell would be

(+) <S> parseInt("3") <*> parseInt("Nope")

Applicative functors are a generalization of map, allowing us to work with functions with multiple
Inputs

As a result, additional syntax is introduced to smooth out the usage in scala, which Scalaz
provides known as the ApplicativeBuilder which allows us to use the code in a nicer manner

102 / 181

“'l |'|-1 Typeclasses: Applicative functor (3)

COMPUTATIONAL INTELLIGENCE
LIBRARY

So this allows for the composition we wanted:

(parseInt("5")).<*>(parseInt("Nope").map(x => (y: Int) => x + y))
e B

But that's obviously horrible...

Sadly, the syntax of scala is actually working against us. As an example, the same example in
Haskell would be

(+) <S> parseInt("3") <*> parseInt("Nope")

Applicative functors are a generalization of map, allowing us to work with functions with multiple
Inputs

As a result, additional syntax is introduced to smooth out the usage in scala, which Scalaz
provides known as the ApplicativeBuilder which allows us to use the code in a nicer manner

(parseInt("5") |@| parseInt("Nope")) { + } // Option[Int]

T T

103 / 181

COMPUTATIONAL INTELLIGENCE
LIBRARY

INIIE1 Typeclasses: Applicative functor (4

| .'l |'|-1 Typeclasses: Applicative functor (5)

COMPUTATIONAL INTELLIGENCE
LIBRARY

So now operations in some context can be done with multi argument functions

What happens if you have a value that isn't in the context?

(parseInt("5") |@| 4) { + } // er.... this will not compile

——_ _——

Just Like how we have map, that Lifts a function into the context, we need a way to lift a value into
the context

105 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Typeclasses: Applicative functor (6)

One small addition to the typeclass:

trait Applicative[F[]] extends Functor[F] {
def <*>[A, B](fa: F[A])(f: F[A => B]): F[B]
def point[A](a : A): F[A]

}
With point defined, we can use the applicative as expected (using some syntax):
(parseInt("5") |@| 4.point[Option]) { + }

Additionally notice that the way Applicative receives its arguments means that all the arguments
need to be available, and ready, before the composition function is applied. This actually can be
exploited, allowing applicatives to do things in parallel before composition

106 / 181

Typeclasses: Applicative functor (7)

g,
=
A Z
3- UNWRAP Both AND 4:, NEW JALVE
APH THE FWCTION A CoNTEX]

1 THE VALVE

107 / 181

108 / 181

Lilix Typeclasses: Monad

COMPUTATIONAL INTELLIGENCE
LIBRARY

Let's take a step back and see how something else might go wrong

Assume for a moment, that we needed to obtain a value from an associative Map, which then
would need to be parsed into an integer value

109 / 181

Lilix Typeclasses: Monad

COMPUTATIONAL INTELLIGENCE
LIBRARY

Let's take a step back and see how something else might go wrong

Assume for a moment, that we needed to obtain a value from an associative Map, which then
would need to be parsed into an integer value

Because getting the value from the Map, might fail (i.e: the value is not present), the return type is
a Option[String]

110 /181

Lilix Typeclasses: Monad

COMPUTATIONAL INTELLIGENCE
LIBRARY

Let's take a step back and see how something else might go wrong

Assume for a moment, that we needed to obtain a value from an associative Map, which then
would need to be parsed into an integer value

So we have:

val x: Option[String] = variables.get("x")
T T —

to which we apply our trusty hammer, map

x.map(parseInt) // Result is Option[Option[Int]]

F_ _ﬁ

111 /181

INIIE1 Typeclasses: Monad (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

We need to be able to reach into a computational context, pull out the value and apply a function
which results in a new computational context (which is the same as the original), then having the
nested structure flattened

112 /181

INIME1 Typeclasses: Monad (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

We need to be able to reach into a computational context, pull out the value and apply a function
which results in a new computational context (which is the same as the original), then having the
nested structure flattened

trait Monad[F[]] extends Applicative[F] {
def >>=[A,B](fa: F[A])(f: A => F[B]): F[B]
}

This weird operator >>= Is pronounced "bind” and there are a set of laws, naturally:

o |Leftidentity: return a >>= f [f a
e Right identity:m >>= return [m

e Associativity: (m >>= f) >>= g I m >>= (\x -> f x >>= g)

113 /181

LIBRARY

Some people talk about a "shoving” values though the monad

114 /181

INIME1 Typeclasses: Monad (4)

COMPUTATIONAL INTELLIGENCE
LIBRARY

So, we can now do what we wanted, letting the monad correctly flatten the structure for us

variables.get("x") >>= parselnt // Option[Int]

This can be repeated, feeding the result of one action into a function that produces the next
action:

monadicX >>= (x => monadicY >>= (y => monadicZ map (z => x+y+z)))
T — I EE—_—_

The pattern here is a a group of nested binds followed by a single map, but its no fun to read

115 /181

INIIE1 Typeclasses: Monad (4)

COMPUTATIONAL INTELLIGENCE
LIBRARY

So, we can now do what we wanted, letting the monad correctly flatten the structure for us

variables.get("x") >>= parselnt // Option[Int]

——_ _——

This can be repeated, feeding the result of one action into a function that produces the next
action:

monadicX >>= (x => monadicY >>= (y => monadicZ map (z => x+y+z)))
T — e EEE———

The pattern here is a a group of nested binds followed by a single map, but its no fun to read

This brings up an important concept: Monads allow for the sequencing of effects. This allows the
lazy, purely functional language Haskell to do things in order

116 / 181

INIIE] Typeclasses: Monad (5)

COMPUTATIONAL INTELLIGENCE
LIBRARY

If the syntax is formatted a little:

v

monadicX >>= (x

monadicyY >>= (vy

monadicZ map (z
X + Y + 2

)))

T — T —

n u 1
v

v

117 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Typeclasses: Monad (5)

If the syntax is formatted a little:

monadicX >>= (x =>

monadicyY >>= (y =>

monadicZ map (z =>
X + Y + 2

)))

T — T ——

That does look better, but because the pattern is used so often, the compiler provides some
syntax sugar which the programmer can use, but the compiler de-sugars the syntax during
compilation

for {
X <- monadicX
y <- monadicY
z <- monadicZ
} vield x + v + z

F_ _ﬁ

118 / 181

INIIE] Typeclasses: Monad (6)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Monads provide an embedded language:

for {
X <- monadicX
y <- monadicY
} yleld x + vy

T — T ———

119 /181

INIIE] Typeclasses: Monad (6)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Monads provide an embedded language:

for {
X <- monadicX
y <- monadicY

} yleld x + vy
What does the above for-comprehension (scala parlance), or even better monad-comprehension
do?

120 /181

INIIE] Typeclasses: Monad (6)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Monads provide an embedded language:

for {
X <- monadicX
y <- monadicY
} yleld x + vy

T —

The answer is quite simple: it depends on what the monad is defined to do, while maintaining the

laws

Monad Semantics

Option Anonymous exceptions / missing values
Reader Read-only / immutable environment
Validation Descriptive exceptions

List Non-deterministic computation

Future Valid computed asynchronously

121 /181

Liliy Typeclasses: Signatures

COMPUTATIONAL INTELLIGENCE
LIBRARY

Have a look at the following, notice the difference in the structures

def map[A,B](fa: F[A])(f: A => B): F[B] // Functor
def <*>[A,B](fa: F[A])(f: F[A => B]): F[B] // Applicative
def >>=[A,B](fa: F[A])(f: A => F[B]): F[B] // Monad

> I

It should also be noted again that, as per the typeclassopedia diagram:

e All Applicative instances are also valid Functor instances, but not all Functors are
Applicative

e All Monad instances are valid Applicatives (and by extension Functors), but not vice versa

122 /181

Lilih Typeclasses: Signatures (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Always use the relevant structure to achieve your desired goal. For example:

for {
aa <- a
bb <- b
} yield f(aa, bb)

e — T I——

does not need monad sequencing in order to call the function f. An applicative functor is better:

(a |@l b) { f(L, O}

e I

123 /181

Lihy Typeclasses: Monad transformers

COMPUTATIONAL INTELLIGENCE
LIBRARY

In programming we need to deal with a variety of multiple kinds of effects:

e A program needs some configuration (Reader)

e A connection to an external system may fail (validation or Either)
e Computation needs to be asynchronous (Future)

e Computation may produce zero or multiple results (List)

e We want to log some additional data during a computation (Writer)

124 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Typeclasses: Monad transformers

In programming we need to deal with a variety of multiple kinds of effects:

e A program needs some configuration (Reader)

e A connection to an external system may fail (validation or Either)
e Computation needs to be asynchronous (Future)

e Computation may produce zero or multiple results (List)

e We want to log some additional data during a computation (Writer)

Unfortunately, combining these effects gets messy and the reason for this is that it is not possible
to compose any two random monads - you simply cannot write the >>= operation in a completely

generic way. Please feel free to try it)

implicit val ComposedMonad[M: Monad, N: Monad] = new Monad[...] {
def >>=[A, B](fa: M[N[A]])(f: A => M[N[B]]) : M[N[B]] = // 227
}

T —

125 /181

INIIE] Typeclasses: Monad transformers (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Let's see why stacking monads gets messy

type Env = Map[String, Int]
def lookup(s: String): Reader[Env, Option[Int]] =
Reader(env => env.get(s) orElse parseInt(s))

T — e

Remember that you cannot "mix" monads! If you do, you completely invalidate the laws and as a
result, it iIs impossible to ensure that the computation will be consistent.

Say we now add two numbers, using Reader to prevent repetition:

for {
x0pt <- lookup("3")
yOpt <- lookup("y")
} yield (for {

X <- XOpt

y <- yOpt
} yield x + y)

T — G

126 / 181

Lilih Typeclasses: Monad transformers (3)

COMPUTATIONAL INTELLIGENCE
LIBRARY

This switch from monad to monad is often referred to as "stair-stepping” and results in very
nested, verbose code. It's turtles all the way down.

127 / 181

Lilly Typeclasses: Monad transformers (4)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Transformers are wrappers that exploit the knowledge of the inner monad instance of the given
monad

case class OptionT[F[], A](run: F[Option[A]]) {

}

T — T I—

128 / 181

Lilly Typeclasses: Monad transformers (4)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Transformers are wrappers that exploit the knowledge of the inner monad instance of the given
monad

case class OptionT[F[], A](run: F[Option[A]]) {

}

e B
OptionT(List(Some(1), None, Some(3), Some(4))).getOrElse(®) === List(1,0,3,4)
T —— D EEE—————

It's important to realize that the transformer is a monad itself, therefore you can nest
transformers arbitrarily deep, but the order of the stacking is significant

129 / 181

Lilly Typeclasses: Monad transformers (4)

COMPUTATIONAL INTELLIGENCE
LIBRARY

It I1s the convention that the monad transformer instances mirror the inner monad's name,witha T
suffix

e OptionT
e ReaderT, aka Kleisli (yes, from category theory: the Kleisli category)
e WriterT
e EiltherT

o L1stT

Now we can cleanup our previous stair-stepping example:

130 / 181

Lilly Typeclasses: Monad transformers (4)

COMPUTATIONAL INTELLIGENCE
LIBRARY

It I1s the convention that the monad transformer instances mirror the inner monad's name,witha T
suffix

e OptionT

e ReaderT, aka Kleisli (yes, from category theory: the Kleisli category)
e WriterT

e EitherT

o ListT

Now we can cleanup our previous stair-stepping example:

for {
x <- Kleisli(lookup("3"))
y <- Kleisli(lookup("y"))
} yield x + y

T — T ——

131 /181

Lilih Typeclasses: Monad transformers (5)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Again, a monad transformer is defined by a typeclass:

trait MonadTrans[F[[1, 1] {
def 1iftM[G[]: Monad, A](a: G[A]): F[G,A]
}

T —— T

132 /181

Lilih Typeclasses: Monad transformers (5)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Again, a monad transformer is defined by a typeclass:

trait MonadTrans[F[[1, 1] {
def 1iftM[G[]: Monad, A](a: G[A]): F[G,A]
}

T — D

LiftM allows us to "lift" computations in the base monad into the transformer:

(for {
X <- OptionT(List(Some(3), None))
y <- List(1,2).1i1ftM[0ptionT]
} yield x + y).run // List(Some(4), None, Some(5), None)

T — B—

133 /181

INIIE] Lenses

COMPUTATIONAL INTELLIGENCE
LIBRARY

Lenses are, in a very simplified sense, functional getters and setters that allow composition

They are part of a greater idea; that of Optics (which we won't get into today)

134 / 181

INIIE] Lenses

COMPUTATIONAL INTELLIGENCE
LIBRARY

Lenses are, in a very simplified sense, functional getters and setters that allow composition

They are part of a greater idea; that of 0Optics (which we won't get into today)

Assume a nested structure of case classes, to update a value deep inside, code ends up looking
like:

val employee: Employee

emp loyee.copy(
company = employee.company.copy(
address = employee.company.address.copy(
street = employee.company.address.street.copy(
name = employee.company.address.street.name.capitalize // capitalize exists

}
)
)
)

T —

This need not be case classes, any nested structure is applicable

135 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Lenses (2)

Using lenses, we can define a composition to zoom down into a structure, handling the updates of
all the immutable data by the lenses as we "zoom out”

val name : Lens[Street , String] // we'll see later how to build Lens
val street : Lens[Address , Street]
val address: Lens[Company , Address]

val company: Lens[Employee, Company]

(company composelLens address
composelens street
composelLens name).modify(.capitalize)(employee)

T — L ———

There are a host of other abstractions that Lenses result in, but they are not in the scope for this
talk - we do use lenses a lot in Cllib though

136 / 181

INIIET Lenses (3)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Creating a lens is very simple. You need to provide the following for the types in question:

e getter function

e setter function

137 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Lenses (3)

Creating a lens is very simple. You need to provide the following for the types in question:

e getter function

e setter function

case class Mem[A](b: Position[A], v: Position[A])

trait Memory|[S,A] {
def memory: Lens[S, Position[A]]

}

object Memory {
implicit def memMemory = new Memory[Mem[Double],Double] {
def memory = Lens[Mem[Double],Position[Double]](.b)(b => a => a.copy(b = b))

}
}

T — T —

138 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cilib 2.0

139 /181

I cuib

COMPUTATIONAL INTELLIGENCE
LIBRARY

We've spoken a lot about abstractions and the like before getting to this point. It was necessary
as we build on these abstractions within CIlib

Now let's start going through the core concepts and abstractions we have:
e Entity
e Position
e RVar
e Dist
e Step

o |teration

140 / 181

IHHT cuib: Entity

COMPUTATIONAL INTELLIGENCE
LIBRARY

Looking back on Cllib 1.0, there where many entity types:

e Individual
e Harmony

e Particle
o StandardParticle

o ChargedParticle
o DynamicParticle

o etc

¢ Bee

o efC

And various permutations and adaptations of the above

141 / 181

IHH cliib: Entity (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Looking at all the entity instances, a general structure emerged

142 / 181

IHH cliib: Entity (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Looking at all the entity instances, a general structure emerged

Every entity can be described / represented as a 2-tuple consisting of:

e State specific to the entity

¢ Position that the entity represents of some point in the search space

143 / 181

IHH cliib: Entity (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

Looking at all the entity instances, a general structure emerged

case class Entity[S,A](state: S, pos: Position[A])
T — T EEE—

Furthermore, we needed to change our terminology: there is no need to talk about swarms,
populations, colonies, etc. Instead we can just refer to a collection of entities

144 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Clib: Entity (3)

The interesting part of the Entity Is actually the state represented by the S type parameter

Entity IS @ general data structure, so how do we represent that this Entity contains various
"pieces of state"?

This 1s where some structure comes in, in the form of:

145 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Clib: Entity (3)

The interesting part of the Entity Is actually the state represented by the S type parameter

Entity IS @ general data structure, so how do we represent that this Entity contains various
"pieces of state"?

This 1s where some structure comes in, in the form of:

e An Entity composes different pieces of state together

146 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Clib: Entity (3)

The interesting part of the Entity Is actually the state represented by the S type parameter

Entity IS @ general data structure, so how do we represent that this Entity contains various
"pieces of state"?

This 1s where some structure comes in, in the form of:

e [he state of an Entity IS extracted using Lens instances

147 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Clib: Entity (3)

The interesting part of the Entity Is actually the state represented by the S type parameter

Entity IS @ general data structure, so how do we represent that this Entity contains various
"pieces of state"?

This 1s where some structure comes in, in the form of:

e Lens Instances also are used to update Entity state

148 / 181

Lilia

COMPUTATIONAL INTELLIGENCE

Clib: Entity (3)

The interesting part of the Entity Is actually the state represented by the S type parameter

Entity IS @ general data structure, so how do we represent that this Entity contains various
"pieces of state"?

This 1s where some structure comes in, in the form of:

The most important aspect is now that because the Lens instances constrain an Entity, they also
then become the constraints that algorithms specify, thereby preventing the wrong "kind" of
Entity being used in a given function.

149 / 181

IHH cltib: Entity (4)

COMPUTATIONAL INTELLIGENCE
LIBRARY

def updatePBest[S](// S i1s the entity state type
p: Particle[S,Double]
Y(implicit M: Memory[S,Double]): Step[Double,Particle[S,Double]] = {
val pbestL = M. _memory
Step.liftK(Fitness.compare(p.pos, (p.state applylLens pbestL).get).map(x =>
Entity(p.state applylLens pbestL set x, p.pos)

)
}

def updateVelocity[S](
p: Particle[S,Double],
v: Position[Double]

Y(implicit V: Velocity[S,Double]): Step[Double,Particle[S,Double]] =
Step.pointR(RVar.point(Entity(p.state applyLens V. _velocity set v, p.pos)))

T T E O

150 /181

IHH ciib: Position

COMPUTATIONAL INTELLIGENCE
LIBRARY

Position is @ data structure that is at the core of the library. Position is encoded as an ADT and
represents two distinct cases:

e Point - A point within the problem search space

e Solution - A point within the search space that has been quantified to have both a Fit and a
List[Constraint[A,B]] for constraint violations

Position IS parameterized on the type of the individual dimension elements and are created by
using Bound Instances that define the search space

151 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cilib: Position (2)
Syntax has been added to allow for Vector based mathematics on Position instances, and any

change to the position correctly translates it back to a Point Iinstance

e Position + Position
e Position - Position

e scalar value *: Position

Additionally, Position is also a valid Monad, so Position instances can be composed in all the usual
ways

152 / 181

IHHY cuib: Rvar

COMPUTATIONAL INTELLIGENCE
LIBRARY

This is, without question, the most important abstraction within CILib

155 /181

IHHY cuib: Rvar

COMPUTATIONAL INTELLIGENCE
LIBRARY

This is, without question, the most important abstraction within CILib

Rvar tracks the effect of randomness, and as a result allows for actions that use randomness to be
declared and used without concerning ourselves with:

e How the randomness is applied
e Which PRNG to use

154 / 181

IHHY cuib: Rvar

COMPUTATIONAL INTELLIGENCE
LIBRARY

This is, without question, the most important abstraction within CILib

RVar IS a declaration that the resulting type has randomness applied to it, and has the following
guarantees:

e Using Rvar is completely stack safe (i.e: no stack overflows)

¢ Providing the same seeded PRNG, you will get the same result

155 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cilib: RVar (2)

Internals:

e Rvar Internally is itself a monad transformer stack
e The base monad is a State monad that concerns itself with managing the state of the PRNG

e Around the base monad is a Trampoline, which provides a way for the computation to
suspend itself and then be resumed later

e RVar is the base monad for Cllib

RVar Is constrained to only produce elements that are defined using the Generator typeclass,
which are currently:

¢ Double
e Int

e Boolean

156 / 181

IHHT ciib: Rvar (3)

COMPUTATIONAL INTELLIGENCE
LIBRARY

RVar requires as a parameter, an instance of a RNG

There is only a single RNG provided by Cllib to users, the cMWC which is currently the suggested
RNG for scientific computing. It has a period of 2'°*'°* whereas the Mersenne Twister (which is
also much more difficult to implement correctly) has a period of 2%77%7-1

157 / 181

Lilia

COMPUTATIONAL INTELLIGENCE

Cilib: RVar (3)

RVar requires as a parameter, an instance of a RNG

There is only a single RNG provided by Cllib to users, the cMWC which is currently the suggested
RNG for scientific computing. It has a period of 2'°*'°* whereas the Mersenne Twister (which is
also much more difficult to implement correctly) has a period of 2%77%7-1

RVar makes use of the standard derived operations on the Monad typeclass for most of the provided
functionality:

def ints(n: Int) =
next[Int](Generator.IntGen) replicateM n

Additional functions made available by Rvar, that return Rvar instances include:
e choose - randomly select a value out of a NonEmptyList - RVar[A]
e shuffle - randomly shuffle the given List - Rvar[List[A]]

e sample - randomly sample / choose n elements from the provided List - Rvar[List[A]]

158 / 181

IHHY cuib: Dist

COMPUTATIONAL INTELLIGENCE
LIBRARY

Building on Rvar Is Dist

Dist contains several algorithms that implement probability distributions using the primitives
that Rvar provides

The probability distributions currently supported:

e uniformInt(from, to) - Uniform integer from the provided range (inclusive)

e uniform(from, to) - Uniform number from the given range (upper bound excluded)
e cauchy(l, 0)

e gamma(k, [)

e exponential(l)

e lognormal(l, 0)

e dirichlet([*)

e gaussian(l], [) - Gaussian numbers using Doornik's improved ziggurat method

159 /181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

ClLib: Dist (2)

There are several "standard” distributions also available so that the parameters need not be
provided each time:

L]

L]

L]

stdUniform
stdNormal
stdCauchy
stdExponential
stdGamma
stdLaplace

stdLognormal

The algorithms implemented for the probability distributions are, as far as possible, are based on
published works and aim to try an minimize the usage of the RNG

For example: the JDK standard library implementation uses the "polar method” which samples
two double values each time before testing if it will succeed the internal checks before being
emitted. The ziggurat method used, in contrast, only samples a single double a time

160 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cllib: Step

The next abstraction is that of a Step. Step represents a single operation within an algorithm
definition

The algorithms we are interested in are non-deterministic, and as a result the algorithms
eventually ends up making use of randomness

161 / 181

INIFE1 Cltib: Step

COMPUTATIONAL INTELLIGENCE
LIBRARY

The next abstraction is that of a Step. Step represents a single operation within an algorithm
definition

The algorithms we are interested in are non-deterministic, and as a result the algorithms
eventually ends up making use of randomness

Randomness, encapsulated in Rvar, Is not the only concern that algorithms have. There are two
other important pieces of information that govern the algorithm behavior:

162 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cllib: Step

The next abstraction is that of a Step. Step represents a single operation within an algorithm
definition

The algorithms we are interested in are non-deterministic, and as a result the algorithms
eventually ends up making use of randomness

e The optimization scheme: Minimization (Min) or maximization (Max)

163 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cllib: Step

The next abstraction is that of a Step. Step represents a single operation within an algorithm
definition

The algorithms we are interested in are non-deterministic, and as a result the algorithms
eventually ends up making use of randomness

e A mechanism to quantify the provided candidate solution: Eval[A]

164 / 181

IHHT clib: Step (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

The Eval[A] Instance, takes a Position[A] and yields a new Position[A], except that the new
Position[A] should contain a Fit and a list of all violated constraints

165 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

ClLib: Step (2)

The Eval[A] Instance, takes a Position[A] and yields a new Position[A], except that the new
Position[A] should contain a Fit and a list of all violated constraints

Therefore, based on these requirements, Step instances need to provide both an Opt and an
Eval[A] instance, which then finally yield Rvar[A] values

166 / 181

IHHT clib: Step (2)

COMPUTATIONAL INTELLIGENCE
LIBRARY

The Eval[A] Instance, takes a Position[A] and yields a new Position[A], except that the new
Position[A] should contain a Fit and a list of all violated constraints

Q: What can we do to make such a formulation possible?

167 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cilib: Step (2)

The Eval[A] Instance, takes a Position[A] and yields a new Position[A], except that the new
Position[A] should contain a Fit and a list of all violated constraints

A: We define a ReaderT (aka Kleisli) monad transformer (because Rvar is the base monad in Cllib),
which provides a read-only environment of (Opt, Eval[A])

type Step[A,B] = Kleisli[RVar,(Opt,Eval[A]),B]

T —— BE——

168 / 181

Lilia

COMPUTATIONAL INTELLIGENCE

Cilib: Step (2)

The Eval[A] instance, takes a Position[A] and yields a new Position[A], except that the new
Position[A] should contain a Fit and a list of all violated constraints

Therefore, based on these requirements, Instances need to provide both an and an
instance, which then finally yield values

Q: What can we do to make such a formulation possible?

A: We define a (aka) monad transformer (because IS the base monad in CILib),
which provides a read-only environment of

The expanded form of the Step, as what the scala compiler will report in some scenarios, looks
like this:

val stepAsFunc = (env: (Opt,Eval[A])) => RVar[A]

T T I I

169 / 181

IFIIET Cliib: Step (3)

COMPUTATIONAL INTELLIGENCE
LIBRARY

def gbest[S](

w: Double,
cl: Double,
c2: Double,

cognitive: Guide[S,Double],
social: Guide[S,Double]
Y(implicit M: Memory[S,Double], V: Velocity[S,Double], MO:
Module[Position[Double],Double]
): List[Particle[S,Double]] => Particle[S,Double] => Step[Double,Particle[S,Double]] =
collection => x => for {

cog <- cognitive(collection, x) /] Step
S0C <- social(collection, x) [/ Step
Vv <- stdVelocity(x, soc, cog, w, cl, c2) // Step
P <- stdPosition(x, v) /] Step
p2 <- evalParticle(p) /] Step
p3 <- updateVelocity(p2, v) /] Step
updated <- updatePBest(p3) /] Step

} yield updated

T —— BE——

170 / 181

INT ciib: Step (4)

COMPUTATIONAL INTELLIGENCE
LIBRARY

So, the entire gbest function, returns a new function of the shape

List[Particle[S,Double]] => Particle[S,Double] => Step[Double,Particle[S,Double]]

T — I

which states that, given a List[Particle[S,Double]] (the collection of entities) and the current
Particle[S,Double] (which is the Entity), you get back a single Step[Double,Particle[S,Double]]

171 /181

Lilia

COMPUTATIONAL INTELLIGENCE

Cilib: Step (4)

So, the entire gbest function, returns a new function of the shape

List[Particle[S,Double]] => Particle[S,Double] => Step[Double,Particle[S,Double]]

which states that, given a List[Particle[S,Double]] (the collection of entities) and the current
Particle[S,Double] (which is the Entity), you get back a single Step[Double,Particle[S,Double]]

This Step[Double,Particle[S,Double]] may then be "executed” or "run” by providing the
optimization environment (Opt,Eval[Double]) and then finally a RNG

172 / 181

Lilia

COMPUTATIONAL INTELLIGENCE

Cilib: Step (4)

So, the entire gbest function, returns a new function of the shape

List[Particle[S,Double]] => Particle[S,Double] => Step[Double,Particle[S,Double]]

which states that, given a List[Particle[S,Double]] (the collection of entities) and the current
Particle[S,Double] (which is the Entity), you get back a single Step[Double,Particle[S,Double]]

The final result for this entire algorithm definition is a new version of the passed in
Particle[S,Double], based on the current collection and the old version of the particle

173 / 181

Lilia

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cllib: Step (4)

So, the entire gbest function, returns a new function of the shape

List[Particle[S,Double]] => Particle[S,Double] => Step[Double,Particle[S,Double]]

which states that, given a List[Particle[S,Double]] (the collection of entities) and the current
Particle[S,Double] (which is the Entity), you get back a single Step[Double,Particle[S,Double]]

This may then be "executed” or 'run” by providing the
optimization environment and then finally a

The final result for this entire algorithm definition is a new version of the passed in
, based on the current collection and the old version of the particle

Applying this function repeatedly on all Entity instances in the collection results in the creations
of a new collection

174 / 181

"'"1-1 Cllib: Iteration

COMPUTATIONAL INTELLIGENCE
LIBRARY

CIlib has based all its algorithm execution around the notion of an Iteration

175/ 181

"'"1-1 Cllib: Iteration

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cllib has based all its algorithm execution around the notion of an Iteration

An Iteration is a type that defines how an "algorithm” instance will be run, provided a collection
of Entity

176 / 181

"'"1-1 Cllib: Iteration

COMPUTATIONAL INTELLIGENCE
LIBRARY

CIlib has based all its algorithm execution around the notion of an Iteration

This execution can either be:

177 / 181

"'"1-1 Cllib: Iteration

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cllib has based all its algorithm execution around the notion of an Iteration

e Synchronous (sync) where the new Entity instances are determined solely off the old
collection

178 / 181

"'"1-1 Cllib: Iteration

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cllib has based all its algorithm execution around the notion of an Iteration

e Asynchronous (async) where the new Entity instances are determined off the currently
building collection and the remainder of the old collection that has not yet been processed

179 / 181

"'"1-1 Cllib: Iteration

COMPUTATIONAL INTELLIGENCE
LIBRARY

Cllib has based all its algorithm execution around the notion of an Iteration

It is iImportant to note that the sync version of the Iteration may be implemented completely in
parallel as the old immutable collection is the only requirement, whereas the async version
cannot be parallelised so easily because If needs a combination of the old and new collections,

effectively making the processing sequential

180 / 181

Some Demos
Also, Thank you!

