IEEE SSCI 2015 Tutorial

Equation Discovery for Economic Modelling

Dimitar Kazakov Computer Science Dept University of York Zhivko Georgiev Software Engineer Bolyar Ltd (Ericsson contract)

Cape Town, 8 Dec 2015

Equation Discovery

- An AI approach akin to Machine Learning
- Aiming to find equations best fitting the data
- LAGRAMGE (Todorovski; Džeroski 2001):
 - Equation search space is defined in terms of operators, used-defined functions and range of parameters
 - CFG rules used to derive all possible equations

Case Study: Modelling Inflation

- Empirical modelling of inflation
- ML, equation discovery and Lagramge
- The Euro area dataset
- Learning setup: range of models explored
- Results and evaluation
- Discussion

Models of Inflation

- An issue of great interest
- A great range of models
 - Theory-driven vs empirical
 - One to hundreds of variables
- Until 2007...
 - Inflation decreasing for ~2 decades
 - Decreasing inflation and output volatility
 - Less pronounced and shorter business cycles
 - Inflation increasingly detached from other systemic variables...
 - ...and staying close to 2%
 - The above branded as: The Great Moderation (hah!)

2008-present

- Quite different!
- Models...experts... did anyone see it coming?
 See my last slide
- A few excuses, where modelling is concerned:
 - The observer changes the studied system: publishing a model changes agents' behaviour.
 - Most current models do not represent well systems with several qualitatively different modes (but we can – and have – learned such models).

Lagramge Example

- Variables x, y, z
- Output variable: z
- Grammar: $E \rightarrow T \mid E + T$

$$T \rightarrow c \mid c * Var \mid c * Var * Var$$

Search space z = a

$$z = ax + b$$

z = ax + bxy + cy + d

etc., but limited by max depth of parse tree.

	The	Eu	rozo	one	Dat	ta	
	Tracking inflation, interest and output						
-	Quaterly dat	ta fro	m 197	71/Q1	<u> </u>	007/Q1	
-	Last 2 years	used	l for t	esting	only		
	Quarter/Year	π	у	r			
	1971Q1	5.25	4.22	r 0.68			
	1971Q1 1971Q2	5.25 5.83	4.22 3.56	-0.16		Tasia	
	1971Q1 1971Q2 1971Q3	5.25 5.83 6.09	4.22 3.56 3.92	-0.16 -0.14		Train	
	1971Q1 1971Q2	5.25 5.83 6.09	4.22 3.56	-0.16 -0.14		Train	
	1971Q1 1971Q2 1971Q3	5.25 5.83 6.09	4.22 3.56 3.92	-0.16 -0.14		Train	
	1971Q1 1971Q2 1971Q3	5.25 5.83 6.09	4.22 3.56 3.92	-0.16 -0.14		Train Test	の記録の記録の

Range of Models Considered

- Univariate models:
 - Inflation only a function of its past values
 - Simple yet quite accurate
 - Linear vs nonlinear regression; time trend
- Models linking nominal and real side of economy with monetary policy:
 - output = f(interest rate, past output)
 - inflation = f(output, past inflation)
 - interest rate = f(output, past interest rate)

Setting up Lagramge

Experimented with linear and nonlinear eqns

The most complex search space tried:

if c_i are constants and V_i – variables, the RHS of each equation $V_{out} = f(V_1, V_2, ...)$ is a sum of terms from this range:

 $c_{i} . c_{i} . V_{i} . c_{i} . V_{j} . c_{i} . V_{j} . V_{j} . c_{i} . V_{i} . sin(c_{j} . V_{j} + c_{k}) . c_{i} . sin(c_{j} . V_{j} + c_{k}) . sin(c_{j} . V_{j} + c_{k}) . sin(c_{j} . V_{j} + c_{k}) .$

Sample Run (2)

Best equations: infl = $0.221514 + 0.0248229 * t + 0.138563 * intrst * sin (0.0822064 * t + 1.24266) + 0.0155463 * t * sin (0.507664 * intrst + -2.08429) {MSE = 0.00804541, MDL = 0.0253219}$

infl = $0.221513 + 0.0248229 * t + 0.0155463 * t * sin (0.507664 * intrst + -2.08429) + 0.138563 * intrst * sin (0.0822064 * t + 1.24266) {MSE = 0.00804541, MDL = 0.0253219}$

infl = 0.0301158 * t + 0.0176492 * t * sin (0.479913 * intrst + -1.87172) + 0.157702 * intrst * sin (0.0765666 * t + 1.32732) {MSE = 0.00812278, MDL = 0.0242847}

. infl = -0.0940601 + 0.208327 * infl-1 + 0.136085 * intrst * sin (0.075453 * t + 1.26898) + 0.0360579 * t * sin (0.25441 * intrst + -0.117767) {MSE = 0.00932121, MDL = 0.0265977}

Time elapsed: 578.97 [s]

Evaluation

- The evaluation of the model accuracy is performed according to the root mean squared error (RMSE), and mean absolute error (MAD).
- In-sample evaluation: Model's recall measured on training data (up to 2005Q1)
- Out-of-sample evaluation: models' forecast potential tested on unseen test data ('out of *sample'*) – from 2005Q2 onwards.

Univariate Linear Models: comment

- Recursive forecast: start with the last available observation and apply the model repeatedly to look ahead N steps in the future.
- Sometimes recursive models are converted into equations with time as the only independent variable (but this is not done here).

	Resi	ults:	Com	paris	son	
	and the		2.47	En al	in Sector	
Eqn	qn In-sample		Out-of-sample			
	-		One step ahead		Recursive	
	RMSE	MAD	RMSE	MAD	RMSE	MAD
(5)	0.49	0.36	0.22	0.19	0.46	0.41
[6]	0.49	0.36	0.22	0.19	0.46	0.41
7	0.45	0.34	0.20	0.15	0.26	0.23
8	0.56	0.45	0.64	0.52	1.15	0.87
e 9	0.83	0.64	1.13	0.95	1.82	1.75
	0.38			0.16	0.31	0.26
	$\begin{cases} 5\\6 \\ 7\\8 \\ 8 \end{cases}$	Eqn In-sat RMSE 6 6 0.49 7 0.45 8 0.56	Eqn In-sample RMSE MAD 5 0.49 0.36 6 0.49 0.36 7 0.45 0.34 8 0.56 0.45	Eqn In-sample One ste RMSE MAD RMSE 6 0.49 0.36 0.22 7 0.45 0.34 0.20 8 0.56 0.45 0.64	Eqn In-sample Out-of-s RMSE MAD RMSE MAD \$ 0.49 0.36 0.22 0.19 \$ 0.49 0.36 0.22 0.19 \$ 0.45 0.34 0.20 0.15 \$ 0.56 0.45 0.64 0.52	One step ahead Recursi RMSE MAD RMSE MAD RMSE 5 0.49 0.36 0.22 0.19 0.46 6 0.49 0.36 0.22 0.19 0.46 7 0.45 0.34 0.20 0.15 0.26 8 0.56 0.45 0.64 0.52 1.15

Discussion

- Univariate nonlinear model of inflation is best of all (out-of-sample)
- Multivariate nonlinear model best insample: overfit?
- The multivariate nonlinear model switches between substantially different modes when used recursively – and so do economies.

Logging on to the Server

1. Login to https://lagramge.cloudapp.net

- 2. ssh to lagramge.cloudapp.net
- 3. Use the credentials provided

Running Lagramge

Example:linear grammar, ordinary algebraic equations, depth=5

- Done via runner.py
- Configuration file needs to be setup then fed into the script

Example

- runner.py conf/linear.conf
- Results are shown in the web dashboard

Dashb	oard Sc	ree	nsho	ots
	Get Dire	ections		
 nanagement port command line op				
hboard is the LA	st results from the GRAMGE experimer project Financial Fo	it manage	ement and	analysis
			· · · · · ·	Grammar Too

	6	how Statistic
Experiments (1)		×
1 9f899a18-6a05-11e5-8098-00155d871c8f.jsor MSE: 0.2028315604798781 RMSE: 0.45036824985768936	Results	×
MPE: -0.19201205474173144	isDifferential true	
MAPE: 62.27068552669868	isValidation true	
	models Object *	
	bestMseMId 22	
	bestRmseMId 22	
	bestMse 0.2028315604798	781
$d\sigma$	bestMape 62.270685526698	68
	dataLength 21	
	bestMpe -0.192012054741	73144
	bestMpeMId 2	
	configuration	
	bestMapeMId 5	
	bestRmse 0.4503682498576	8936

Understanding the Lagramge parameters

- Search exhaustive vs beam
- Heuristic MSE vs MDL
- Depth Depth of grammar tree expansion
- Var dependent variable
- Grammar Equation defining grammar
- Time step time step for OD discovery or
- Time var Discrete time variable

Changing the Grammar

- Ready-made non-linear grammar
- Any C function can be added to the grammar file, given that the C header is included
- Any C conforming function can be implemented given its dependencies are met

فيؤد ليجتخبون و	Sample Configuration
2 Hours	{ "lagramge":{
St. A. Caking port	"-g": "sample.gramm",
all one part of	"-d": 5,
	"-v": "inflation,
	"-s": "exhaustive",
Learning	"-h": "mse"
ODE	"-i": 0.05,
ODL	}, "runner":{
	"inputDataFile":"data/sample.data",
	"folds": [0.86],
	}
and are and	Prompt Line Command
	runner.py example.conf

Forecasting the future, plotting the results

- Use Excel to exprapolate equations into the future
- Plot results: easy for the algebraic equations (Excell, gnuplot...), a bit more complicated in the case of ODE.

Bibliography

- Ljupco Todorovski and Saso Dzeroski. *Declarative* bias in equation discovery. ICML'97. San Mateo, CA.
- Dimitar Kazakov and Tsvetomira Tsenova. Jan 2009. Equation Discovery for Macroeconomic Modelling. International Conference on Agents and Artificial Intelligence (ICAART), Porto, Portugal. http://www-users.cs.york.ac.uk/~kazakov/papers/ crc-Kazakov-Tsenova.pdf
- Zhivko Georgiev and Dimitar Kazakov. Dec 2015. Learning Ordinary Differential Equations for Macroeconomic Modelling. IEEE CIFEr'15/SSCI 2015, Cape Town, South Africa.

