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Aims and Goals of this Tutorial

This tutorial will provide an overview of
the goals of time complexity analysis of Evolutionary Algorithms (EAs)
the most common and effective techniques

You should attend if you wish to
theoretically understand the behaviour and performance of the search
algorithms you design
familiarise with the techniques used in the time complexity analysis of EAs
pursue research in the area

enable you or enhance your ability to
understand theoretically the behaviour of EAs on different problems
perform time complexity analysis of simple EAs on common toy problems
read and understand research papers on the computational complexity of
EAs
have the basic skills to start independent research in the area
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Introduction to the theory of EAs

Evolutionary Algorithms and Computer Science

Goals of design and analysis of algorithms

1 correctness
“does the algorithm always output the correct solution?”

2 computational complexity
“how many computational resources are required?”

For Evolutionary Algorithms (General purpose)

1 convergence
“Does the EA find the solution in finite time?”

2 time complexity
“how long does it take to find the optimum?”
(time = n. of fitness function evaluations)
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Introduction to the theory of EAs

Brief history

Theoretical studies of Evolutionary Algorithms (EAs), albeit few, have always
existed since the seventies [Goldberg, 1989];

Early studies were concerned with explaining the behaviour rather than
analysing their performance.

Schema Theory was considered fundamental;
First proposed to understand the behaviour of the simple GA
[Holland, 1992];
It cannot explain the performance or limit behaviour of EAs;
Building Block Hypothesis was controversial [Reeves and Rowe, 2002];

Convergence results appeared in the nineties [Rudolph, 1998];
Related to the time limit behaviour of EAs.
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Convergence analysis of EAs

Convergence

Definition

Ideally the EA should find the solution in finite steps with probability 1
(visit the global optimum in finite time);

If the solution is held forever after, then the algorithm converges to the
optimum!

Conditions for Convergence ([Rudolph, 1998])

1 There is a positive probability to reach any point in the search space from
any other point

2 The best found solution is never removed from the population (elitism)

Canonical GAs using mutation, crossover and proportional selection Do
Not converge!

Elitist variants Do converge!

In practice, is it interesting that an algorithm converges to the optimum?

Most EAs visit the global optimum in finite time (RLS does not!)

How much time?
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Computational complexity of EAs

Computational Complexity of EAs

P. K. Lehre, 2011

Generally means predicting the resources the algorithm requires:

Usually the computational time: the number of primitive steps;

Usually grows with size of the input;

Usually expressed in asymptotic notation;

Exponential runtime: Inefficient algorithm
Polynomial runtime: “Efficient” algorithm
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Computational complexity of EAs

Computational Complexity of EAs

P. K. Lehre, 2011

However (EAs):

1 In practice the time for a fitness function evaluation is much higher than
the rest;

2 EAs are randomised algorithms
They do not perform the same operations even if the input is the same!
They do not output the same result if run twice!

Hence, the runtime of an EA is a random variable Tf .
We are interested in:

1 Estimating E(Tf ), the expected runtime of the EA for f ;
2 Estimating p(Tf ≤ t), the success probability of the EA in t steps for f .
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Computational complexity of EAs

Asymptotic notation

f(n) ∈ O(g(n)) ⇐⇒ ∃ constants c, n0 > 0 st. 0 ≤ f(n)≤cg(n) ∀n ≥ n0

f(n) ∈ Ω(g(n)) ⇐⇒ ∃ constants c, n0 > 0 st. 0 ≤ cg(n)≤f(n) ∀n ≥ n0

f(n) ∈ Θ(g(n)) ⇐⇒ f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n))

f(n) ∈ o(g(n)) ⇐⇒ lim
n→∞

f(n)

g(n)
= 0
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Computational complexity of EAs

Exercise 1: Asymptotic Notation

[Lehre, Tutorial]
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Computational complexity of EAs

Motivation Overview

Overview

Goal: Analyze the correctness and performance of EAs;

Difficulties: General purpose, randomised;

EAs find the solution in finite time; (convergence analysis)

How much time? → Derive the expected runtime and the success
probability;

Next

Basic Probability Theory: probability space, random variables,
expectations (expected runtime)

Randomised Algorithm Tools: Tail inequalities (success probabilities)

Along the way

Understand that the analysis cannot be done over all functions

Understand why the success probability is important (expected runtime
not always sufficient)
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Evolutionary Algorithms

Algorithm ((µ+λ)-EA)
1 Let t = 0;

2 Initialize P0 with µ individuals chosen uniformly at random;
Repeat

3 Create λ new individuals:
1 choose x ∈ Pt uniformly at random;
2 flip each bit in x with probability p;

4 Create the new population Pt+1 by choosing the best µ individuals out of
µ+ λ;

5 Let t = t+ 1.
Until a stopping condition is fulfilled.

if µ = λ = 1 we get a (1+1)-EA;

p = 1/n is generally considered as best choice
[Bäck, 1993, Droste et al., 1998];

By introducing stochastic selection and crossover we obtain a Genetic
Algorithm(GA)
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1+1-EA

Algorithm ((1+1)-EA)

Initialise P0 with x ∈ {1, 0}n by flipping each bit with p = 1/2 ;
Repeat

Create x′ by flipping each bit in x with p = 1/n;

If f(x′) ≥ f(x) Then x′ ∈ Pt+1 Else x ∈ Pt+1;

Let t = t+ 1; Until stopping condition.

If only one bit is flipped per iteration: Random Local Search (RLS).
How does it work?

Given x, how many bits will flip in expectation?

E[X] = E[X1 +X2 + · · ·+Xn] = E[X1] + E[X2] + · · ·+ E[Xn] =

(
E[Xi] = 1 · 1/n+ 0 · (1− 1/n) = 1 · 1/n = 1/n E(X) = np

)

=

n∑
i=1

1 · 1/n = n/n = 1
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General properties

1+1-EA: 2

How likely is it that exactly one bit flips?

(
Pr(X = j) =

(
n
j

)
pj(1− p)n−j

)
What is the probability of exactly one bit flipping?

Pr(X = 1) =

(
n

1

)
· 1/n · (1− 1/n)n−1 = (1− 1/n)n−1 ≥ 1/e ≈ 0.37

Is it more likely that 2 bits flip or none?

Pr(X = 2) =

(
n

2

)
· 1/n2 · (1− 1/n)n−2 =

=
n · (n− 1)

2
1/n2 · (1− 1/n)n−2 =

= 1/2 · (1− 1/n)n−1 ≈ 1/(2e)

While

Pr(X = 0) =

(
n

0

)
(1/n)0 · (1− 1/n)n ≈ 1/e
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General upper bound

1+1-EA: General Upper bound

Theorem ([Droste et al., 2002])

The expected runtime of the (1+1)-EA for an arbitrary function defined in
{0, 1}n is O(nn)

Proof

1 Let i be the number of bit positions in which the current solution x and
the global optimum x∗ differ;

2 Each bit flips with probability 1/n, hence does not flip with probability
(1− 1/n);

3 In order to reach the global optimum the algorithm has to mutate the i
bits and leave the n− i bits unchanged;

4 Then:

p(x∗|x) =

(
1

n

)i(
1− 1

n

)n−i
≥
(

1

n

)n
= n−n

(
p = n−n

)
5 it implies an upper bound on the expected runtime of O(nn)

(E(X) = 1/p = nn) (waiting time argument).
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General upper bound

General Upper bound Exercises

Theorem

The expected runtime of the (1+1)-EA with mutation probability p = 1/2 for
an arbitrary function defined in {0, 1}n is O(2n)

Proof Left as Exercise.

Theorem

The expected runtime of the (1+1)-EA with mutation probability p = χ/n for
an arbitrary function defined in {0, 1}n is O((n/χ)n)

Proof Left as Exercise.

Theorem

The expected runtime of RLS for an arbitrary function defined in {0, 1}n is
infinite.

Proof Left as Exercise.
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General upper bound

1+1-EA: Conclusions & Exercises

In general:

P (i− bitflip) =

(
n

i

)
1

ni

(
1− 1

n

)n−i
≤ 1

i!

(
1− 1

n

)n−i
≈ 1

i!e

What about RLS?

Expectation: E[X] = 1

P(1-bitflip) = 1

What about initialisation?

How many one-bits in expectation after initialisation?

E[X] = n · 1/2 = n/2

How likely is it that we get exactly n/2 one-bits?

Pr(X = n/2) =

(
n

n/2

)
1

nn/2

(
1− 1

n

)n/2(
n = 100, P r(X = 50) ≈ 0.0796

)

Tail Inequalities help us!
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Tail Inequalities

Given a random variable X it may assume values that are considerably larger or
lower than its expectation;

Tail inequalities:

The expectation can often be estimate easily;

We would like to know the probability of deviating far from the
expectation i.e., the “tails” of the distribution

Tail inequalities give bounds on the tails given the expectation.
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Markov’s inequality

Markov Inequality

The fundamental inequality from which many others are derived.

Definition (Markov’s Inequality)

Let X be a random variable assuming only non-negative values, and E[X] its
expectation. Then for all t ∈ R+,

Pr[X ≥ t] ≤ E[X]

t
.

E[X] = 1; then: Pr[X ≥ 2] ≤ E[X]
2
≤ 1

2
(Number of bits that flip)

E[X] = n/2; then Pr[X ≥ (2/3)n] ≤ E[X]
(2/3)n

= n/2
(2/3)n

= 3
4

(Number of one-bits after initialisation)

Markov’s inequality is often used iteratively in repeated phases to obtain
stronger bounds!
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Chernoff bounds

Chernoff Bounds

Let X1, X2, . . . Xn be independent Poisson trials each with probability pi;
For X =

∑n
i=1 Xi the expectation is E(X) =

∑n
i=1 pi.

Definition (Chernoff Bounds)

1 for 0 ≤ δ ≤ 1, Pr(X ≤ (1− δ)E[X]) ≤ e
−E[X]δ2

2 .

2 for δ > 0, Pr(X > (1 + δ)E[X]) ≤
[

eδ

(1+δ)1+δ

]E[X]

.

What is the probability that we have more than (2/3)n one-bits at
initialisation?

pi = 1/2, E[X] = n · 1/2 = n/2,
(we fix δ = 1/3→ (1 + δ)E[X] = (2/3)n); then:

Pr[X > (2/3)n] ≤
(

e1/3

(4/3)4/3

)n/2
= c−n/2
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Chernoff bounds

Chernoff Bound Simple Application

Bitstring of length n = 100

Pr(Xi) = 1/2 and E(X) = np = 100/2 = 50.
What is the probability to have at least 75 1-bits?

Markov: Pr(X ≥ 75) ≤ 50
75

= 2
3

Chernoff: Pr(X ≥ (1 + 1/2)50) ≤
(

√
e

(3/2)3/2

)50

< 0.0045

Truth: Pr(X ≥ 75) =
∑100
i=75

(
100
i

)
2−100 < 0.000000282
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Chernoff bounds

OneMax

OneMax (x)=
∑n
i=1 x[i])

ones(x)

f(x)

1

1

2

2

n

n
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RLS for OneMax ( OneMax (x)=
∑n

i=1 x[i])

0 1 2 3 4 5

0 0 0 0 0 0 p0 = 6
6

E(T0) = 6
6

50 1 2 3 4 5

0 0 0 0 0 0 p0 = 6
6

E(T0) = 6
6

0 1 2 3 4 5

0 0 0 0 0 1 p0 = 6
6

E(T0) = 6
6

0 1 2 3 4 5

0 0 0 0 0 1 p0 = 6
6

E(T0) = 6
6

20 1 2 3 4 5

0 0 0 0 0 1 p1 = 5
6

E(T1) = 6
5

0 1 2 3 4 5

0 0 1 0 0 1 p1 = 5
6

E(T1) = 6
5

0 1 2 3 4 5

0 0 1 0 0 1 p1 = 5
6

E(T1) = 6
5

00 1 2 3 4 5

0 0 1 0 0 1 p2 = 4
6

E(T2) = 6
4

0 1 2 3 4 5

1 0 1 0 0 1 p2 = 4
6

E(T2) = 6
4

0 1 2 3 4 5

1 0 1 0 0 1 p2 = 4
6

E(T2) = 6
4

50 1 2 3 4 5

1 0 1 0 0 1 p3 = 3
6

E(T0) = 6
3

0 1 2 3 4 5

1 0 1 0 0 0 p3 = 3
6

E(T3) = 6
3

0 1 2 3 4 5

1 0 1 0 0 1 p2 = 4
6

E(T2) = 6
4

40 1 2 3 4 5

1 0 1 0 0 1 p3 = 3
6

E(T3) = 6
3

0 1 2 3 4 5

1 0 1 0 1 1 p3 = 3
6

E(T3) = 6
3

0 1 2 3 4 5

1 0 1 0 1 1 p3 = 3
6

E(T3) = 6
3

10 1 2 3 4 5

1 0 1 0 1 1 p4 = 2
6

E(T4) = 6
2

0 1 2 3 4 5

1 1 1 0 1 1 p4 = 2
6

E(T4) = 6
2

0 1 2 3 4 5

1 1 1 0 1 1 p4 = 2
6

E(T4) = 6
2

30 1 2 3 4 5

1 1 1 0 1 1 p5 = 1
6

E(T5) = 6
1

0 1 2 3 4 5

1 1 1 1 1 1 p5 = 1
6

E(T5) = 6
1

E(T ) = E(T0) + E(T1) + · · ·+ E(T5) = 1/p0 + 1/p1 + · · ·+ 1/p5 =

=

5∑
i=0

1

pi
=

5∑
i=0

6

i
= 6

6∑
i=1

1

i
= 6 · 2.45 = 14.7
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RLS for OneMax ( OneMax (x)=
∑n

i=1 x[i]) : Generalisation

0 1 2 3 n
0 0 0 0 0 0 0 0 0 0 p0 = n

n
E(T0) = n

n

0 1 2 3 5 n
0 0 0 0 0 0 0 0 0 0 p0 = n

n
E(T0) = n

n

0 1 2 3 n
0 0 0 0 0 1 0 0 0 0 p0 = n

n
E(T0) = n

n

0 1 2 3 n
0 0 0 0 0 1 0 0 0 0 p0 = n

n
E(T0) = n

n

20 1 2 3 n
0 0 0 0 0 1 0 0 0 0 p1 = n−1

n
E(T1) = n

n−1

0 1 2 3 n
0 0 1 0 0 1 0 0 0 0 p1 = n−1

n
E(T1) = n

n−1

0 1 2 3 n
0 0 1 0 0 1 0 0 0 0 p1 = n−1

n
E(T1) = n

n−1

n0 1 2 3

0 0 1 0 0 1 0 0 0 0 p2 = n−2
n

E(T2) = n
n−2

0 1 2 3 n
0 0 1 0 0 1 0 0 0 1 p2 = n−2

n
E(T2) = n

n−2

0 1 2 3 n
1 1 1 1 0 1 1 1 1 1 pn−1 = 1

n
E(Tn−1) = n

1

40 1 2 3 n
1 1 1 1 0 1 1 1 1 1 pn−1 = 1

n
E(Tn−1) = n

1

0 1 2 3 n
1 1 1 1 1 1 1 1 1 1 pn−1 = 1

n
E(Tn−1) = n

1

E(T ) = E(T0) + E(T1) + · · ·+ E(Tn−1) = 1/p1 + 1/p2 + · · ·+ 1/pn−1 =

=

n−1∑
i=0

1

pi
=

n∑
i=1

n

i
= n

n∑
i=1

1

i
= n ·H(n) = n logn+ Θ(n) = O(n logn)
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Coupon collector’s problem

Coupon collector’s problem

The Coupon collector’s problem
There are n types of coupons and at each trial one coupon is chosen at random.
Each coupon has the same probability of being extracted. The goal is to find
the exact number of trials before the collector has obtained all the n coupons.

Theorem (The coupon collector’s Theorem)

Let T be the time for all the n coupons to be collected. Then

E(T ) =

n−1∑
i=0

1

pi+1
=

n−1∑
i=0

n

n− i = n

n−1∑
i=0

1

i
=

= n(logn+ Θ(1)) = n logn+O(n).
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Coupon collector’s problem

Coupon collector’s problem: Upper bound on time

What is the probability that the time to collect n coupons is greater than
n lnn+O(n)?

Theorem (Coupon collector upper bound on time)

Let T be the time for all the n coupons to be collected. Then

Pr(T ≥ (1 + ε)n lnn) ≤ n−ε

Proof

1
n

Probability of choosing a given coupon
1− 1

n
Probability of not choosing a given coupon(

1− 1
n

)t
Probability of not choosing a given coupon for t rounds

The probability that one of the n coupons is not chosen in t rounds is less than

n ·
(

1− 1
n

)t
(Union Bound)

Hence, for t = cn lnn

Pr(T ≥ cn lnn) ≤ n
(
1− 1/n)cn lnn ≤ n · e−c lnn = n · n−c = n−c+1
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Coupon collector’s problem

Coupon collector’s problem: lower bound on time

What is the probability that the time to collect n coupons is less than
n lnn+O(n)?

Theorem (Coupon collector lower bound on time (Doerr, 2011))

Let T be the time for all the n coupons to be collected. Then for all ε > 0

Pr(T < (1− ε)(n− 1) lnn) ≤ exp(−nε)

Corollary

The expected time for RLS to optimise OneMax is Θ(n lnn). Furthermore,

Pr(T ≥ (1 + ε)n lnn) ≤ n−ε

and
Pr(T < (1− ε)(n− 1) lnn) ≤ exp(−nε)

What about the (1+1)-EA?
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AFL method for upper bounds

Artificial Fitness Levels [Droste et al., 2002]

Observation Due to elitism, fitness is monotone increasing

Idea Divide the search space |S| = 2n into m < 2n sets A1, . . . Am such
that:

1 ∀i 6= j : Ai ∩Aj = ∅
2
⋃m
i=0 Ai = {0, 1}n

3 for all points a ∈ Ai and b ∈ Aj it happens that f(a) < f(b) if i < j.

requirement Am contains only optimal search points.

Then:
pi probability that point in Ai is mutated to a point in Aj with j > i.

Expected time: E(T ) ≤
∑
i

1
pi

Very simple, yet often powerful method for upper bounds
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AFL method for upper bounds

Artificial Fitness Levels

D. Sudholt, Tutorial 2011

Let:

p(Ai) be the probability that a random initial point belongs to level Ai

si be the probability to leave level Ai for Aj with j > i

Then:

E(T ) ≤
∑

1≤i≤m−1

p(Ai) ·
(

1

si
+ · · ·+ 1

sm−1

)
≤
(

1

s1
+ · · ·+ 1

sm−1

)
=

m−1∑
i=1

1

si

Inequality 1: Law of total probability
(
E(T ) =

∑
i Pr(F ) · E(T |F )

)
Inequality 2: Trivial!
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AFL method for upper bounds

(1+1)-EA for OneMax

Theorem

The expected runtime of the (1+1)-EA for OneMax is O(n lnn).

Proof

The current solution is in level Ai if it has i zeroes (hence n− i ones)

To reach a higher fitness level it is sufficient to flip a zero into a one and
leave the other bits unchanged, which occurs with probability

si ≥ i ·
1

n

(
1− 1

n

)n−1

≥ i

en

Then
(

Artificial Fitness Levels
)
:

E(T ) ≤
m−1∑
i=1

s−1
i ≤

n∑
i=1

en

i
≤ e · n

m−1∑
i=1

1

i
≤ e · n · (lnn+ 1) = O(n lnn)

Is the (1+1)-EA quicker than n lnn?
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AFL method for upper bounds

(1+1)-EA lower bound for OneMax

Theorem (Droste,Jansen,Wegener, 2002)

The expected runtime of the (1+1)-EA for OneMax is Ω(n lnn).

Proof Idea

1 At most n/2 one-bits are created during initialisation with probability at
least 1/2 (By symmetry of the binomial distribution).

2 There is a constant probability that in cn lnn steps one of the n/2
remaining zero-bits does not flip.
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AFL method for upper bounds

Lower bound for OneMax

Theorem (Droste,Jansen,Wegener, 2002)

The expected runtime of the (1+1)-EA for OneMax is Ω(n logn).

Proof of 2.
1− 1/n a given bit does not flip
(1− 1/n)t a given bit does not flip in t steps
1− (1− 1/n)t it flips at least once in t steps

(1− (1− 1/n)t)n/2 n/2 bits flip at least once in t steps

1− [1− (1− 1/n)t]n/2 at least one of the n/2 bits does not flip in t steps

Set t = (n− 1) logn. Then:

1− [1− (1− 1/n)t]n/2 = 1− [1− (1− 1/n)(n−1) logn]n/2 ≥

≥ 1− [1− (1/e)logn]n/2 = 1− [1− 1/n]n/2 =

= 1− [1− 1/n]n·1/2 ≥ 1− (2e)−1/2 = c
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AFL method for upper bounds

Lower bound for OneMax (2)

Theorem (Droste, Jansen, Wegener, 2002)

The expected runtime of the (1+1)-EA for OneMax is Ω(n logn).

Proof

1 At most n/2 one-bits are created during initialisation with probability at
least 1/2 (By symmetry of the binomial distribution).

2 There is a constant probability that in cn logn steps one of the n/2
remaining zero-bits does not flip.

The Expected runtime is:

E[T ] =

∞∑
t=1

t · p(t) ≥ [(n− 1) logn] · p[t = (n− 1) logn] ≥

≥ [(n− 1) logn] · [(1/2) · (1− (2e)−1/2) = Ω(n logn)

First inequality: law of total probability

The upper bound given by artificial fitness levels is indeed tight!
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AFL method for upper bounds

Artificial Fitness Levels Exercises:

(
LeadingOnes(x) =

∑n
i=1

∏i
j=1 x[j]

)

Theorem

The expected runtime of RLS for LeadingOnes is O(n2).

Proof

Let partition Ai contain search points with exactly i leading ones

To leave level Ai it suffices to flip the zero at position i+ 1

si = 1
n

and s−1
i = n

E(T ) ≤
∑n−1
i=1 s

−1
i =

∑n
i=1 n = O(n2)

Theorem

The expected runtime of the (1+1)-EA for LeadingOnes is O(n2).

Proof Left as Exercise.
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AFL method for upper bounds

Fitness Levels Advanced Exercises (Populations)

Theorem

The expected runtime of (1+λ)-EA for LeadingOnes is O(λn+ n2)
[Jansen et al., 2005].

Proof

Let partition Ai contain search points with exactly i leading ones

To leave level Ai it suffices to flip the zero at position i+ 1

si = 1−
(

1− 1
en

)λ
≥ 1− e−λ/(en)

1 si ≥ 1− 1
e

Case 1: λ ≥ en
2 si ≥ λ

2en
Case 2: λ < en

E(T ) ≤ λ ·
∑n−1
i=1 s

−1
i ≤ λ

((∑n
i=1

1
c

)
+

(∑n
i=1

2en
λ

))
=

O

(
λ ·
(
n+ n2

λ

))
= O(λ · n+ n2)

Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL method for upper bounds

Fitness Levels Advanced Exercises (Populations)

Theorem

The expected runtime of the (µ+1)-EA for LeadingOnes is O(µ · n2).

Proof Left as Exercise.

Theorem

The expected runtime of the (µ+1)-EA for OneMax is O(µ · n logn).

Proof Left as Exercise.
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AFL method for parent populations

Artificial Fitness Levels for Populations

D. Sudholt, Tutorial 2011

Let:

To be the expected time for a fraction χ(i) of the population to be in level
Ai

si be the probability to leave level Ai for Aj with j > i given χ(i) in level
Ai

Then:

E(T ) ≤
m−1∑
i=1

(
1

si
+ To

)
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AFL method for parent populations

Applications to (µ+1)-EA

Theorem

The expected runtime of (µ+1)-EA for LeadingOnes is O(µn logn+ n2)
[Witt, 2006].

Proof
Let partition Ai contain search points with exactly i leading ones
To leave level Ai it suffices to flip the zero at position i+ 1 of the best
individual
We set χ(i) = n/ lnn
Given j copies of the best individual another replica is created with

probability j
µ

(
1− 1

n

)n
≥ j

2eµ

To ≤
∑n/ lnn
j=1

2eµ
j

= 2eµ lnn

1 si ≥ n/ lnn
µ
· 1
en

= 1
eµ lnn

Case 1: µ > n
lnn

2 si ≥ n/ lnn
µ
· 1
en
≥ 1

en
Case 2: µ ≤ n

lnn

E(T ) ≤
∑n−1
i=1 (To + s−1

i ) ≤
∑n
i=1

(
2eµ lnn+

(
en+ eµ lnn

))
=

n ·
(

2eµ lnn+
(
en+ eµ lnn

))
= O(nµ lnn+ n2)
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AFL method for parent populations

Populations Fitness Levels: Exercise

Theorem

The expected runtime of the (µ+1)-EA for OneMax is O(µn+ n logn).

Proof Left as Exercise.
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AFL for non-elitist EAs

Advanced: Fitness Levels for non-Elitist Populations [Lehre, 2011]

Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for lower bounds

Advanced: Fitness Levels for Lower Bounds [Sudholt, 2010]

ui := probability to leave level Ai;
γi,j := probability of jumping from Ai to Aj .
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AFL for lower bounds

Artificial Fitness Levels: Conclusions

It’s a powerful general method to obtain (often) tight upper bounds on
the runtime of simple EAs;

For offspring populations tight bounds can often be achieved with the
general method;

For parent populations takeover times have to be introduced;

Recent methods have been presented to deal with non-elitism and for
lower bounds.
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Drift Analysis: Example 1

Friday night dinner at the restaurant.
Peter walks back from the restaurant to the hotel.

The restaurant is n meters away from the hotel;

Peter moves towards the hotel of 1 meter in each step

Question
How many steps does Peter need to reach his hotel?
n steps
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Drift Analysis: Formalisation

Define a distance function d(x) to measure the distance from the hotel;

d(x) = x, x ∈ {0, . . . , n}

(In our case the distance is simply the number of metres from the hotel).

Estimate the expected “speed” (drift), the expected decrease in distance
in one step from the goal;

d(Xt)− d(Xt+1) =

{
0, if Xt = 0,

1, if Xt ∈ {1, . . . , n}

Time
Then the expected time to reach the hotel (goal) is:

E(T ) =
maximum distance

drift
=
n

1
= n
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Drift Analysis: Example 2

Friday night dinner at the restaurant.
Peter walks back from the restaurant to the hotel but had a few drinks.

The restaurant is n meters away from the hotel;

Peter moves towards the hotel of 1 meter in each step with probability 0.6.

Peter moves away from the hotel of 1 meter in each step with probability
0.4.

Question
How many steps does Peter need to reach his hotel?
5n steps
Let us calculate this through drift analysis.



Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Drift Analysis (2): Formalisation

Define the same distance function d(x) as before to measure the distance
from the hotel;

d(x) = x, x ∈ {0, . . . , n}

(simply the number of metres from the hotel).

Estimate the expected “speed” (drift), the expected decrease in distance
in one step from the goal;

d(Xt)− d(Xt+1) =


0, if Xt = 0,

1, if Xt ∈ {1, . . . , n}with probability 0.6

−1, if Xt ∈ {1, . . . , n}with probability 0.4

The expected dicrease in distance (drift) is:

E[d(Xt)− d(Xt+1)] = 0.6 · 1 + 0.4 · (−1) = 0.6− 0.4 = 0.2

Time
Then the expected time to reach the hotel (goal) is:

E(T ) =
maximum distance

drift
=

n

0.2
= 5n
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Additive Drift Theorem

Additive Drift Theorem

Theorem (Additive Drift Theorem for Upper Bounds [He and Yao, 2001])

Let {Xt}t≥0 be a Markov process over a set of states S, and d : S → R+
0 a

function that assigns a non-negative real number to every state. Let the time
to reach the optimum be T := min{t ≥ 0 : d(Xt) = 0}. If there exists δ > 0
such that at any time step t ≥ 0 and at any state Xt > 0 the following
condition holds:

E(∆(t)|d(Xt) > 0) = E(d(Xt)− d(Xt+1) | d(Xt) > 0) ≥ δ (1)

then

E(T | d(X0) > 0) ≤ d(X0)

δ
(2)

and

E(T ) ≤ E(d(X0))

δ
. (3)
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Additive Drift Theorem

Drift Analysis for Leading Ones

Theorem

The expected time for the (1+1)-EA to optimise LeadingOnes is O(n2)

Proof

1 Let d(Xt) = i where i is the number of missing leading ones;

2 The negative drift is 0 since if a leading one is removed from the current
solution the new point will not be accepted;

3 A positive drift (i.e. of length 1) is achieved as long as the first 0 is flipped
and the leading ones are remained unchanged:

E(∆+(t)) =

n−i∑
k=1

k · (p(∆+(t)) = k) ≥ 1 · 1/n ·
(
1− 1/n)n−1 ≥ 1/(en)

4 Hence, E[∆(t)|d(Xt)] ≥ 1/(en) = δ

5 The expected runtime is (i.e. Eq. (6)):

E(T | d(X0) > 0) ≤ d(X0)

δ
≤ n

1/(en)
= e · n2 = O(n2)
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Additive Drift Theorem

Exercises

Theorem

The expected time for RLS to optimise LeadingOnes is O(n2)

Proof Left as exercise.

Theorem

Let λ ≥ en. Then the expected time for the (1+λ)-EA to optimise
LeadingOnes is O(λn)

Proof Left as exercise.

Theorem

Let λ < en. Then the expected time for the (1+λ)-EA to optimise
LeadingOnes is O(n2)

Proof Left as exercise.
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Additive Drift Theorem

(1,λ)-EA Analysis for LeadingOnes

Theorem

Let λ = n. Then the expected time for the (1,λ)-EA to optimise
LeadingOnes is O(n2)

Proof

Distance: let d(x) = n− i where i is the number of leading ones;

Drift:

E[d(Xt)− d(Xt+1)|d(Xt) = n− i]

≥ 1 ·
(

1−
(

1− 1

en

)n)
− n ·

(
1−

(
1− 1

n

)n)n
= c1 − n · cn2 = Ω(1)

Hence,

E(generations) ≤ max distance

drift
=

n

Ω(1)
= O(n)

and,
E(T ) ≤ n · E(generations) = O(n2)
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Additive Drift Theorem

Additive Drift Theorem

Theorem (Additive Drift Theorem for Lower Bounds [He and Yao, 2004])

Let {Xt}t≥0 be a Markov process over a set of states S, and d : S → R+
0 a

function that assigns a non-negative real number to every state. Let the time
to reach the optimum be T := min{t ≥ 0 : d(Xt) = 0}. If there exists δ > 0
such that at any time step t ≥ 0 and at any state Xt > 0 the following
condition holds:

E(∆(t)|d(Xt) > 0) = E(d(Xt)− d(Xt+1) | d(Xt) > 0) ≤ δ (4)

then

E(T | X0 > 0) ≥ d(X0)

δ
(5)

and

E(T ) ≥ E(d(X0))

δ
. (6)
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Additive Drift Theorem

Theorem

The expected time for the (1+1)-EA to optimise LeadingOnes is Ω(n2).

Sources of progress

1 Flipping the leftmost zero-bit;

2 Bits to right of the leftmost zero-bit that are one-bits (free riders).

Proof

1 Let the current solution have n− i leading ones (i.e. 1n−i0∗).

2 We define the distance function as the number of missing leading ones, i.e.
d(X) = i.

3 The n− i+ 1 bit is a zero;

4 let E[Y ] be the expected number of one-bits after the first zero (i.e. the
free riders).

5 Such i− 1 bits are uniformely distributed at initialisation and still are!
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Additive Drift Theorem

Drift Theorem for LeadingOnes (lower bound)

Theorem

The expected time for the (1+1)-EA to optimise LeadingOnes is Ω(n2).

The expected number of free riders is:

E[Y ] =

i−1∑
k=1

k · Pr(Y = k) =

i−1∑
k=1

Pr(Y ≥ k) =

i−1∑
k=1

(1/2)k ≤ 1

The negative drift is 0;

Let p(A) be the probability that the first zero-bit flips into a one-bit.

The positive drift (i.e. the decrease in distance) is bounded as follows:

E(∆+(t)) ≤ p(A) · E[∆+(t)|A] = 1/n · (1 + E[Y ]) ≤ 2/n = δ

Since, also at initialisation the expected number of free riders is less than
1, it follows that E[d(X0)] ≥ n− 1,

By applying the Drift Theorem we get

E(T ) ≥ E(d(X0)

δ
=
n− 1

2/n
= Ω(n2)
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Multiplicative Drift Theorem

Drift Analysis for OneMax

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.

1 Let d(Xt) = i where i is the number of zeroes in the bitstring;

2 The negative drift is 0 since solution with less one-bits will not be
accepted;

3 A positive drift is achieved as long as a 0 is flipped and the ones remain
unchanged:

E(∆(t)) = E[d(Xt)−d(Xt+1)|d(Xt) = i] ≥ 1· i
n

(
1− 1

n

)n−1

≥ i

en
≥ 1

en
:= δ

4 The expected initial distance is E(d(X0)) = n/2

The expected runtime is (i.e. Eq. (6)):

E(T | d(X0) > 0) ≤ E[(d(X0)]

δ
≤ n/2

1/(en)
= e/2 · n2 = O(n2)

We need a different distance function!
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Multiplicative Drift Theorem

Drift Analysis for OneMax

1 Let g(Xt) = ln(i+ 1) where i is the number of zeroes in the bitstring;

2 For x ≥ 1, it holds that ln(1 + 1/x) ≥ 1/x− 1/(2x2) ≥ 1/(2x);

3 The distance decreases as long as a 0 is flipped and the ones remain
unchanged:

E(∆(t)) = E[d(Xt)− d(Xt+1)|d(Xt) = i ≥ 1]

≥ i

en

(
ln(i+ 1)− ln(i)

)
=

i

en
ln

(
1 +

1

i

)
≥ i

en

1

2i
=

1

2en
:= δ

4 The initial distance is d(X0) ≤ ln(n+ 1)

The expected runtime is (i.e. Eq. (6)):

E(T | d(X0) > 0) ≤ d(X0)

δ
≤ ln(n+ 1)

1/(2en)
= O(n lnn)

If the amount of progress depends on the distance from the optimum we need
to use a logarithmic distance!
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Multiplicative Drift Theorem

Multiplicative Drift Theorem

Theorem (Multiplicative Drift, [Doerr et al., 2010])

Let {Xt}t∈N0 be random variables describing a Markov process over a finite
state space S ⊆ R. Let T be the random variable that denotes the earliest
point in time t ∈ N0 such that Xt = 0.
If there exist δ, cmin, cmax > 0 such that

1 E[Xt −Xt+1 | Xt] ≥ δXt and

2 cmin ≤ Xt ≤ cmax,

for all t < T , then

E[T ] ≤ 2

δ
· ln
(

1 +
cmax

cmin

)
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Multiplicative Drift Theorem

(1+1)-EA Analysis for OneMax

Theorem

The expected time for the (1+1)-EA to optimise OneMax is O(n lnn)

Proof

Distance: let Xt be the number of zeroes at time step t;

E[Xt+1|Xt] ≤ Xt − 1 · Xt
en

= Xt ·
(
1− 1

en

)
E[Xt −Xt+1|Xt] ≤ Xt −Xt ·

(
1− 1

en

)
= Xt

en
(δ = 1

en
)

1 = cmin ≤ Xt ≤ cmax = n

Hence,

E[T ] ≤ 2

δ
· ln
(

1 +
cmax

cmin

)
= 2en ln(1 + n) = O(n lnn)
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Multiplicative Drift Theorem

Exercises

Theorem

The expected time for RLS to optimise OneMax is O(n logn)

Proof Left as exercise.

Theorem

Let λ ≥ en. Then the expected time for the (1+λ)-EA to optimise OneMax
is O(λn)

Proof Left as exercise.

Theorem

Let λ < en. Then the expected time for the (1+λ)-EA to optimise OneMax
is O(n logn)

Proof Left as exercise.
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Simplified Negative Drift Theorem

Drift Analysis: Example 3

Friday night dinner at the restaurant.
Peter walks back from the restaurant to the hotel but had too many drinks.

The restaurant is n meters away from the hotel;

Peter moves towards the hotel of 1 meter in each step with probability 0.4.

Peter moves away from the hotel of 1 meter in each step with probability
0.6.

Question
How many steps does Peter need to reach his hotel?
at least 2cn steps with overwhelming probability (exponential time)
We need Negative-Drift Analysis.
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Simplified Negative Drift Theorem

Simplified Drift Theorem

target
a b

drift away from target

no large jumps
towards target

start

Theorem (Simplified Negative-Drift Theorem, [Oliveto and Witt, 2011])

Suppose there exist three constants δ,ε,r such that for all t ≥ 0:

1 E(∆t(i)) ≥ ε for a < i < b,

2 Prob(|∆t(i)| = −j) ≤ 1
(1+δ)j−r for i > a and j ≥ 1.

Then
Prob(T ∗ ≤ 2c

∗(b−a)) = 2−Ω(b−a)

.
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Simplified Negative Drift Theorem

Negative-Drift Analysis: Example (3)

Define the same distance function d(x) = x, x ∈ {0, . . . , n} (metres from
the hotel) (b=n-1, a=1).
Estimate the increase in distance from the goal (negative drift);

d(Xt)− d(Xt+1) =


0, if Xt = 0,

1, if Xt ∈ {1, . . . , n}with probability 0.6

−1, if Xt ∈ {1, . . . , n}with probability 0.4

The expected increase in distance (negative drift) is: (Condition 1)

E[d(Xt)− d(Xt+1)] = 0.6 · 1 + 0.4 · (−1) = 0.6− 0.4 = 0.2

Probability of jumps (i.e. Prob(∆t(i) = −j) ≤ 1
(1+δ)j−r ) (set

δ = r = 1) (Condition 2):

Pr(∆t(i) = −j) =

{
0 < (1/2)j−1, if j > 1,

0.6 < (1/2)0 = 1, if j = 1

Then the expected time to reach the hotel (goal) is:

Pr(T ≤ 2c(b−a)) = Pr(T ≤ 2c(n−2)) = 2−Ω(n)
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Simplified Negative Drift Theorem

Needle in a Haystack

Theorem (Oliveto,Witt, Algorithmica 2011)

Let η > 0 be constant. Then there is a constant c > 0 such that with
probability 1− 2−Ω(n) the (1+1)-EA on Needle creates only search points
with at most n/2 + ηn ones in 2cn steps.

Proof Idea

By Chernoff bounds the probability that the initial bit string has less than
n/2− γn zeroes is e−Ω(n).

we set b := n/2− γn and a := n/2− 2γn where γ := η/2;

Proof of Condition 1

E(∆(i)) =
n− i
n
− i

n
=

n− 2i

n
≥ 2γ = ε

Proof of Condition 2

Prob(|∆(i)| ≤ −j) ≤

(
n

j

)(
1

n

)j
≤ nj

j!

(
1

n

)j
1

j!
≤
(

1

2

)j−1

This proves Condition 2 by setting δ = r = 1.
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Simplified Negative Drift Theorem

Exercise: Trap Functions

Trap(x) =

{
n+ 1 if x = 0n

OneMax(x) otherwise.

0 ones(x)

f(x)

3

3

2

2

n

n
n+ 1

1

1

Theorem

With overwhelming probability at least 1− 2−Ω(n) the (1+1)-EA requires 2Ω(n)

steps to optimise Trap .

Proof Left as exercise.
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Simplified Negative Drift Theorem

Drift Analysis Conclusion

Overview

Additive Drift Analysis (upper and lower bounds);

Multiplicative Drift Analysis;

Simplified Negative-Drift Theorem;

Advanced Lower bound Drift Techniques

Drift Analysis for Stochastic Populations (mutation) [Lehre, 2010];

Simplified Drift Theorem combined with bandwidth analysis (mutation +
crossover stochastic populations = GAs) [Oliveto and Witt, 2012];
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Overview

Final Overview

Overview

Basic Probability Theory

Tail Inequalities

Artificial Fitness Levels

Drift Analysis

Other Techniques (Not covered)

Family Trees [Witt, 2006]

Gambler’s Ruin & Martingales [Jansen and Wegener, 2001]
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State-of-the-art

State of the Art in Computational Complexity of RSHs

OneMax (1+1) EA O(n logn)
(1+λ) EA O(λn + n logn)
(µ+1) EA O(µn + n logn)

1-ANT O(n2) w.h.p.
(µ+1) IA O(µn + n logn)

Linear Functions (1+1) EA Θ(n logn)

cGA Θ(n2+ε), ε > 0 const.

Max. Matching (1+1) EA eΩ(n) , PRAS

Sorting (1+1) EA Θ(n2 logn)

SS Shortest Path (1+1) EA O(n3 log(nwmax))

MO (1+1) EA O(n3)

MST (1+1) EA Θ(m2 log(nwmax))
(1+λ) EA O(n log(nwmax))
1-ANT O(mn log(nwmax))

Max. Clique (1+1) EA Θ(n5)

(rand. planar) (16n+1) RLS Θ(n5/3)

Eulerian Cycle (1+1) EA Θ(m2 logm)
Partition (1+1) EA 4/3 approx., competitive avg.

Vertex Cover (1+1) EA eΩ(n) , arb. bad approx.

Set Cover (1+1) EA eΩ(n) , arb. bad approx.
SEMO Pol. O(logn)-approx.

Intersection of (1+1) EA 1/p-approximation in

p ≥ 3 matroids O(|E|p+2 log(|E|wmax))

UIO/FSM conf. (1+1) EA eΩ(n)

See [Oliveto et al., 2007] for an overview.

P. K. Lehre, 2008

Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Further reading

Further Reading

[Neumann and Witt, 2010, Auger and Doerr, 2011, Jansen, 2013]
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