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Everyday millions of credit card transactions are processed by 
automatic systems that are in charge of authorizing, analyzing and 
eventually detect frauds

Fraud Detection
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Everyday millions of credit card transactions are processed by 
automatic systems that are in charge of authorizing, analyzing and 
eventually detect frauds

Fraud detection is performed by a classifier that associates to each 
transaction a label «genuine» or «fraudulent»

Challenging classification problem because of

 High dimensional data (given the amount of supervised samples)

 Class unbalance

 A massive amount of transactions coming in a stream

 Concept drift: new fraudulent strategies appear over time

 Concept drift: genuine transactions evolves over time

Concept drift “changes the problem” the classifier has to address



Learning problems related to predicting user preferences / 
interests, such as:

 Recommendation systems 

 Spam / email filtering

..when the user change his/her own preferences, the classification 
problem changes

Spam Classification



Concept Drift often occurs in prediction problems like :

 Financial markets analysis

 Environmental monitoring

 Critical infrastructure monitoring / management 

where data are often in a form of time-series and the data-generating 
process typically evolves over time.

Financial Markets



In all application scenarios where 

 data-driven models are used 

 the data-generating process might evolve over time

 data come in the form of stream 

The data-driven model should adapt to preserve its performance in 
case of Concept Drift (CD)



This tutorial focuses on:

 methodologies and algorithms for adapting data-driven models to 
Concept Drift (i.e. in Nonstationary Environments)

 learning aspects, while change/outlier/anomaly detection algorithms 
are not discussed

 classification as an example of supervised learning problem. 
Regression problems are not considered here even though similar issues 
applies

 the most important approaches/frameworks that can be implemented 
using any classifier, rather than solutions for specific classifiers

 illustrations typically refer to scalar and numerical data, even though 
methodologies often apply to multivariate and numerical or 
categorical data as well



The tutorial is far from being exhaustive… please have a look at the 
very good surveys below
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The tutorial is far from being exhaustive… please have a look at the 
very good surveys below

The tutorial will be unbalanced towards active methods but 

 passive methods are very popular

 this is because of time limitation and a biased perspective (from my 
research activity)



The tutorial is far from being exhaustive… please have a look at the 
very good surveys below

We hope this tutorial will help researcher from other disciplines to 
familiarize with the problem and possibly contribute to the 
development of this research filed

Let’s try to make this tutorial as interactive as possible



 Problem Statement

 Drift taxonomy

 The issue

 Active Approaches

 CD detection monitoring classification error

 CD detection monitoring raw data

 JIT classifiers

 Window comparison methods

 Passive Approaches

 Single model methods

 Ensemble methods

 Initially labelled environments

 Datasets and Codes

 Concluding Remarks and Research Perspectives



Learning in Nonstationary (Streaming) 
Environments



The problem: classification over a potentially infinitely long stream 
of data 

𝑋 = {𝒙𝟎, 𝒙𝟏, … , }

Data-generating process 𝒳 generates tuples 𝒙𝑡 , 𝑦𝑡 ∼ 𝒳

 𝒙𝑡 is the observation at time 𝑡 (e.g., 𝒙𝑡 ∈ ℝ𝑑 )

 𝑦𝑡 is the associated label which is (often) unknown (𝑦𝑡 ∈ Λ )



The problem: classification over a potentially infinitely long stream 
of data 

𝑋 = {𝒙𝟎, 𝒙𝟏, … , }

Data-generating process 𝒳 generates tuples 𝒙𝑡 , 𝑦𝑡 ∼ 𝒳

 𝒙𝑡 is the observation at time 𝑡 (e.g., 𝒙𝑡 ∈ ℝ𝑑 )

 𝑦𝑡 is the associated label which is (often) unknown (𝑦𝑡 ∈ Λ )

The task: learn an adaptive classifier 𝐾𝑡 to predict labels

 𝑦𝑡 = 𝐾𝑡 𝒙𝑡

in an online manner having a low classification error, 

𝑝 𝑇 =
1

𝑇
 

𝑡=1

𝑇

𝑒𝑡 , where 𝑒𝑡 =  
0, if  𝑦𝑡 = 𝑦𝑡
1, if  𝑦𝑡 ≠ 𝑦𝑡



Typically, one assumes

 Independent and identically distributed (i.i.d.) inputs

𝒙𝒕, 𝑦𝑡 ∼ 𝜙 𝒙, 𝑦

 a training set is provided 𝑇𝑅 = 𝒙0, 𝑦0 , … , 𝒙𝑛, 𝑦𝑛

An initial training set 𝑇𝑅 is provided for learning 𝐾0

 𝑇𝑅 contains data generated in stationary conditions

A stationary condition of 𝓧 is also denoted concept



Unfortunately, in the real world, datastream 𝒳 might change 
unpredictably during operation. From time 𝑡 onward

𝒙𝒕, 𝑦𝑡 ∼ 𝜙𝑡 𝒙, 𝑦

We say that concept drift occurs at time 𝑡 if

𝜙𝑡 𝒙, 𝑦 ≠ 𝜙𝑡+1 𝒙, 𝑦

(we also say 𝒳 becomes  nonstationary)



We assume that few supervised samples are provided also during 
operations. These are necessary to:

 React/adapt to concept drift

 Increase classifier accuracy in stationary conditions

The classifier 𝐾0 is updated during operation, thus is denoted by 𝐾𝑡.





 Drift taxonomy according to two characteristics:

 What is changing? 

𝜙𝑡 𝒙, 𝑦 = 𝜙𝑡 𝑦|𝒙 𝜙𝑡 𝒙

 Drift might affect 𝜙𝑡 𝑦|𝒙 and/or 𝜙𝑡 𝒙

 Real 

 Virtual

 How does process change over time?

 Abrupt

 Gradual

 Incremental

 Recurring



Real Drift 

𝜙𝜏+1 𝑦 𝒙 ≠ 𝜙𝜏 𝑦 𝒙

affects 𝜙𝑡 𝑦|𝒙 while 𝜙𝑡 𝒙 – the distribution of unlabeled data – might
change or not.

𝜙𝜏+1 𝒙 ≠ 𝜙𝜏(𝒙)

𝑥

𝑡

class 1

class 2

𝑝0 𝑝1

𝜏



Real Drift 

𝜙𝜏+1 𝑦 𝒙 ≠ 𝜙𝜏 𝑦 𝒙

affects 𝜙𝑡 𝑦|𝒙 while 𝜙𝑡 𝒙 – the distribution of unlabeled data – might
change or not.

𝜙𝜏+1 𝒙 ≠ 𝜙𝜏(𝒙)



Real Drift 

𝜙𝜏+1 𝑦 𝒙 ≠ 𝜙𝜏 𝑦 𝒙

affects 𝜙𝑡 𝑦|𝒙 while 𝜙𝑡 𝒙 – the distribution of unlabeled data – might
change or not.

𝜙𝜏+1 𝒙 = 𝜙𝜏(𝒙)

E.g. changes in the "class function", classes swap

𝑥

𝑡

class 1

class 2

𝑝0 𝑝1

𝜏



Virtual Drift 

𝜙𝜏+1 𝑦 𝒙 = 𝜙𝜏 𝑦 𝒙 while 𝜙𝜏+1 𝒙 ≠ 𝜙𝜏 𝒙

affects only 𝜙𝑡 𝒙 and leaves the class posterior probability 
unchanged. 

These are not relevant from a predictive perspective, classifier 
accuracy is not affected 

𝑥

𝑡

class 1

class 2

𝑝0 𝑝1

𝜏



Virtual Drift 

𝜙𝜏+1 𝑦 𝒙 = 𝜙𝜏 𝑦 𝒙 while 𝜙𝜏+1 𝒙 ≠ 𝜙𝜏 𝒙

affects only 𝜙𝑡 𝒙 and leaves the class posterior probability 
unchanged. 



Abrupt 

𝜙𝑡 𝒙, 𝑦 =  
𝜙0 𝒙, 𝑦 𝑡 < 𝜏

𝜙1 𝒙, 𝑦 𝑡 ≥ 𝜏

Permanent shift in the state of 𝒳, e.g. a faulty sensor, or a system 
turned to an active state 

𝑥

𝑡

class 1

class 2

𝑝0 𝑝1

𝜏



Incremental

𝜙𝑡 𝒙, 𝑦 =  
𝜙0 𝒙, 𝑦 𝑡 < 𝜏

𝜙𝑡 𝒙, 𝑦 𝑡 ≥ 𝜏

There is a continuously drifting condition after the change that might
end up in another stationary state

𝑥

𝑡

class 1

class 2

𝑝0 𝑝𝑡

𝜏

𝑝1



Incremental

𝜙𝑡 𝒙, 𝑦 =  

𝜙0 𝒙, 𝑦 𝑡 < 𝜏0
𝜙𝑡 𝒙, 𝑦 𝜏0 ≤ 𝑡 < 𝜏1
𝜙1 𝒙, 𝑦 𝑡 ≥ 𝜏1

There is a continuously drifting condition after the change that might
end up in another stationary state

𝑥

𝑡

class 1

class 2

𝑝0 𝑝𝑡

𝜏0

𝑝1



Recurring

𝜙𝑡 𝒙, 𝑦 =

𝜙0 𝒙, 𝑦 𝑡 < 𝜏0
𝜙1 𝒙, 𝑦 𝜏0 ≤ 𝑡 < 𝜏1

…
𝜙0 𝒙, 𝑦 𝑡 ≥ 𝜏𝑛

After concept drift, it is possible that 𝒳 goes back in its initial 
conditions 𝜙0

𝑥

𝑡

class 1

class 2

𝑝0 𝑝1𝑝1 𝑝0

𝜏0



Gradual

𝜙𝑡 𝒙, 𝑦 =  
𝜙0 𝒙, 𝑦 𝑜𝑟 𝜙1 𝒙, 𝑦 𝑡 < 𝜏

𝜙1 𝒙, 𝑦 𝑡 ≥ 𝜏

The process definitively switches in the new conditions after having 
anticipated some short drifts

𝑥

class 1

class 2𝑝0 𝑝1𝑝1 𝑝1𝑝0 𝑝0

𝜏 𝑡





Consider as, an illustrative example, a simple 
1-dimensional classification problem, where 

 The initial part of the stream is provided for training 

 𝐾 is simply a threshold 

𝑥

𝑇𝑅
𝑡

class 1

class 2
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 The initial part of the stream is provided for training 
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𝑥

𝑡

class 1

class 2

𝑇𝑅



Consider as, an illustrative example, a simple 
1-dimensional classification problem, where 

 The initial part of the stream is provided for training 

 𝐾 is simply a threshold 

𝑥

𝑇𝑅
𝑡

(𝒙𝒕, 𝑦𝑡) are i.i.d.

class 1

class 2



Consider as, an illustrative example, a simple 
1-dimensional classification problem, where 

 The initial part of the stream is provided for training 

 𝐾 is simply a threshold 

As far as data are i.i.d., the classification error is controlled

𝑥

𝑡

(𝒙𝒕, 𝑦𝑡) are i.i.d.

class 1

class 2



Unfortunately, when concept drift occurs, and 𝜙 changes,

𝑥

𝑡

Concept drift(𝒙𝒕, 𝑦𝑡) are i.i.d.

class 1

class 2

𝜏



Unfortunately, when concept drift occurs, and 𝜙 changes,
things can be terribly worst.

class 1

class 2

𝑥

𝑡

Concept drift(𝒙𝒕, 𝑦𝑡) are i.i.d.

𝜏



Unfortunately, when concept drift occurs, and 𝜙 changes, 
things can be terribly worst, 
The average classification error 𝑝𝑡 typically increases 

class 1

class 2

𝑥

𝑡

Concept drift(𝒙𝒕, 𝑦𝑡) are i.i.d.

𝑝𝑡

𝜏

𝜏



Adaptation is needed to preserve classifier performance

𝑥

𝑡

Concept drift(𝒙𝒕, 𝑦𝑡) are i.i.d.

class 1

class 2

𝑒𝑡

𝜏

𝜏





Consider two simple adaptation strategies

 Continuously update 𝐾𝑡 using all supervised couples

 Train 𝐾𝑡 using only the last 𝛿 supervised couples



Consider two simple adaptation strategies

 Continuously update 𝐾𝑡 using all supervised couples

 Train 𝐾𝑡 using only the last 𝛿 supervised couples
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Classification error of two simple adaptation strategies

 Black dots: 𝐾𝑡 uses all supervised couples at time 𝑡

 Red line: 𝐾𝑡 uses only the last 𝛿 supervised couples
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Classification error of two simple adaptation strategies

 Black dots: 𝐾𝑡 uses all supervised couples at time 𝑡

 Red line: 𝐾𝑡 uses only the last 𝛿 supervised couples
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Classification error of two simple adaptation strategies

 Black dots: 𝐾𝑡 uses all supervised couples at time 𝑡

 Red line: 𝐾𝑡 uses only the last 𝛿 supervised couples
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Classification error of two simple adaptation strategies

 Black dots: 𝐾𝑡 uses all supervised couples at time 𝑡

 Red line: 𝐾𝑡 uses only the last 𝛿 supervised couples
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Two main solutions in the literature:

 Active: the classifier 𝐾𝑡 is combined with statistical tools to detect 
concept drift and pilot the adaptation

 Passive: the classifier 𝐾𝑡 undergoes continuous adaptation determining 
every time which supervised information to preserve

Which is best depends on the expected change rate and 
memory/computational availability
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Peculiarities:

 Relies on an explicit drift-detection mechanism, change detection tests 
(CDTs)

 Specific post-detection adaptation procedures to isolate recent data 
generated after the change

Pro:

 Also provide information that CD has occurred

 Can improve their performance in stationary conditions

 Alternatively, classifier adapts only after detection

Cons:

 Difficult to handle incremental and gradual drifts



The simplest approach consist in monitoring the classification error 
(or similar performance measure)

Pro:

 It is the most straightforward figure of merit to monitor

 Changes in  𝑝𝑡 prompts adaptation only when performance are 
affected

Cons:

 CD detection from supervised samples only





 The element-wise classification error follows a Bernoulli pdf

𝑒𝑡 ∼ Bernulli(𝜋0)

𝜋0 is the expected classification error in stationary conditions 

 The sum of 𝑒𝑡 in a sliding window follows a Binomial pdf

 

𝑡=𝑇−𝜈

𝑇

𝑒𝑡 ∼ ℬ 𝜋0, 𝜈

 Gaussian approximation when 𝜈 is sufficiently large

𝑝𝑡 =
1

𝜈
 

𝑡=𝑇−𝜈

𝑇

𝑒𝑡 ∼
1

𝜈
ℬ 𝜋0, 𝜈 ≈ 𝒩 𝜋0,

𝜋0 1 − 𝜋0

𝜈

 We have a sequence of i.i.d. Gaussian distributed values



Basic idea behind Drift Detection Method (DDM):

J. Gama, P. Medas, G. Castillo, and P. Rodrigues. “Learning with Drift Detection” In Proc. of the 17th Brazilian 

Symp. on Artif. Intell. (SBIA). Springer, Berlin, 286–295, 2004



Basic idea behind Drift Detection Method (DDM):

 Detect CD as outliers in the classification error



Basic idea behind Drift Detection Method (DDM):

 Detect CD as outliers in the classification error

 Since in stationary conditions error will decrease, look for outliers in the 
right tail only



Basic idea behind Drift Detection Method (DDM):

 Detect CD as outliers in the classification error

 Compute, over time 𝑝𝑖 , and 𝜎𝑖 =
𝑝𝑖 1 −𝑝𝑖

𝑖

𝑡

𝑥
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 Let 𝑝min be the minimum error, 𝜎min =
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𝑖
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Basic idea behind Drift Detection Method (DDM):

 Detect CD as outliers in the classification error

 Compute, over time 𝑝𝑖 , and 𝜎𝑖 =
𝑝𝑖 1 −𝑝𝑖

𝑖

 Let 𝑝min be the minimum error, 𝜎min =
𝑝min 1 −𝑝min

𝑖

 When 𝑝𝑖 + 𝜎𝑖 > 𝑝min + 2 ∗ 𝜎min raise a warning alert

𝑝𝑖 + 𝜎𝑖

𝑝min + 𝜎min

𝑝𝑖 + 2𝜎𝑖

𝑡



Basic idea behind Drift Detection Method (DDM):

 Detect CD as outliers in the classification error

 Compute, over time 𝑝𝑖 , and 𝜎𝑖 =
𝑝𝑖 1 −𝑝𝑖

𝑖

 Let 𝑝min be the minimum error, 𝜎min =
𝑝min 1 −𝑝min

𝑖

 When 𝑝𝑖 + 𝜎𝑖 > 𝑝min + 2 ∗ 𝜎min raise a warning alert

 When 𝑝𝑖 + 𝜎𝑖 > 𝑝min + 3 ∗ 𝜎min detect concept drift

𝑝𝑖 + 𝜎𝑖

𝑝min + 𝜎min

𝑝𝑖 + 3𝜎𝑖

𝑝𝑖 + 2𝜎𝑖

𝑡



Use supervised samples in between warning and drift alert to reconfigure 
the classifier

𝑡

𝑥

𝑝𝑖 + 𝜎𝑖

𝑝min + 𝜎min

𝑝𝑖 + 3𝜎𝑖

𝑝𝑖 + 2𝜎𝑖

𝑡

𝑇𝑅



Use supervised samples in between warning and drift alert to reconfigure 
the classifier

Warning alerts non that are not followed by a drift alert are discarded and 
considered false-positive detections

𝑝min + 𝜎min

𝑝𝑖 + 3𝜎𝑖

𝑝𝑖 + 2𝜎𝑖

𝑡

𝑝𝑖 + 𝜎𝑖



Early Drift Detection Methods (EDDM) performs similar monitoring on 
the average distance between misclassified samples

 Average distance is expected to decrease under CD

 They aim at detecting gradual drifts

M. Baena-García, J. Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldá, R. Morales-Bueno. “Early drift 

detection method“ In Fourth International Workshop on Knowledge Discovery from Data Streams (2006) 



Use the Exponential Weighted Moving Average (EWMA) as tests 
statistic

Compute EWMA statistic

𝑍𝑡 = 1 − 𝜆 𝑍𝑡−1 + 𝜆 𝑒𝑡 , 𝑍0 = 0

Detect concept drift when

𝑍𝑡 > 𝑝0,𝑡 + 𝐿𝑡𝜎𝑡

 𝑝0,𝑡 is the average error estimated until time 𝑡

 𝜎𝑡 is its standard deviation of the above estimator

 𝐿𝑡 is a threshold parameter

EWMA statistic is mainly influenced by recent data. CD is detected 
when the error on recent samples departs from 𝑝0,𝑡

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average

Charts for Detecting Concept Drift" Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012



Most importantly:

 𝐿𝑡 can be set to control the average run length (ARL) of the test (the 
expected time between false positives)

 Like DDM, classifier reconfiguration is performed by monitoring 𝑍𝑡 also 
at a warning level 

𝑍𝑡 > 𝑝0,𝑡 + 0.5 𝐿𝑡𝜎𝑡
 Once CD is detected, the first sample raising a warning is used to isolate 

samples from the new distribution and retrain the classifier

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average

Charts for Detecting Concept Drift" Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012



In some cases, CD can be detected by ignoring class labels and 
monitoring the distribution of the input, unsupervised, raw data.
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In some cases, CD can be detected by ignoring class labels and 
monitoring the distribution of the input, unsupervised, raw data.
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Pros:

 Monitoring 𝜙 𝒙 does not require supervised samples

 Enables the detection of both real and virtual drift

Cons:

 CD that does not affect 𝜙(𝒙) are not perceivable

 In principle, changes not affecting 𝜙 𝑦 𝒙 do not require reconfiguration.

 Difficult to design sequential detection tools, i.e., change-detection tests
(CDTs) when streams are multivariate and distribution unknown



Extracts Gaussian-distributed features from non-overlapping 
windows (such that they are i.i.d.) 

 the sample mean over data windows  

M 𝑠 =  

𝑡= 𝑠−1 𝜈+1

𝑠 𝜈

𝑥𝑡

 a power-law transform of the sample variance

V 𝑠 =
S 𝑠

𝜈 − 1

ℎ0

S(𝑠) is the sample variance over window yielding 𝑀 𝑠

Detection criteria: the Intersection of Confidence Intervals rule, an 
adaptive filtering technique for polynomial regression

C. Alippi, G. Boracchi, M. Roveri "A just-in-time adaptive classification system based on the 

intersection of confidence intervals rule", Neural Networks, Elsevier vol. 24 (2011), pp. 791-800



Several features from non-overlapping windows including

 Sample moments

 Projections over the principal components

 Mann-Kendal statistic

Detection criteria: the cumulative sum of each of this feature is 
monitored to detect change in a CUSUM-like scheme

C. Alippi and M. Roveri, “Just-in-time adaptive classifiers–part I: Detecting nonstationary changes,”

IEEE Transactions on Neural Networks, vol. 19, no. 7, pp. 1145–1153, 2008.

C. Alippi, M. Roveri, “Just-in-time adaptive classifiers — part II: Designing the classifier,” IEEE 

Transactions on Neural Networks, vol. 19, no. 12, pp. 2053–2064, 2008.



One typically resort to:

 Operating component-wise (thus not performing a multivariate analysis)

 Monitoring the log-likelihood w.r.t. an additional model describing 
approximating 𝜙(𝒙) in stationary conditions



Fit a model (e.g. by GMM or KDE)  𝜙0 to describe distribution of raw
(multivariate) data in stationary conditions

For each sample 𝒙 compute the log-likelihood w.r.t.  𝜙0

ℒ 𝒙𝒕 = log  𝜙0 𝒙𝒕 ∈ ℝ

Idea: Changes in the distribution of the log-likelihood indicate that 
 𝜙0 is unfit in describing unsupervised data, thus concept drift 
(possibly virtual) has occurred.

Detection Criteria: any monitoring scheme for scalar i.i.d.
datastream

Kuncheva L.I., " Change detection in streaming multivariate data using likelihood detectors", IEEE 

Transactions on Knowledge and Data Engineering, 2013, 25(5), 1175-1180

X. Song, M. Wu, C. Jermaine, S. Ranka "Statistical change detection for multi-dimensional data" In 

Proceedings of the 13th ACM SIGKDD (KDD 2007)





JIT classifiers are described in terms of :

 concept representations

 operators for concept representations

JIT classifiers are able to:

 detect abrupt CD (both real or virtual)

 Identify and take advantage of recurrent concepts

JIT classifiers leverage:

 sequential techniques to detect CD, monitoring both classification 
error and raw data distribution

 statistical techniques to identify recurrent concepts

Most of solutions for recurrent concepts are among passive 
approaches (see reference below for a survey)

C. Alippi, G. Boracchi, M. Roveri  "Just In Time Classifiers for Recurrent Concepts" IEEE Transactions on 

Neural Networks and Learning Systems, 2013. vol. 24, no.4, pp. 620 -634   (Outstanding Paper Award 2016)



Concept Representations 

𝐶 = (𝑍, 𝐹, 𝐷)

 𝑍 : set of supervised samples

 𝐹 : set of features for 
assessing concept 
equivalence

 𝐷 : set of features for 
detecting concept drift



𝐶𝑖 = (𝑍𝑖 , 𝐹𝑖 , 𝐷𝑖)
 𝑍𝑖 = 𝒙𝟎, 𝑦0 , … , 𝒙𝒏, 𝑦𝑛 : supervised samples provided during the 
𝑖th concept 

 𝐹𝑖 features describing 𝑝(𝒙) of the 𝑖th concept. We take: 

 the sample mean 𝑀 ⋅
 the power-low transform of the sample variance 𝑉(⋅)

extracted from non-overlapping sequences
 𝐷𝑖 features for detecting concept drift. These include:

 the sample mean 𝑀 ⋅
 the power-low transform of the sample variance 𝑉(⋅)
 the average classification error 𝑝𝑡(⋅)

extracted from non-overlapping sequences

In stationary conditions features are i.i.d.



Concept Representations 

𝐶 = (𝑍, 𝐹, 𝐷)

 𝑍 : set of supervised samples

 𝐹 : set of features for assessing 
concept equivalence

 𝐷 : set of features for detecting 
concept drift

Operators for Concepts

 𝒟 concept-drift detection

 Υ concept split

 ℰ equivalence operators

 𝒰 concept update



Use the initial training sequence 
to build the concept 
representation 𝐶0



𝑡

𝐶0

𝑇𝑅

Build 𝐶0, a practical representation of the current concept

• Characterize both 𝑝(𝒙) and 𝑝 𝑦|𝒙 in stationary conditions



During operations, each 
input sample is analyzed to 

 Extract features that are 
appended to 𝐹𝑖

 Append supervised 
information in 𝑍𝑖

thus updating the current 
concept representation



𝑡

The concept representation 𝐶0 is always updated during 

operation, 

• Including supervised samples in 𝑍0 (to describe 𝑝(𝑦|𝒙))

• Computing feature 𝐹0 (to describe 𝑝(𝒙))

𝐶0

𝑇𝑅



The current concept 
representation is analyzed by 
𝒟 to determine whether 
concept drift has occurred



Determine when features in 𝑫 are no more stationary

 𝒟 monitoring the datastream by means of online and sequential change-
detection tests (CDTs)

 Depending on features, both changes in 𝑝 𝑦 𝒙 and 𝑝(𝒙) can be detected

  𝑇 is the detection time

𝑡 𝑇

𝐶0
𝒟(𝐶0) = 1



𝒟 𝐶𝑖 ∈ {0,1}

 Implements online change-detection tests (CDTs) based on the 
Intersection of Confidence Intervals (ICI) rule

 The ICI-rule is an adaptation technique used to define adaptive 
supports for polynomial regression

 The ICI-rule determines when feature sequence (𝐷𝑖) cannot be fit 
by a zero-order polynomial, thus when 𝑫𝒊 is non stationary

 ICI-rule requires Gaussian-distributed features but no 
assumptions on the post-change distribution

A. Goldenshluger and A. Nemirovski, “On spatial adaptive estimation of nonparametric regression” Math. 

Meth. Statistics, vol. 6, pp. 135–170,1997.

V. Katkovnik, “A new method for varying adaptive bandwidth selection” IEEE Trans. on Signal Proc, vol. 47, 

pp. 2567–2571, 1999.



If concept drift is detected, 
the concept representation is 
split, to isolate the recent 
data that refer to the new 
state of 𝒳

A new concept description is 
built



Goal: estimating the change point 𝜏 (detections are always delayed). 
Samples in between  𝜏 and  𝑇

Uses statistical tools for performing an offline and retrospective
analysis over the recent data, like:

 as hypothesis tests (HT)

 change-point methods (CPM) can 

𝑡 𝑇 𝜏



Given  𝜏, two different concept representations are built

𝑡 𝑇 𝜏

1

𝐶1𝐶0



Υ(𝐶0) = (𝐶0, 𝐶1)

 It performs an offline analysis on 𝐹𝑖 (just the feature detecting the change) 
to estimate when concept drift has actually happened

 Detections  𝑇 are delayed w.r.t. the actual change point 𝜏

 Change-Point Methods implement the following Hypothesis test on the 
feature sequence:

 
𝐻0: "𝐹𝑖 contains i. i. d. samples"
𝐻1: "𝐹𝑖 contains a change point"

testing all the possible partitions of 𝐹𝑖 and determining the most likely to 
contain a change point

 ICI-based CDTs implement a refinement procedure to estimate 𝜏 after 
having detected a change at  𝑇.



Look for concepts that are 
equivalent to the current 
one. 

Gather supervised 
samples from all the 
representations 𝐶𝑗 that 

refers to the same concept



Concept equivalence is assessed by 

 comparing features 𝐹 to determine whether 𝑝 𝒙 is the same on 𝐶𝑚 and 
𝐶𝑛 (using a test of equivalence)

 comparing classifiers trained on 𝐶𝑚 and 𝐶𝑛 to determine whether 𝑝 𝑦 𝒙
is the same

𝑡 𝑇

𝐶𝑛𝐶𝑚

ℰ 𝐶𝑚, 𝐶𝑛 = 1

 𝜏



The classifier 𝐾 is 
reconfigured using all the 
available supervised couples





Detect CD at time 𝑡 by comparing two different windows.

In practice, one computes:

𝒯(𝑊0,𝑊𝑡)

 𝑊0: reference window of past (stationary) data

 𝑊𝑡: sliding window of recent (possibly changed) data

 𝒯 is a suitable statistic

𝑥
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Detect CD at time 𝑡 by comparing two different windows.

In practice, one computes:

𝒯(𝑊0,𝑊𝑡)

 𝑊0: reference window of past (stationary) data

 𝑊𝑡: sliding window of recent (possibly changed) data

 𝒯 is a suitable statistic

𝑥

𝑡

𝑥

𝑊𝑡−𝛿 𝑊𝑡



Pro:

 there are a lot of test statistics to compare data windows

Cons:

 The biggest drawback of comparing windows is that subtle CD might not 
be detected (this is instead the main advantage of sequential techniques)

 More computational demanding than sequential technique

 Window size definition is an issue



 The averages over two adjacent windows (ADWIN)

Bifet A., Gavaldà R. "Learning from time-changing data with adaptive windowing" In Proc. of SIAM 

International Conference on Data Mining 2007



 The averages over two adjacent windows (ADWIN)

 Comparing the classification error over 𝑊𝑡 and 𝑊0

Nishida, K. and Yamauchi, K. "Detecting concept drift using statistical testing" In DS, pp. 264–269, 2007



 The averages over two adjacent windows (ADWIN)

 Comparing the classification error over 𝑊𝑡 and 𝑊0

 Compute empirical distributions of raw data over 𝑊0 and 𝑊𝑡 and 
compare

 The Kullback-Leibler divergence

 the Hellinger distance 

T. Dasu, Sh. Krishnan, S. Venkatasubramanian, and K. Yi. "An Information-Theoretic Approach to 

Detecting Changes in Multi-Dimensional Data Streams". In Proc. of the 38th Symp. on the Interface of 

Statistics, Computing Science, and Applications, 2006

G. Ditzler and R. Polikar, “Hellinger distance based drift detection for nonstationary environments” in 

Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), 2011 IEEE Symposium 

on, April 2011, pp. 41–48.



 The averages over two adjacent windows (ADWIN)

 Comparing the classification error over 𝑊𝑡 and 𝑊0

 Compute empirical distributions of raw data over 𝑊0 and 𝑊𝑡 and 
compare

 The Kullback-Leibler divergence

 the Hellinger distance 

 Compute the density ratio over the two windows using kernel methods 
(to overcome curse of dimensionality problems when computing 
empirical distributions)

Kawahara, Y. and Sugiyama, M. "Sequential change-point detection based on direct density-ratio 

estimation". Statistical Analysis and Data Mining, 5(2):114–127, 2012.



In stationary conditions, all data are i.i.d., thus if we 

 Select a training set and a test set in a window

 Select another 𝑇𝑅 and 𝑇𝑆 pair after reshuffling the two

the empirical error of the two classifiers should be the same

Vovk, V., Nouretdinov, I., and Gammerman, A. Testing exchangeability on-line. In ICML, pp. 

Harel M., Mannor S., El-yaniv R., Crammer K. “Concept Drift Detection Through Resampling“, ICML 2014

𝑇𝑅 𝑇𝑆



Two classifiers are trained

 a stable online learner (𝑆) that predicts based on all the supervised 
samples

 a reactive one (𝑅𝑤) trained over a short sliding window

During operation

 labels are provided by 𝑆

 predictions of 𝑅𝑤 are computed but not provided 

 as soon as 𝑹𝒘 is more frequently correct than 𝑆, detect CD

Adaptation consists in replacing 𝑆 by 𝑅𝑤

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift" in Data Mining, 2008. ICDM '08. Eighth IEEE 

International Conference on pp.23-32, 15-19 Dec. 2008





 Typically, when monitoring the classification error, false positives 
hurt less than detection delay

 Things might change on class unbalance



 Typically, when monitoring the classification error, false positives 
hurt less than detection delay

 Things might change on class unbalance

 Providing i.i.d. samples for reconfiguration seems more critical. 
When estimating the change-time:

𝑡 𝑇 𝜏



 Typically, when monitoring the classification error, false positives 
hurt less than detection delay

 Things might change on class unbalance

 Providing i.i.d. samples for reconfiguration seems more critical. 
When estimating the change-time:

 Overestimates of 𝜏 provide too few samples

 Underestimates of 𝜏 provide non i.i.d. data

 Worth using accurate SPC methods like change-point methods (CPMs)

D. M. Hawkins, P. Qiu, and C. W. Kang, “The changepoint model for statistical process control” Journal of 

Quality Technology, vol.  35, No. 4, pp. 355–366, 2003.



 Typically, when monitoring the classification error, false positives 
hurt less than detection delay

 Things might change on class unbalance

 Providing i.i.d. samples for reconfiguration seems more critical. 
When estimating the change-time:

 Overestimates of 𝜏 provide too few samples

 Underestimates of 𝜏 provide non i.i.d. data

 Worth using accurate SPC methods like change-point methods (CPMs)

 Exploiting recurrent concepts is important 

 Providing additional samples could make the difference

 Mitigate the impact of false positives
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§Active: the learner 𝐾 is combined with a 
tool to detect concept drift that pilots 
adaptation.
§Passive: assume the process undergoes 
continuous adaptation.



§ It’s all about the adaptation mechanism employed to cope with the change!
§ active approaches rely on an explicit detection of the change in the data distribution to 

activate an adaptation mechanism
§ passive approaches continuously update the model over time (without requiring an 

explicit detection of the change)
§ Passively assume that some type of change is present in the data stream 

§ Is one approach more correct than another? No! 
§ Benchmarking Dilemma – What makes an algorithm successful? Detection delay? 

Classification error? Can we make the comparison fair? 

§ Dicotomy of Passive Learning 
§ Single Classifier 
§ Ensemble
§ Batch versus Online





§ Decision tree models are very popular with traditional supervised learning, but 
how can we use them with concept drift in the data stream?

§ Concept-adapting Very Fast Decision 
Tree learner (CVFDT) is an online 
decision tree algorithm 

§ CVFDT attempts to stay current by 
growing alternative sub-trees until 
an old sub-tree is  accurate then it is 
replaced
§ The current split at a node in the tree may 

not be optimal throughout all of time
§ Use windows of samples to evaluate the

tree to remove the 
low quality sub-trees 

§ Time complexity of O(1) 



§ Stochastic gradient descent (SGD) is an online representation of classical “batch” 
gradient descent algorithm 
§ Commonly used to train neural networks
§ Mini-batches are sometimes used at each timestep to achieve a smoother convergence in 

the function being minimized

§ SGD has been implemented using a linear classifier minimizing a hinge loss 
function for learning in nonstationary environment
§ Massive Online Analysis (more about this later) has an implementation of this approach in 

their software package

§ An Extreme Learning Machine has been also combined with a time-varying NN 
for learning in nonstationary environments



§ OLIN (online information network) is fuzzy-logic algorithm that repeatedly learns 
a from sliding window of examples in order to update the existing model
§ Replace it by a former model
§ Or construct a new model if a major concept drift is detected
§ Borrow from active and passive approaches 

§ OLIN updates the fuzzy-info network by identifying non-relevant nodes, adding 
new layers and replacing the output layer when new data arrive. If a new concept 
was presented then a new fuzzy-info network is learned. 
§ A new concept could be identified by a statistically significant drop is the classification 

accuracy on the latest labeled data



Stability

§ The ability of an algorithm to recall 
old information that it has learned in 
the past 

Plasticity 

§ The ability for an algorithm to learn 
new information when data are 
available 

Sounds like we could have two opposing ideas!



Balancing the stability-plasticity dilemma 



§ Ensemble based approaches provide a natural fit to the problem of learning in a 
nonstationary setting
§ Ensembles tend to be more accurate than single classifier-based systems due to 

reduction in the variance of the error
§ They have the flexibility to easily incorporate new data into a classification model when 

new data are presented, simply by adding new members to the ensemble
§ They provide a natural mechanism to forget irrelevant knowledge, simply by removing 

the corresponding old classifier(s) from the ensemble

(Stability)

(Plasticity)



An ensemble of multiple models is preserved in memory 
ℋ = ℎ%,… , ℎ(

Each individual ℎ), 𝑖 = 1,… ,𝑁 is typically trained from a different training set and 
could be from a different model

Final prediction of the ensemble is given by (weighted) aggregation of the 
individual predictions

𝐻 𝒙𝒕 = argmax
𝝎∈𝚲

8 𝛼)	 ℎ) 𝒙; = 𝜔
𝒉𝒊∈𝓗

Typically, one assumes data arrives in batches and each classifier is trained over a 
batch



§ Each individual implicitly refers to a component of a mixture distribution 
characterizing a concept

§ In practice, often ensemble methods assume data (supervised and unsupervised) 
are provided in batches

§ Adaptation can be achieved by:
§ updating each individual: either in batch or online manner
§ dynamic aggregation: adaptively defining weights 𝜔)
§ structural update: including/removing new individuals in the ensemble, possibly 

recovering past ones that are useful in case of recurrent concepts



Ensemble based approaches provide a natural fit to the problem of learning in 
nonstationary settings,

§ Ensembles tend to be more accurate than single classifier-based systems due to 
reduction in the variance of the error

§ Stability: flexible to easily incorporate new data into a classification model, simply by 
adding new individuals to the ensemble (or updating individuals)

§ Plasticity: provide a natural mechanism to forget irrelevant knowledge, simply by 
removing the corresponding old individual(s) from the ensemble

§ They can operate in continuously drifting environments

§ Apadtive strategies can be applied to add/remove classifiers by on individual 
classifier and the ensemble error



A fixed-size ensemble that performs
§ batch learning
§ structural update to adapt to concept drift 

When a new batch 𝑆 = 𝒙%𝒕 , 𝑦%; , 𝒙B𝒕 , 𝑦B; ,… , 𝒙C𝒕 , 𝑦C; arrives
§ train ℎ; on 𝑆
§ test ℎ;DB on 𝑆
§ If the ensemble is not full (#ℋ < 𝑁), add ℎ;DB to ℋ
§ Otherwise, remove ℎ) ∈ ℋ	that is less accurate on 𝑆 (as far as this is worst than ℎ;DB)

Prune the ensmeble to improve the performance



§ Littlestone’s Weighted Majority algorithm is an ensemble online algorithm for 
combining multiple classifiers learning from a stream of data; however, keeping 
the same classifiers in the ensemble for the duration of the stream could be 
suboptimal in a nonstationary setting 

Dynamic weighted majority (DWM) algorithm is an ensemble method where:
§ Individuals classifiers are trained on incoming data
§ Each individual is associated to a weight 
§ Weights are decreased to individuals that are not accurate on the samples of the current 

batch
§ Individuals having low weights are dropped
§ Individuals are created at each error of the ensemble
§ Predictions are made by weighted majority voting

§ Ensemble size is not fixed

J. Zico Kolter, M.A. Maloof, “Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts,” Journal 
of Machine Learning Research 8, 2007.



§ Diversity in an ensemble has been shown to be benefical in ensembles that have 
been learned from a static distribution, but how can diversity be used in a 
nonstationary stream

§ Diversity for Dealing with Drifts (DDD) combines two ensembles:
§ An High diversity ensemble
§ A Low diversity ensemble

and a concept-drift detection method. 

§ Online bagging is used to control ensemble diversity

§ In stationary conditions, predictions are made by low-diversity ensemble

§ After concept drift, the ensembles are updated and predictions are made by the 
high-diversity ensemble.

MINKU, L. L.; YAO, X. . "DDD: A New Ensemble Approach For Dealing With Concept Drift.", IEEE Transactions on Knowledge and Data 
Engineering, IEEE, v. 24, n. 4, p. 619-633, April 2012



§ Central Concept
§ Bagging and boosting works well for batches of data; however, these approaches are not 

equipped to handle data streams. Oza developed approaches to perform this batch to 
online version

§ Issue: Online bagging and boosting does not account for concept drift 
§ Parallel to Active: Implement Change detection to reset classifiers 

Add Oza reference 



§ Online bagging & boost are not designed for learning in nonstationary
environments. How can we modify the base classifier to learn concepts over time? 

§ Thoughts on pruning trees
§ In a slowly changing environment, larger trees can better capture the concepts
§ In a quickly changing environment, smaller trees can adapt quickly to new concepts with 

new examples from the stream 
§ Solution: Ensembles with different size Hoeffding trees

§ Examples from the stream are learned by different size Hoeffding trees. These 
trees are “reset” at different time intervals 
§ Short trees are reset more often than larger trees
§ Opportunity: Active approach to tell us when to 

reset a tree (small and large)

Add bifet reference



§ Motivation 
§ Build a data stream mining algorithm that is not specific to one type of drift, but rather 

robust on 
§ The “size” of a classifier is important for many application, not only for memory 

limitations, but also for learning in a nonstationary environment

§ The Accuracy Updated Ensemble (AUE2) learns a classifiers on the most recent 
data and weights them according to their accuracy; however, the base classifier is 
limited in its memory footprint to avoid unnecessarily large models
§ Weaker classifiers are discarded with the most recent (accurate) classifier
§ Potentially incorporates catastrophic forgetting

D. Brzezinski and J. Stefanowski, “Reacting to Different Types of Concept Drift: The Accuracy Updated Ensemble Algorithm,” 
IEEE Transactions on Neural Networks, vol. 25, no. 1, 2014



§ Learn++ is an incremental learning ensemble to learn classifiers from streaming 
batches of data 
§ Think boosting, but for incremental learning
§ Batches of data are assumed to be sampled iid from a distribution

§ Learn++ works well on static distributions; however, classifier weights remain 
fixed, which is an ill-advised strategy if each batch of data is not sampled iid. 
Especially the testing data!

§ Solution: Learn++.NSE: Similar to DWM, Learn++.NSE extends Learn++ for 
learning in nonstationary environments (NSE)

Polikar R., Udpa L., Udpa, S., Honavar, V., “Learn++: An incremental learning algorithm for supervised 
neural networks,” IEEE Transactions on System, Man and Cybernetics (C), vol. 31, no. 4, pp. 497-508, 2001



§ Learn++.NSE: incremental learning algorithm for 
concept drift
§ Generate a classifier with each new batch of data, 

compute a pseudo error for each classifier, apply 
time-adjusted weighting mechanism, and call a 
weighted majority vote for an ensemble decision
§ Recent pseudo errors are weighted heavier than old 

errors

§ Works very well on a broad range of concept drift 
problems

Generate new classifier hk=t:XàY

Initialize instance weightst =1

Evaluate all classifiers on new data

Compute weighted sum of all  

Normalize error to [0 1] interval 

Calculate classifier voting weights 

WMV è Final hypothesis

New Data

Y

N

t=
t+
1

Evaluate current ensemble 
on new data

Update weights for next
distribution Dt+1

Elwell R. and Polikar R., “Incremental Learning of Concept Drift in Nonstationary 
Environments”IEEE Transactions on Neural Networks, vol. 22, no. 10, pp. 1517-1531, 2011.
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§ Class Imbalance
§ Learners tend to bias themselves towards the majority class 

§ Minority class is typically of great importance
§ Many concept drift algorithms tend to use error or a figure of merit derived from error to 

adapt to a nonstationary environment

§ Learn++.CDS {Concept Drift with SMOTE}
§ Apply SMOTE to Learn++.NSE

§ Learn++.NSE works well on problems involving concept drift
§ SMOTE works well at increasing the recall of a minority class

§ Learn++.NIE {Nonstationary and Imbalanced Environments}
§ Classifiers are replaced with sub-ensembles

§ Sub-ensemble is applied to learn a minority class
§ Voting weights are assigned based on figures of merit besides a class independent error

§ Other Approaches: SERA, UCB, muSERA, REA 



𝔇(;)

ℎB,; ℎJ,; ℎK,;

SMV à𝐻B,… , 𝐻K,… , 𝐻;

Compute 𝜀K
(;)

for 𝑘 = 1,2,… , 𝑡

Determine time-
adjusted 
weights

WMVà 𝐻P)QRS

𝔇(;)

Call BaseClassifier
ℎ;

Compute a pseudo error,  
𝜀K
(;) for 𝑘 = 1,2,… , 𝑡

Determine time-
adjusted 
weights

WMVà 𝐻P)QRS

Call SMOTE

Evaluate 𝐻(;DB) and 
form a penalty 

distribution over 𝔇(;)

Learn++.NIE Learn++.CDS



§ Assuming the loss is convex in its first argument, the ensemble’s expected loss 
becomes

which is a weighted average each expert’s loss
§ Generally not computable and is difficult to interpret

§ Decomposing the loss using existing domain adaptation theory with prior work 
leads to the bound

§ Looks bad! But interpretable!
Loss(ensemble) < weightedSum(training loss + labeling disagreement + divergence of unlabeled data)
§ Real & virtual drifts have been defined in literature, but now related to loss!
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§ All previous learning scenarios assumed a supervised learning setting
§ Transductive and Semi-Supervised was discussed
§ What if we’re only provide some labeled data at 𝑇% and all future time points are 

unlabeled?
§ Active Learning versus Learning in Initially Labeled Environments

§ AL: Assume that we have access to an oracle that can label the unlabeled data at a cost 
§ ILNSE: Extreme latency verification! No labeled data are received after 𝑇%

Progression of a single class experiencing 
(a) translational, (b) rotational, and (c) 
volumetric drift.
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Sarnelle J., Sanchez A., Capo R., Haas J. and Polikar R., “Quantifying the Limited and Gradual Concept 
Drift Assumption,” Int. Joint Conf. on Neural Networks (IJCNN), 2015.



Dyer K., Capo R., Polikar R., “COMPOSE: A Semi-Supervised 
Learning Framework for Initially Labeled Non-Stationary 
Streaming Data” IEEE Transactions on Neural Networks and 
Learning Systems, vol. 25, no. 1, pp. 12-26, 2014 .



§ Ensemble classifier approaches have had more success that single classifier 
implementations for nonstationary environments*

§ Hybrid approaches (active & passive) can be beneficial! There is no single best 
strategy 
§ Sometimes we lump these approach in the the active category

§ In practice, a weighted majority vote is a better strategy as long as we have a 
reliable estimate of a classifiers error 

* That is not to say there is not single classifier solutions that do not work well.
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§ Recall: A concept drift occurs at time 𝑡 if
𝜙; 𝒙,𝑦 ≠ 𝜙;WB 𝒙, 𝑦

(we also say 𝒳 becomes  nonstationary)

§ Drift might affect 𝜙; 𝑦|𝒙 	and/or	𝜙; 𝒙
§ Real and virtual drifts 
§ Abrupt, Gradual, Fast

§ Synthetic data streams can be generated by sampling
data from a distribution that simulates the changes 
in the probabilities
§ E.g., Data could be sampled from a Gaussian distribution with changing parameters or 

classes abruptly changed/swap



§ Concept drift algorithms have been benchmarked against a vast pool of synthetic 
and real-world data sets, both of which are of great importance to appropriately 
benchmarking
§ Synthetic data allow us to carefully design experiments to evaluate the limitations of an 

approach
§ Real world data serve as the ultimate benchmark about how we should expect an 

algorithm to perform when it is deployed



§ Hyperplane changes location at three 
points in time
§ Three features only two of which are 

relevant. One feature is noise with 10%
noise in the labels

§ Class imbalance changes as the 
plane shift. Thus, change in 𝜙 𝒙|𝑦 and 
𝜙 𝑦 changes.
§ Dual change

G. Ditzler, G. Rosen, and R. Polikar, “Domain Adaptation Bounds for Multiple 
Expert Systems Under Concept Drift,” International Joint Conference on 
Neural Networks, 2014. (best student paper)



§ Narasimhamurthy & Kuncheva (2007) developed a Matlab
package for simulating nonstationary data streams. Feature 
include: 
§ STAGGER: The feature space is described by three features: size, 

color and shape. There are three data sources
§ Target Concept 1 : size = small AND color = red
§ Target Concept 2 : color = green OR shape = circular
§ Target Concept 3 : size = medium OR size = large

§ Drifting Hyperplanes: Similar to SEA with a plane 
§ Drifting Multi-Modal Gaussian Distributions: 
§ Stationary to Nonstationary Data Stream: The above data streams can 

be sampled from a static distribution; however, to add in 
nonstationarities, drift can be simulated in the stream by sampling 
from different concepts

Narasimhamurthy A., L.I. Kuncheva, A framework for generating data to simulate changing environments, Proc. IASTED, Artificial 
Intelligence and Applications, Innsbruck, Austria, 2007, 384-389

STAGGER: Concept 2



§ Minku et al.’s concept drift generator for 
Matlab
§ Circle: Given two variables and a point, do samples

fall in or out of a circle with radius 𝑟? Let 𝑟 change
to simulate drift

§ Sine: 𝑦 > 𝑎 sin 𝑏	𝑥 + 𝑐 + 𝑑? Changle the parameters 𝑎, 𝑏, 𝑐, and 𝑑. 
§ Moving Hyperplane: Similar to SEA with a 1D line
§ Boolean:  Modification of a STAGGER themed data set

§ You can simulate a lot of different data streams with non-stationarities using the GUI

MINKU, L. L.; WHITE, A. P.; YAO, X. . "The Impact of Diversity on On-line Ensemble Learning in the Presence of Concept 
Drift.", IEEE Transactions on Knowledge and Data Engineering, IEEE, v. 22, n. 5, p. 730-742, May 2010







§ On real data it is sometimes difficult to obtain statistically significant results, 
§ How can we quantify delays in change-detection applications on time-dependent data

§ For synthetic data we will know the location of the change; however, this is a bit more ambiguous 
with real-world data

§ Sometimes time-dependant are data correlated, e.g., the New South Whales electricity
data (elec2)

§ Data may not be evolving through a sequence of stationary states
§ This is a problem for active methods

§ Difficult to estimate what could be the performance in real-world because sometimes
supervised samples are provided depending on your previous performance

§ Labeled data are not always available to tell us what the current error is for the system to 
be able to update classifier paremeters (e.g., classifier weights)



§ Airlines Data: 100M+ instances contain flight arrival and departure records. The goal is 
to predict if a flight is delayed.

§ Chess.com: Game records for a player over approximately three years

§ elec2: 

§ KDD Cup 1999 Data: Collection of network intrusion detection data.

§ Luxembourg: Predict a users internet usage European Social Survey data

§ NOAA: ~27 years of daily weather measurements from Nebraska. The goal is to predict 
rainfall. 

§ POLIMI Rock Collapse/Landslide Forecasting: Sensor measurements coming from 
monitoring systems for rock collapse and landslide forecasting deployed on the Italian 
Alps.

§ Spam: Collection of spam & ham emails collected over two years

https://github.com/gditzler/ConceptDriftResources



§ Data streams could have a temporal component that is 
not considered in the evaluation of a classifier(s)
§ Assumption is that data are not sampled iid, but still sampled

independently 
§ This is an issue if the data are auto-correlated

§ Bifet et al. pointed out this flaw in the elec2 data set 
and presented a new statistic for benchmarking such 
data sets that have temporal 
dependence 

Albert Bifet, Indrė Žliobaitė, Jesse Read, Bernhard Pfahringer and Geoff 
Holmes: Pitfalls in benchmarking data stream classification and how to 
avoid them ECML-PKDD 2013





§ Massive Online Analysis (MOA) is a Java software package for developing and 
benchmarking data stream algorithms 
§ Active approaches

§ DDM
§ EDDM

§ ADWIN

§ Passive approaches
§ ASHT

§ SGD 
§ AUE
§ AUE2

§ Extensions: Scalable MOA (Apache Storm), and StreamDM (Apache Streaming 
Spark)



§ Matlab-based toolbox (collection) of scripts that implement several ensemble-
based algorithms for learning in nonstationary environments
§ Weighted Majority Ensemble 
§ Simple Majority Ensemble
§ Follow the Leader
§ Learn++/Learn++.NSE/Learn++.CDS
§ Example scripts are included

G. Ditzler, G. Rosen and R. Polikar, “Discounted expert weighting for 
concept drift,” International Symposium on Computational Intelligence in 
Dynamic and Uncertain Environments, 2013.



§ Comparing multiple classifiers on multiple datasets is not a trivial problem
§ Confidence intervals will only allow for the comparison of multiple classifiers on a single dataset

§ The rank based Friedman test can determine if classifiers are performing equally across multiple 
dataset
§ Apply ranks to the average of each measure on a dataset
§ Standard deviation of the measure is not used in the Friedman test
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§ z-scores can be computed from the ranks in the Friedman test
§ The 𝛼-level or critical value must be adjusted based on the multiple comparisons being made
§ Bonferroni-Dunn procedure adjusts 𝛼 to 𝛼	 𝑘 − 1⁄

𝑧o 𝑖, 𝑗 =
𝑅o 𝑖 − 𝑅o(𝑗)
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J. Demsar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” J. Machine Learning Research, vol. 7, pp. 1-30, 2006.





§ Learning in nonstaionary environments is becoming a more mature field; however, 
there are many sub-problems in the field that still need to be addressed more 
rigorously 
§ Unbalanced environment: Data from each of the classes are extremely imbalanced, 

which is a serious problem if the algorithm is using error to track the environment. 
§ Semisupervised: How can we best incorporate data that are unlabeled into our model if 

we cannot assume the data are sampled iid?
§ Consensus Maximization: Train supervised and unsupervised models  
§ Semi-supervised vs. Transductive?

§ Latency verification:  What if we cannot assume that the classifier will receive immediate 
feedback? 
§ A study of extreme latency verification and how to perform benchmarks

§ Error estimation: How can error be accurately estimated in the precense of non-
stationary data streams when an concept is abruptly re-introduced



§ A theoretical framework is lacking that incorporates drift information in the 
labeled and unlabeled data
§ Less heuristics more statistics! 

§ Integration of expert-driven knowledge with data-driven knowledge


