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Abstract—In engineering related tasks, multiple types of neural
networks are common methods of solution. Beside the different
kinds of artificial neural networks, spiking neural networks
(SNN) represent a continuative development in information
processing within the computational units of a net. The properties
of this neural type is utilized in this contribution in order to
evaluate a uniaxial tension test of carbon reinforced specimen
regarding the appearance of cracks in the composite structure
during the experiment. The crack detection is considered as
showcase for further development of evaluation methods based
on SNNs with the focal point to engineering related experiments.
This contribution is divided into five main parts, whereas the
initial brief introduction is devoted to give an overview of neural
networks and their computational units, particularly with regard
to the classification of spiking neural networks. Since the pro-
posed application of SNNs targets the evaluation of experimental
data − especially crack detection − the uniaxial tension test of
carbon reinforced concrete specimen is introduced, which is the
basis for the experimental data. The utilized spike response model
(SRM) is further presented in order to conclusively apply the
method to experimental data for the purpose of crack occurrence
detection within the data.

I. INTRODUCTION

Neurons, in their biological form fulfil highly complex

tasks. In order to copy this capability artificial neural net-

works (ANN) with different layouts of the network itself as

well as varying neural types have been developed. Over the

time they evolved to more powerful and biological realistic

models and become efficient computational tools. Due to

the generally improved understanding of the brain and its

modes of information processing, multiple networks, e.g. feed-

forward neural networks (FNN), radial basis function neural

networks (RBFN), self organizing maps (SOM), probabilistic

or complex valued neural networks are developed for certain

tasks. Consequently the scope of application includes pattern

recognitions, function approximation, optimization tasks as

well as classification problems [1].

In order to classify the used spiking neural networks (SNN,

often referred to as pulsed neural networks PNN) into the

numerous ANNs, the classification based on their related

computational units according to [2] is further introduced.

Basically three different generations can be distinguished. The

fist generation is based on McCulloch-Pitts neurons as the core

unit. Characteristic for this neuron type, as well as derivations

Fig. 1: Drawing of neural components [3]

such as e.g. Hopfield nets or Boltzmann machines, is the solely

comprehend binary input and output. Hence, they become

universal for computations regarded to digital inputs as well

as outputs.

Second generation networks are based on computational units

featured with an activation function (e.g. sigmoid function).

Contrary to first generation neural networks, computations of

a continuous set of output values are possible as a result of e.g.

weighted sums or polynomials of input values. Representatives

are FNN or recurrent sigmoidal neural networks (RNN), which

are applicable for time dependent tasks. Evidently second

generation nets are able to compute functions with analog

input and output values, therefore they are applicable for

computations whereas any continuous function with a compact

domain and range can be approximated arbitrary well with a

single hidden layer. Additionally networks of this type are able

to support learning algorithms which are based on gradient

descent techniques. An overview regarding possible fields of

application in structural analysis is summarized in [4].

Regarding the subjective classification, SNNs are assumed as

the consequently third generation of neural nets. As further

described in [2], [3], [5], [6] SNNs mimics the information



Fig. 2: Simultaneous recordings of firing times of 30 neurons

from monkey striate cortex [6]

transfer in biological neurons, via precise timing of spikes or

sequences of these. The basic principle of SNNs consists in

the consideration of information encoding via the temporal

dimension. As depicted in Fig. 1 a biological neuron can

be divided into three components. In order of information

transmission, the components are denoted as dendritic tree,

soma and axon. According to [3], roughly speaking, signals

from neuron to neuron, arrive at the dendritic tree and further

transmitted to the soma and eventually to the axon. Especially

the transition zone between the soma and the axis is of

special significance for SNNs. If the total excitation caused

by the input is sufficient, an output signal is emitted which is

propagated along the axon and distributed to further neurons

by its branches, as briefly described in [3]. Due to the temporal

resolution SNNs present a large potential solving complex

time-dependent tasks by reason of the inherent dynamic

representation. As prior mentioned second generation ANN

somehow respect the biological idea of the firing rate by

means of e.g. the sigmoid function. According to [2] this rate

coding interpretation become questionable. Considering the

temporal dimension in information encoding in SNNs yields to

new insights into brain dynamics and could result in compact

representation of large scale neural networks. Experimental

evidence indicates that many biological neural systems use the

actual timing of single action potentials (further referred to as

spikes) to encode information. Studies from e.g. [5] and [6]

present the visualization of signal occurrences in a monkeys

striate cortex (spike trains, see Fig. 2). Consequently this

results lead to the investigation of a third generation of neural

networks which employs spiking neurons as an additional

computational unit.

This contribution comprehends the application of SNNs to

detect crack appearances within provided experimental data, in

order to develop an efficient as well as adjustable experiment

evaluation system for multiple experiment modes. Therefore

it is subdivided into a short introduction to the performed

experiment, followed by the utilized theory of spike response

models and conclusively the application to experimental data.

II. UNI-AXIAL CARBON CONCRETE TENSION TEST

In order to capture structural behaviour and determine char-

acteristic material properties, it is necessary to perform suitable

structural tests. An uniaxial tension stress test with carbon

reinforced concrete is utilizied for crack detection with SNNs.

As further described in [7], [8], the test setup is developed

to emphasize characteristic material parameters for the new

composite material. Therefore a homogeneous uniaxial stress

state is induced in the specimen. In Fig. 3 the test setup used

to obtain the stress strain dependency is depicted, whereas

the over all specimen length is l = 800mm. The gauge

length itself shall be considered as undermentioned, and is

therefore from no interest for the SNN based determination

of crack appearance. Depending on the material composition,

especially the stiffness ratio Etex (Young’s modulus of carbon

reinforcement) to Ec (Young’s modulus of concrete), major

cracks occur at the transition from compound load bearing

to load bearing solely by the reinforcement. To compare, and

eventually deduce uniform characteristic material properties,

as equal considered tests are foundation for ultimate state

parameters such as ultimate strength as well as strain. Charac-

teristic strength f(·) and stiffness ratios E(·) of the experiment

specimen are listed in Tab. I. An automatic determination of

cracks (based on existing data or while actual specimen test-

ing) is considered as supportive for future evaluation methods

and structural analysis.

Fig. 3: Uniaxial tension test of carbon reinforced concrete

specimen [7]



reinforcement parameters concrete parameters

Etex 142000 N/mm2 Ec ≥ 25000 N/mm2

ft,tex 2940 N/mm2 fc,c ≥ 80 N/mm2

TABLE I: Characteristic specimen parameters

III. BASIC PRINCIPLES OF SPIKING NEURAL NETWORKS

Regarding [1], several studies of the cortical pyramidal

neurons have shown, the timing of individual spikes as a

mode of information encoding is very important in various

biological neural networks. Generally, a presynaptic neuron

communicates with a postsynaptic neuron by means of trains

of spikes or respectively action potentials. In the biological

representatives, spikes have a fixed morphology and amplitude.

From [2], [3], [9], [10] two options of information transmission

encoding are known. Either the transmitted information is en-

coded in the frequency of spikes (rate coding) or in the timing

of spikes (pulse coding). The latter option is considered as

more powerful in terms of the wide range of information that

may be encoded by the same number of neurons. Therefore

pulse coding is utilized for the crack detection application. For

the sake of simplicity the mathematical abstraction avoids the

modeling of an actual spike train (in biological manner). The

firing state is simply coded as binary output of a presynaptic

neuron. For fire state the output returns the values 1 or

0 otherwise, at a certain time t(f), whereas the temporal

dimension contains the actual analog data. As further detailed

described in [2], [3] the later used mathematical formulation

of the neural processes is a simplified model that focuses just

on few aspects of a biological neuron.

The following utilized type of SNN is called spike response
models (SRM, see [10], [11]), and adopted to the purpose of

crack detection. It is a simplified derivative of the Hudgkin
Huxley model. Subscripts i, j are used to define the unidirec-

tional relations between a neuron i and presynaptic neurons

j. In case of a network structure a set of presynaptic neurons

Γi is defined as

Γi = {j | presynaptic to i} . (1)

In the utilized SRM, which assumes that a neuron i fires

whenever its state variable ui reaches a certain threshold ϑ.

Evidently, the moment of crossing the threshold equals the

firing time t
(f)
i , resulting in the spike train for neuron i

Fi = {t(1)i , . . . , t
(n)
i } (2)

The internal state variable ui represents the membrane po-

tential (electric potential difference) of a certain neuron in

terms of a biological representation. One constraint to the

fire mechanism is the prescribed positive monotonic behaviour

while crossing the threshold. Consequently Eq. (2) becomes

Fi = {t | ui(t) = ϑ ∧ u′
i(t) > 0} . (3)

After a spike is triggered, a sequence of events is initiated

in biological original. Ion channels open and close, ions flow

through the cell membrane into neuron itself, others flow out.

-5 5 10

-0.4

-0.2

0

Fig. 4: Kernel function Eq. (4) of neuron i

In terms of the state variable ui, a sharp peak of the voltage

followed by a long lasting negative after potential (spike after

potential SAP) occurs.

In the numerical case, the generic time course will be de-

scribed in the used model by a kernel function ηi(s) (neural

refractoriness), where s = t− t
(f)
i > 0 is equal to the elapsed

time since the crossing of the state variable at t
(f)
i . The applied

kernel function in this contribution

ηi(s) = −ξ exp

(
−s− δabs

τm,i

)
H(s− δabs) , (4)

is shown in Fig. 4. Hereby the Heavyside step function is

denoted by H, which is defined as

H(s) =

{
0 ∀ s ≤ 0

1 ∀ s > 0
. (5)

In [3], [10], [11] the term KH(s)H(s− δabs) is subtracted to

Eq. (4) in order to model the absolute and negative refractori-

ness, whereas in this contribution this part is neglected. Despite

the missing expression, δabs is used in favour of numerical

stability by inducing a delay between the firing time t
(f)
i and

the actual refractory period of the neuron, which duration

is controlled by the constant τm,i. This spike event itself is

transmitted to other postsynaptic neurons.

Each neuron responses to the spike trains of presynaptic

neurons Fj . This voltage response is specified by a function

εij(s), whereas s = t − t
(f)
j denotes likewise the elapsed

time since presynaptic spike occurrence. For each neuron

the response to a spike can be either excitatory (excitatory

postsynaptic potential, EPSP) or equally inhibitory (inhibitory

postsynaptic potential, IPSP). For this cases the membrane po-

tential is either lowered or raised by εij(s). In this contribution

only EPSP is used in the form

εij(s) =

[
exp

(
−s− δax

τm,j

)
− (6)

− exp

(
−s− δax

τs

)]
H(s− δax) .

As shown in Fig. 5, δax defines the delay of the EPSP

regarding t
(f)
j . An axonal transmission delay is respected by

δax, which originates from the actual transmission through the

biological axon (see Fig. 1). Again, the constant τm,j manages

the duration of the excitatory potential, where the shape is

controlled by τs. In the neuron itself, all contributions such

as the internal spike firing or response to presynaptic spike

trains is summed up to the neural state variable (membrane
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Fig. 5: Excitatory postsynaptic potential, see Eq. (6)

potential) ui.

Therefore ui is given by the linear superposition of all contri-

butions as

ui(t) =
∑

t
(f)
i ∈Fi

ηi

(
t− t

(f)
i

)
+ (7)

+
∑
j∈Γi

∑
t
(f)
j ∈Fj

wijεij

(
t− t

(f)
j

)
.

Since this contribution describes the application for only one

sensor, which is considered as presynaptic neuron, the network

conclusively consists of only one firing neuron. Hence, the

weight is w12 = 1 and the membrane potential simplifies for

this particular evaluation to

u(t) = η
(
t− t

(f)
i

)
+ ε

(
t− t

(f)
j

)
. (8)

An section of an exemplary tensile data is encoded by pulse

coding (described further on) and evaluated by a single spiking

neuron. In Fig. 6, the state variable ui as well as the spike train

Fj is depicted.

Fig. 6: Encoded experimental data points (black dots), spike

train (red) and related internal state variable ui(t)
(green)

IV. APPLICATION TO DATA SAMPLES

To determine the cracks during the experiment, the either

real time recorded machine data or an existing data set of is

presumed as presynaptic spike train Fj . The specimen test (see

Section II) is displacement driven with a constant displacement

increment w = 0.015mm. The measured force is used as

the criteria property in terms of crack detection. External

displacement is in equilibrium with internal stresses, which

are captured by the recorded force F (compare Fig. 3). Crack

mechanics shall be neglected in this contribution, nevertheless

provides [12] a comprehensive summary of possible crack

modes and related mechanics. In case of a crack of concrete

at a certain point, the stiffness ratio of the reinforcement

Etex < Ecomposite leads to a larger strain (crack opening)

and to a decreased measurable force, compared to an intact

state (uncracked stress state) of the specimen. First attempts to

parameter value parameter value

δabs 0.1 τs 0.009
δax 0.1 ξ 0.5
τm,i 10 ϑ 2.5
τm,j 2.5

TABLE II: Parameter set of spiking neuron

detect cracks by e.g. evaluation of distribution of force jumps

within a data set, lead to a not significant threshold in order to

distinguish cracks. Aiming to a general method, less dependent

to testing machines (measure frequency) and specimen size, a

more adoptable method with use of a single spiking neuron

has been developed.

The data is transformed to the temporal dimension via pulse

coding. For a given experimental data set of stress data

σ = [σ1, . . . , σns
], an additional data set is created storing

consecutive increments σΔ = [σΔ,1, . . . , σΔ,i, . . . , σΔ,ns−1],
with σΔ,i = σi+1−σi. The resulting firing times of the presy-

naptic spike train Fj = {t(1)j , . . . , t
(ns−1)
j } are determined by

t
(k)
j =

max[σΔ]/κt

σΔ,k
, k = 1, . . . , ns − 1 . (9)

However, the temporal coding of the information can be

assumed as inverse to the actual physical behaviour, since

large difference is represented by a minor time gap between

the spikes. The visual representation of the pulse encoding is

shown in Fig. 7b) and in the coded state Fig. 7c). This encoded

section is associated to the original section of the stress strain

dependency depicted in Fig. 7a). As the figures clarify, the

obvious crack is respected in the high pulse rate at approx.

t > 150 (see Fig. 7c)).

In use of the neural parameter shown in Table II the equivalent

state variable for an section of a exemplary experimental data

is shown in Fig. 8. Due to further constraint

σ′(t) < 0 or σ
t
(k)
i

− σ
t
(k−1)
i

< 0 (10)

not every spike yields to an excitory postsynaptic potential

(compare Fig. 6). Finally, four major peaks, each greater then

the selected threshold ϑ, lead to resulting firing times Fi =
{5, 55, 206, 270} (decoded to consecutive index). Inherent to

the method is firing of the single neuron equal to appearance

of a crack, therefore the decoded firing times are shown for

each scale (consecutive index and strain) in Fig. 9 as well

as Fig. 10. Since the evaluation of a tensile test, regarding

the count of crack appearance, sporadically is carried out in a

visual evaluation, minor cracks tend to be neglected in favour

of comparably major cracks. Therefore the crack detection for

considerably large cracks is assumed as adequate.

V. CONCLUSION AND OUTLOOK

Within this contribution the basic principles of SNN are

mentioned and the spike response model is adopted in order

to detect cracks within structural tensile experimental data of



Fig. 7: a) Original stress strain dependency

b) Stress over consecutive index

c) Stress spike train after temporal encoding

Fig. 8: Spike train Fj and the corresponding state variable

ui(t)

carbon reinforced concrete specimens. Hereby pulse coding

is utilized to decode the data to a temporal dimension. The

neurons internal state variable only responses to an excitatory

postsynaptic potential to presynaptic spike trains (real time

sensor data or data set). In terms of the application to actual

Fig. 9: Detected cracks regarding to the consecutive index

Fig. 10: Detected cracks with the strain stress dependency

test data, evidently major cracks within the data could be

identified. The method is adjustable to the crack size only

with variation of three constants ϑ, τm,i, τm,j and therefore

becomes simply adaptable to different testing environments

as well as evaluation tasks. In principle, further develop-

ments could result to a network structure of spiking neurons

considering multiple requirements of the data evaluation by

construction of a neural net for different sensor types or

equivalent input dimensions. In theory the proposed method is

capable of real time crack detection, hence testing situations

which require appearance of initial cracks could be designed

independently from human interaction and subjective interpre-

tation.
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