
Automatic Multi-Step Signature Derivation
from Taint Graphs

Martin Ussath, Feng Cheng, Christoph Meinel
Hasso Plattner Institute (HPI)

University of Potsdam, 14482, Potsdam, Germany
Email: {martin.ussath, feng.cheng, christoph.meinel}@hpi.de

Abstract—An increasing number of attacks use advanced tac-
tics, techniques and methods to compromise target systems and
environments. Such multi-step attacks are often able to bypass
existing prevention and detection systems, such as Intrusion
Detection Systems (IDSs), firewalls and anti-virus solutions. These
security systems either use an anomaly-based or a signature-
based detection approach. For systems that utilize a signature-
based approach, it is relevant to use precise detection signatures
to identify attacks. The creation of signatures is often complex
and time consuming, especially for multi-step attacks.

In this paper, we propose a signature derivation approach
that automatically creates multi-step detection signatures from
taint graphs. The approach uses the recorded log events of an
attack and the event attribute tainting approach to correlate the
events and to create a taint graph. This graph, which provides
comprehensive details about the attack, is then used to derive a
precise multi-step detection signature. Therewith, this approach
can reduce the needed time to create a multi-step signature as
well as the complexity of this process. For the evaluation of
the proposed approach, we simulated a multi-step attack with
real world attack tools and methods. Based on the recorded
log events and the implemented signature derivation system
we automatically derived a multi-step detection signature that
describes all relevant events and their relations.

I. INTRODUCTION

Attackers try to compromise single computer systems and
whole network environments on a regular basis. The attacks
have different objectives, such as stealing credentials or ex-
filtrate sensitive information [1]. The used tactics, techniques
and methods of an attack often depend on the sophistication
of the adversary. Various security systems, such as Intrusion
Detection Systems (IDSs), firewalls and anti-virus solutions,
are deployed to prevent and detect attacks. These systems
usually make use of signature-based or anomaly-based ap-
proaches. Standard attacks, which use well known attack meth-
ods for targeting a high number of systems in an automated
way, can most often be detected with the currently deployed
systems and approaches. In contrast to this, more sophisti-
cated attackers are able to bypass existing security systems
and compromise even high profile targets, such as Lockheed
Martin [2], RSA [3] and Bit9 [4], although these companies
probably have stat-of-the-art security systems in place. To
propose reasonable prevention and detection approaches for
more advanced attacks, it is necessary to have a comprehensive
understanding of the multi-step attack activities.

For the identification of attacks, the analysis of recorded
log events plays an important role. The detection of stan-

dard attacks is most often possible with simple single-step
signatures. The reason for this is that such attacks most often
have certain characteristics that can be easily identified in a
single log event. Relevant characteristics, such as IP addresses,
user agents or URLs, can be used to create such detection
signatures. Due to the fact that standard attacks are often
highly automated and target a large number of systems, they
can be easily identified and a corresponding signature can
be created. In general, it is possible to create signatures for
standard attacks in an efficient way. For multi-step attacks the
creation of reasonable and precise signatures is more difficult,
due to the fact that these attacks can not be detected with
the help of a single log event. For the detection of such
attacks, it is necessary to identify and correlate the different
malicious steps. Only in the context of the different events,
which recorded the single malicious activities, it is possible
to comprehensively detect a multi-step attack. Therefore, the
creation of multi-step signatures is very time consuming
and difficult. To create an accurate signature, the relevant
relations between the different events need to be identified
and described in a signature. Furthermore, it needs to be
considered that sophisticated attacks are often customized to
compromise different target infrastructures. Therefore, multi-
step signatures should also allow the detection of attacks that
are slightly different. For the detection of sophisticated attacks,
it is necessary to be able to efficiently create precise multi-step
signatures.

In this paper we want to propose an approach that is
able to create detection signatures for multi-step attacks in
an automated manner. Therefore, we use the event attribute
tainting approach to identify and trace all events that belong
to a multi-step attack. Through the correlation of the different
events and the provided context information, it is possible to
derive a multi-step signature from a taint graph. To describe
the complex relations between the different attack steps we
use the Event Description Language (EDL).

The remainder of this paper is structured as follows. In
Section II we give a short overview about related work that ad-
dress correlation approaches, signature languages and existing
signature creation and derivation approaches. In the following
section, we describe the event attribute tainting approach that
is used to correlate log events and to create taint graphs.
Furthermore, we explain the signature derivation approach and
the procedure to derive a valid EDL signature from a taint

graph. In Section IV we create a multi-step signature for a
simulated attack to evaluate the proposed signature derivation
approach. Finally, in Section V we conclude our work and
propose future work.

II. RELATED WORK

A. Correlation

Through the usage of different approaches, correlation algo-
rithms are able to identify relations between objects or entities.
In the context of attack detection, these approaches can be
used to identify the different malicious activities of multi-
step attacks based on events. For a comprehensive detection of
complex attacks, it is necessary that the correlation approach
is capable to identify the various malicious activities of an
attacker and correlate them. In some cases, it might not
even be possible to detect an attack without correlating most
of the performed activities. The reason for this is that the
single actions of an attacker might look benign and only the
correlated activities reveal the performed attack.

The usage of timing relations is one approach to correlate
similar events [5]. The objective is to aggregate events that do
not provide relevant additional information for the analysis.
This relatively simple correlation approach can support the
management and diagnosis of infrastructures, but for the
detection of multi-step attacks it is not sufficient to correlate
events that are similar and have a timing relation. The reason
for this is that complex attacks can be performed over a longer
period of time and the attackers sometimes also change their
attack methods.

Other correlation approaches try to identify relations be-
tween IDS events to detect multi-step attacks [6], [7], [8], [9].
For these approaches it is relevant that an IDS is capable to
identify at least some of the attack steps and provide the cor-
responding alerts to the correlation system. If a sophisticated
attack can bypass the anomaly-based or signature-based IDS,
the corresponding alerts will not be created and the correlation
approaches will not work. Furthermore, these systems rely on
patterns and rules that describe the different correlation sce-
narios. This shows, that these correlation approaches require a
substantial amount of knowledge about an attack, to define the
correlation rules and also the signatures as well as thresholds
of the IDS. In general, such detailed information is most often
not available for multi-step attacks.

B. Signature Languages

Detection systems often rely on signatures to detect attacks.
Signatures describe relevant characteristics of an attack that
can be used to identify the malicious activities of an attacker.
It is relevant to use precise signatures, because otherwise the
detection system might trigger a high number of false positive
alerts. Nevertheless, a signature should also be flexible, so
that a slightly modified attack can also be identified. These
requirements show that the creation of reasonable signatures is
challenging. Furthermore, it is also crucial to select a suitable
language to describe a precise signature.

Various existing systems, such as Snort, Bro or Mod Secu-
rity, are able to detect single-step attacks. The correspond-
ing signature languages of these systems provide different
possibilities to describe characteristics of an attack. Due to
the fact that these languages can only be used to describe
single-step attacks, the described signatures focus on single
requests or network packets. Therefore, the creation of new
signatures is relatively easy and also the detection systems
can evaluate the signatures relatively fast. Nevertheless, more
complex multi-step attacks, which can only be detected when
multiple malicious events are considered within a signature,
can not be described with these languages.

Signature languages that support the description of multi-
step attacks need to provide additional capabilities and are
therefore often more complex. Nevertheless, also signature
languages, such as STATL [10], LAMDA [11], SHEDEL and
EDL [12], provide different levels of expressiveness [13].
In general, it is often more complex to describe a precise
signature for a multi-step attack, due to the multiple events
and their relations that need to be considered in the signature.
Furthermore, it requires more resources to evaluate multi-
step signatures, because different states and other context
information need to be available during the processing of the
signature.

C. Signature Derivation and Creation

The creation of reasonable signatures is challenging, due to
the fact that the described characteristics of an attack should
allow a precise identification of the malicious activity. At the
same time the description of the attack should also be flexible,
so that a slightly modified versions of the attack can also be
detected with the same signature. These requirements apply to
single-step signatures as well as multi-step signatures, but the
creation of signatures for multi-step attacks is more complex
and therefore also often more time consuming.

To make the derivation and creation of signatures more
efficient, different automatic and semiautomatic approaches
were proposed that are capable to extract the characteristics
of an attack and describe a corresponding signature [14], [15],
[16]. In a first step these approaches need to identify the
relevant characteristics of an attack that can be used within
a signature. This requires that these systems know if a packet
or event belongs to an attack or not. Therefore, they use data
from honeypot systems or rely on correlated alerts. If a multi-
step signature should be created, the approaches also need
to describe the relations between the different steps in the
signature. The automatic and semiautomatic approaches often
focus on single-step signatures and if these systems support
the creation of multi-step signatures then they are only able to
describe relatively basic relations between the different steps,
due to the used correlation approach.

III. SIGNATURE DERIVATION APPROACH

For the creation of multi-step signatures, it is necessary
to use a suitable correlation approach that provides detailed
information about the different attack steps and their relations.

Parsing and
Normalization

Event Logs Normalized
Events

Event Attribute
Tainting

Taint Policies

Meta
Information

Taint Graph

Signature
Derivation

EDL Signature

Fig. 1. Signature Derivation Steps

Therefore, our approach derives signatures from so-called taint
graphs. These graphs provide comprehensive details about
all log events that recorded the malicious activities of an
attacker and the corresponding event relations. The event
attribute tainting approach is used to create taint graphs from
the identify events and their relations [17]. Due to the fact,
that an automated correlation approach is used to provide
all relevant characteristics of a multi-step attack, also the
signature derivation approach can be automated. Figure 1
shows the different steps of the signature derivation approach.
Subsequently, the different steps are described in more detail.

A. Event Attribute Tainting

1) Concept: For the correlation of log events it needs to be
considered that all correlation approaches rely on the fact that
most of the malicious activities of an attacker were recorded
within events and the relations between these events are
traceable. Furthermore, the events need to contain meaningful
attributes that allow to identify relations between different
events. Nevertheless, the log events do not provide all details
about the performed activity and therefore only a limit amount
of information can be used to identify relations between
events, which leads to a certain inaccuracy.

The event attribute tainting approach uses the general con-
cept of tainting [18] and applies it to event correlation, to
provide an automated way to identify related events of a multi-
step attack. For the identification of all relevant events, the
correlation approach taints characteristic event attributes and
propagates the taint to related events with same or similar
attributes. With this procedure it is possible to identify all
events that belong to a multi-step attack and the result of the
correlation allows to trace an attack in a comprehensive way.

2) Requirements: For the tainting based correlation ap-
proach, it is necessary to parse and normalize the event
logs that should be processed. Only if the correlation system
knows the structure of the events and the semantic of the
different event attributes, it is possible to identify relations
between events. This is especially relevant for attributes that
can be changed by an attacker, because these attributes might
influence the propagation of the taint and also the result of
the correlation system. Due to the normalized structure of the
events, the tainting approach is also able to correlate different

types of events that have diverse attributes and a different
structure.

Next to the normalized events, the event attribute tainting
approach also requires initial taint sources and taint policies.
The initial taint sources are usually the indicators that are used
as starting point for an investigation. These indicators describe
characteristics of a potentially malicious activity that might
belong to a multi-step attack. The taint policies describe the
relevant attributes and the potential attribute relations in an
abstract way. Based on this information taint is propagated
between the different events. Therefore, taint policies are
highly relevant for the correlation approach.

3) Taint Propagation Procedure: The event attribute taint-
ing approach uses the following procedure to propagate the
taint between related events. In a first step the initial taint
sources are used to identify events that contain the described
attributes of the initial indicators. These events get tainted and
will be analyzed with the help of the taint policy. All event
attributes that are specified in the policy will be extracted
and added to the set of taint sources. Afterwards, the set of
taint sources is used again to identify events that contain the
described attributes and are therefore related with the already
tainted events. These newly identified events will be analyzed
again and also further relevant attributes, which can be used
to identify relations, will be extracted and added to the set of
taint sources. These steps of the procedure will be repeated
until no new events and taint sources can be identified.

The different steps of the taint propagation can be rep-
resented in a graph. This so-called taint graph provides all
correlation details that are necessary to retrace the identified
relations between the different events. The nodes of the graph
represent the tainted events and the edges between the nodes
specify the attributes that were used to propagate the taint
between the events. The taint graph clearly shows which taint
source was extracted from which event and what relation
could be identified with the help of the extracted taint source.
Therefore, a taint graph makes the whole taint propagation
process transparent and allows to easily identify potential
imprecisions of the correlation result.

Although the general approach of identifying relations based
on identical or similar event attributes is reasonable, in some
cases this provide imprecise correlation results. The reason

for this is that it might be necessary to use additional context
information or more complex attribute relation descriptions
to identify indirect or weak relations. Therefore, different en-
hancements can be used to improve the precision of the event
attribute tainting approach. The usage of meta information
can support the identification of indirect attribute relations.
For example, the usage of passive DNS information could
reveal a correlation between two events with different IP
addresses. Furthermore, also the description of more complex
taint sources, which consist of multiple different attributes, can
improve the precision of the taint propagation. An additional
method to improve the results of the correlation approach is
to use taint labels from 1 to 100 to express the strength of
a relation between two events. This also allows to describe
uncertain event relations. To support this more fine granular
taint labels, it is necessary to assign each event attribute a
significance level and calculate the corresponding taint label
for each event relation. In general, these enhancements need
to be described within the used taint policy so that they can
be evaluated during the propagation of the taint.

B. Signature Derivation from Taint Graphs

1) Signature Language: A taint graph describes all relevant
log events and event relations of a multi-step attack that are
necessary to create a detection signature. Due to the fact that
the signature language needs to be capable to describe the
multiple steps of an attack and the corresponding relations, our
approach uses the Event Description Language (EDL) [12] to
describe a multi-step signature.

EDL represents multi-step attacks in a colored Petri net,
where the system or signature state is represented as a place
and the system events describe transitions between the places.
This signature language is very expressive and therefore dif-
ferent intra-event conditions and inter-event conditions can be
used to describe very precise signatures. The main parts of an
EDL signature describe the existing places and the possible
transitions. The description of a place consists of an optional
type (e.g., initial or exit) and optional features that specify
property mappings. To define a transition, it is necessary to
specify a type, conditions, mappings and actions. Due to the
expressiveness of EDL [12], [13], it is possible to describe
complex multi-step signatures [19].

2) Signature Derivation Approach: The signature deriva-
tion approach uses the provided attack details of the taint
graph to derive an EDL signature. Figure 2 shows the general
approach that is used to derive an EDL signature from a taint
graph. During the automatic derivation process, the approach
tries to directly translate the taint graph into an EDL signature,
to preserve the structure and to minimize the complexity of
the signature. Nevertheless, it is necessary to add artificial
transitions and places in an automated way to ensure the
signature validity. The derivation approach maps events from
the taint graph to transitions in the EDL signature and the
places in the signature are used to describe the state after
a certain event was observed. To describe the transitions,
all relevant event attributes are used to specify intra-event

conditions. These conditions need to ensure that only events
with the correct attributes trigger the transition and move the
state of the signature. Furthermore, the inter-event conditions
of the transitions are used to describe the taint sources of
the taint graph, which were used to propagate the taint to
the corresponding event. The taint sources that are needed to
describe the inter-event conditions are specified in the mapping
section of the “parent” event transition and the extracted taint
sources are stored within the place that describes the state
after the “parent” event occurred. The stored values of the
place can then be referenced in the conditions section of
the “child” event. For the specification of the conditions,
especially for the intra-event conditions, it is necessary to
use only event attributes that are characteristic for a certain
event. If nonrelevant attributes (e.g., timestamp) are used as
conditions, the signature will only describe a concrete instance
of an attack. This will result in false negatives, because such a
signature cannot be used to detect other instances of the attack
or slightly changed attacks. In cases where it is not possible
to identify relevant attributes and specify the corresponding
conditions, the signature will be imprecise and lead to false
positives.

To create a valid and reasonable EDL signature it is
necessary that the derivation approach automatically adds
artificial transitions and places in three different cases. If
one taint source leads to the tainting of multiple events, it
is necessary to create an artificial transition and an artificial
escape place. The reason for this is that the newly tainted
events can most often occur in an arbitrary order and therefore
it is not known which transition should be consuming and
which should be non-consuming. To describe this case in an
EDL signature, the approach sets all transitions of the newly
tainted events to non-consuming and the artificial transition
consumes the token of the “parent” event place (where the
taint source was extracted) and it also has a non-consuming
connections to all “child” event places. This artificial transition
is triggered spontaneously, if all required tokens are available,
and consumes the token of the “parent” event and moves it to
the escape place. Therewith, it can be ensured that all “child”
events can occur in an arbitrary order and the token of the
“parent” event is also consumed.

Another case that needs to be considered during the deriva-
tion of the detection signature is, if multiple events and the
corresponding transitions are identical. Due to the properties of
EDL it is not possible to describe just the same transition mul-
tiple times. To describe multiple identical events, an artificial
consuming transition has to describe the first occurrence of the
event and change the state of the signature from the “parent”
place to an artificial place. This additional place has another
consuming transition with the conditions of the event and a
counting variable. Another spontaneous transition changes the
state from the artificial transition to the corresponding event
places, if the event occurred as often as in the corresponding
taint graph.

In the third case one artificial transition and place is needed
to consume all tokens of the leaf places. Due to the fact

Mappings
Inter-Event

Condition

Intra-Event

Condition

Taint Graph EDL Signature

EP

(Parent Event)

EC

(Child Event)

...

...

Taint Source
Attribute(s)

...

place_p

tP

tC

place_c

Event

intra_condition(s)==

event_attribute(s)

[place_p].attribute(s)

=taint_source_

attribute(s)

Extract Relevant
Event Attribute(s)

Extract Relevant
Event Attribute(s)

Event

intra_condition(s)==

event_attribute(s)

inter_condition(s)==

[place_p].attribute(s)

...

Fig. 2. General Signature Derivation Approach

that the signature needs to ensure that all events of the taint
graph were observed, it is necessary that an artificial transition
is spontaneously triggered if the corresponding leaf places
contain tokens. The artificial transition consumes all tokens
of the leaf places and changes the state of the signature to the
attack state, which indicates that all relevant events occurred
and the signature matched these events.

3) Signature Abstraction: Due to the fact that different
signatures may require different levels of abstractions, the
automatic signature derivation approach might only provide
a template for a concrete multi-step signature that need to
be adjusted by a security analyst. The reason for this is that
the automatically derived signatures precisely describe the
correlated events and their relations, but in certain cases the
system can not decide if an attribute or value is characteristic
for an attack or can be changed dynamically. This could lead
to signatures that are too generic or too concrete. To achieve a
reasonable level of signature abstraction it might be necessary
that a security analyst reviews the created signatures and adjust
different parts of the description to ensure precise signatures.

IV. EVALUATION

A. Approach

For the evaluation of the proposed automatic multi-step
signature derivation approach, we simulated a successful attack
against a web application that uses a vulnerable version of
the Apache Struts framework. The recorded log events of this
attack were normalized and stored in a database. Afterwards,

these events and the attribute tainting based correlation ap-
proach were used to create a taint graph of the attack. To
derive a valid multi-step EDL signature from the taint graph,
we implemented a proof of concept system in Python that
analyzes the taint graph and derives a multi-step detection
signature.

B. Simulated Attack

To evaluate the signature derivation system, we simulated
a successful multi-step attack against a web application. This
application was deployed on a Tomcat server and used the
Struts framework in version 2.3.15. This version of Struts has
a known vulnerability (CVE-2013-2251) that allows remote
command execution1. To show that our approach is able to
describe signatures for real world multi-step attacks, we used
an existing exploitation tool that is capable to exploit different
vulnerabilities of the Struts framework [20]. Furthermore, the
simulated attacker used the reDuh tunneling tool2 [21] and
the vulnerable web application to get access to the internal
infrastructure of the target.

In the first step, the attacker exploits the vulnerability to
gather relevant meta-information, such as active user and web
path, from the target system to prepare further steps of the
attack. This meta-information is then used to upload an addi-
tional POST-based upload script to the server. This additional
upload script is necessary, due to the fact that the exploitation
of the Struts vulnerability is performed over GET parameters,

1https://struts.apache.org/docs/s2-016.html
2https://github.com/sensepost/reDuh

root

event_1
08/Jul/2015:17:05:12 +0200

192.168.0.10
/struts2-blank/example/?redire[...]

200
* Mozilla/5.0 (compatible; Goo[...]

event_2
08/Jul/2015:17:05:12 +0200

192.168.0.10
/struts2-blank/example/?redire[...]

200
* Mozilla/5.0 (compatible; Goo[...]

event_3
08/Jul/2015:17:05:59 +0200

192.168.0.10
/struts2-blank/example/?redire[...]

200
* Mozilla/5.0 (compatible; Goo[...]

event_5
08/Jul/2015:17:09:21 +0200

192.168.0.10
/struts2-blank/index2.jsp?f=in[...]

200
Mozilla/5.0 (Windows NT 6.1; W[]

event_8
08/Jul/2015:17:11:41 +0200

192.168.0.101
/struts2-blank/index_bak.jsp?a[...]

200
Java/1.8.0_45

Taint Level: 40
'request_resource': {"$regex":

u"\?redirect:|\?action:"}

event_9
08/Jul/2015:17:12:04 +0200

192.168.0.101
/struts2-blank/index_bak.jsp?a[...]

200
Java/1.8.0_45

event_7
08/Jul/2015:17:11:41 +0200

192.168.0.101
/struts2-blank/index_bak.jsp?a[...]

200
Java/1.8.0_45

event_6
08/Jul/2015:17:09:47 +0200

192.168.0.10
/struts2-blank/index_bak.jsp

200
Mozilla/5.0 (Windows NT 6.1; W[...]

event_4
08/Jul/2015:17:06:23 +0200

192.168.0.10
/struts2-blank/index2.jsp

200
Mozilla/5.0 (Windows NT 6.1; W[...]

Taint Level: 40
'request_resource': {"$regex":

u"\?redirect:|\?action:"}

Taint Level: 40
'request_resource': {"$regex":

u"\?redirect:|\?action:"}

Taint Level: 80
'src_ip': '192.168.0.10'

Taint Level: 80
'src_ip': '192.168.0.10'

Taint Level: 80
'src_ip': '192.168.0.10'

Taint Level: 40
'request_resource': {"$regex":

u"/struts2-blank/index_bak.jsp"}

Taint Level: 40
'request_resource': {"$regex":

u"/struts2-blank/index_bak.jsp"}

Taint Level: 40
'request_resource': {"$regex":

u"/struts2-blank/index_bak.jsp"}

Fig. 3. Taint Graph of the Simulated Attack

which limits the size of the files that can be uploaded. In the
third step of the attack, the upload script is used to upload the
reDuh server component to the web server. Afterwards, the
simulated attacker configures the server component to create
a tunnel. In the last step of the attack, the created tunnel is
used to get access to the internal infrastructure.

During the simulation of the attack, we also changed the
source IP address of the attacker, because this is also common
for real world adversaries and makes the correlation as well
as the detection signature more complex. All the performed
malicious activities were recorded in the web server logs,
which are utilized to create the taint graph.

C. Taint Graph

For the creation of the taint graph it is first necessary
to normalize the recorded web server log events and store
them into a database. Afterwards, the attribute tainting based
correlation approach can be used to correlate the events of the
attack and create the taint graph. For the correlation of the
simulated attack, the GET parameters ?redirect: and ?action:
were used as initial taint sources. These two parameters can be
used to exploit the remote command execution vulnerability
in Struts. Furthermore, Listing 1 shows the taint policy that
was utilized to identify the relations between the events.

The resulting taint graph of the tainting based correlation
system is shown in Figure 3. To improve the readability of the
graph we truncated all strings with more than 30 characters

and also reduced the number of events that recorded the usage
of the reDuh tunnel. The graph clearly shows which event
attributes were extracted from the events and used as taint
sources to identify related events. The events 1, 2 and 3
are correlated with the root node, because all three requests
contain one of the GET parameters that were defined as initial
taint sources. Afterwards, the source IP address of event 1 is
added to the set of taint sources and leads to the identification
of events 4, 5 and 6. The remaining events (7, 8 and 9) are
related with event 6 due to the usage of the reDuh server
component that is stored in the index bak.jsp file.

Listing 1
TAINT POLICY

{ "significance_value":
{ "src_ip": 80,

"user_agent": 20,
"request_resource": 40 },

"taint_attributes":
["src_ip"],

"conditional_taint_attributes":
{ "request_resource": 50,

"user_agent": 60 },
"node_labels":

["time_stamp",
"src_ip",
"request_resource",
"status_code",
"user_agent"]

}

Start
(place_0)

place_1 place_2

t1 t2

+

place_3

place_6place_4

place_6*

place_8place_7 place_9

attack

t3

t4

place_5

t5 t6

tA2

tA4

tA3

tA5

+ +

escape

tA1

+ ++

+ + +

Event

request_method==

"GET"

status_code==

"200"

user_agent=="*

Mozilla/5.0 []"

request_resource=="

?redirect:$%7B%[]"

[place_1].src_ip=

src_ip

Event

request_method==

"POST"

status_code==

"200"

user_agent=="*

Mozilla/5.0 []"

request_resource=="

?redirect:$%7B%[]"

Event

request_method==

"GET"

status_code==

"200"

user_agent=="Mozill

a/5.0 (Windows []"

src_ip==

[place_1].src_ip

SPONTANEOUS
Event

request_method==

"GET"

status_code==

"200"

user_agent=="Java/

1.8.0_45"

request_resource

==[place_6].request

_resource

[place_6*].request_

resource=request_

resource

[place_6*].count=1

Event

request_method==

"GET"

status_code==

"200"

user_agent=="Java/

1.8.0_45"

[place_6*].count=

[place_6*].count +1

request_resource

==[place_6*].reques

t_resource
SPONTANEOUS

[place_6*].count==3SPONTANEOUS

Mappings
Inter-Event

Condition

Intra-Event

Condition

Event

request_method==

"GET"

status_code==

"200"

user_agent=="*

Mozilla/5.0 []"

src_ip==

[place_1].src_ip

[place_6].request_

resource=request_

resource

Fig. 4. EDL Signature Graph of the Simulated Attack

Further details of the event attribute tainting approach and
the creation of taint graphs are described in [17].

D. Signature Derivation

The prototypical signature derivation system requires the
serialized taint graph as input for the creation of the EDL
signature. For the analysis of the graph the system deserializes
the input and starts the derivation procedure. The general
objective of the derivation system is to maintain the structure
of the taint graph and only add artificial places and transitions
to ensure the validity of the EDL signature. The derived
signature graph for the simulated attack, including a selected
number of transition descriptions, is shown in Figure 4. This
signature describes the events and the identified relations of
the taint graph within the corresponding transitions and places.
Therefore, the derived signature precisely specifies all steps

of the simulated attack. To ensure readability of the figure all
overlong strings were truncated.

For the description of the EDL transitions, the derivation
system defines the status code, the user agent and the request
method of the events as CONDITIONS (intra-event conditions)
of the transitions. The taint sources that were used to identify
the relations between the events, are defined as MAPPINGS
so that the specified attributes are extracted and can be used
to describe inter-event conditions. For example, the transition
t1 describes the occurrence of event 1 and therefore it is
necessary to specify a mapping to extract the source IP address
of the request and assign the concrete value of it to the attribute
of place 1. This value can then be used to identify the related
events that recorded the further steps of the attacker. For each
event node in the taint graph the signature has a corresponding
place.

Due to the fact, that place 1 has multiple successors and the
corresponding log events can occur in an arbitrary order, an ar-
tificial transition (tA1) and the place (escape) are needed. This
additional structure ensures that the signature still matches
even if the attacker performs the activities in another order
and the corresponding events 4, 5 and 6 (transitions t4, t5 and
t6) are then also recorded in this order.

The usage of the reDuh tunneling component is recorded
in the events 7, 8 and 9. These events contain only very few
relevant details about the performed activities. Therefore, the
derivation system creates a structure for these identical events
to count the occurrence. This requires three artificial transitions
(tA2, tA3 and tA4) and one artificial place (place 6*).

For the final detection of the simulated attack, it is necessary
that all leaf places (places 2, 3, 4, 5, 7, 8 and 9) contain a token.
This is necessary for transition tA5, which can change the state
of the signature to the attack place. If the signature reaches
this state, all described attack steps and the corresponding log
events cloud be observed and detected.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an automated approach that is
able to derive multi-step detection signatures from taint graphs.
In the first step, the event attribute tainting approach is used
to automatically correlate log events from a multi-step attack.
This correlation approach is able identify the relations between
the different log events and the corresponding taint graph pro-
vides comprehensive details about all attack activities. In the
second step, the taint graph is used to automatically derive a
multi-step EDL signature that describes the attack in a precise
way. The created detection signature describes all relations
between the events and the relevant event attributes. This
automated signature derivation approach allows to reduce the
complexity and the needed time to create multi-step signatures.

For the evaluation of this approach, we implemented a
prototypical signature derivation system and simulated a multi-
step attack with real world attack methods and tools. The
automatically derived EDL signature shows that the approach
is able to describe complex attacks and create valid detection
signatures. This signature does not only describe the concrete
instance of the attack, but also similar attacks.

To the best of our knowledge, the described signature
derivation approach is the first approach that is able to auto-
matically create complex multi-step signatures from correlated
log events, by using various event attributes to describe rele-
vant relations between the different malicious activities of an
attack.

For the future work it might be interesting to evaluate which
attributes should be used to define intra-event conditions in
EDL signatures. Therefore, the attributes of different event
types need to be analyzed and a rating for each attribute should
be calculated. With such a rating the proposed signature can
be improved and the security analyst that verifies the signature
can more easily decide which attributes should be used for the
description of the intra-event conditions.

Another task for future work cloud be to describe multi-step
signatures in a standardized cyber threat intelligence format
to allow multiple parties to derive specific signature from the
generic description of a multi-step attack. A widely used for-
mat for sharing threat intelligence is STIX (Structured Threat
Information eXpression), which can support the description of
attribute relations and multi-step attacks [22].

REFERENCES

[1] Mandiant Conculting, “M-Trends 2016,” Special Report, Feb. 2016.
[2] M. J. Schwartz, “Lockheed Martin Suffers Massive Cyberattack,” Infor-

mationWeek - DarkReading, May 2011.
[3] J. Markoff, “SecurID Company Suffers a Breach of Data Security,” The

New York Times, Mar. 2011.
[4] B. Krebs, “Security Firm Bit9 Hacked, Used to Spread Malware,” Krebs

on Security, Feb. 2013.
[5] G. Liu, A. K. Mok, and E. J. Yang, “Composite events for network

event correlation,” in Proceedings of the IEEE International Symposium
on Integrated Network Management, 1999.

[6] F. Cuppens and A. Miège, “Alert Correlation in a Cooperative Intrusion
Detection Framework,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P). IEEE, 2002.

[7] C. Krügel, T. Toth, and C. Kerer, “Decentralized Event Correlation for
Intrusion Detection,” in Proceedings of the International Conference
Seoul on Information Security and Cryptology, ser. ICISC ’01. Springer,
2002.

[8] W. Li and S. Tian, “An ontology-based intrusion alerts correlation
system,” Expert Systems with Applications, vol. 37, no. 10, 2010.

[9] P. Ning, Y. Cui, and D. S. Reeves, “Constructing Attack Scenarios
Through Correlation of Intrusion Alerts,” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS). ACM,
2002.

[10] S. T. Eckmann, G. Vigna, and R. A. Kemmerer, “STATL: An Attack
Language for State-based Intrusion Detection,” Journal of Compututer
Security, vol. 10, no. 1-2, Jul. 2002.

[11] F. Cuppens and R. Ortalo, “LAMBDA: A Language to Model a Database
for Detection of Attacks,” in Proceedings of the International Workshop
on Recent Advances in Intrusion Detection (RAID). Springer, 2000.

[12] U. Flegel and M. Meier, “Modeling and Describing Misuse Scenarios
Using Signature-Nets and Event Description Language,” it - Information
Technology, vol. 54, no. 2, 2012.

[13] M. Meier, “A Model for the Semantics of Attack Signatures in Misuse
Detection Systems,” in Information Security. Springer, 2004.

[14] C. Kreibich and J. Crowcroft, “Honeycomb: Creating Intrusion Detec-
tion Signatures Using Honeypots,” SIGCOMM Computer Communica-
tion Review, vol. 34, no. 1, Jan. 2004.

[15] U. Thakar, N. Dagdee, and S. Varma, “Pattern Analysis and Signature
Extraction for Intrusion Attacks on Web Services,” International Journal
of Network Security & its Applications (IJNSA), vol. 2, no. 3, 2010.

[16] L. Wang, A. Ghorbani, and Y. Li, “Automatic Multi-step Attack Pattern
Discovering,” International Journal of Network Security, vol. 10, no. 2,
2010.

[17] M. Ussath, F. Cheng, and C. Meinel, “Event Attribute Tainting: A New
Approach for Attack Tracing and Event Correlation,” in Proceedings of
the IEEE Network Operations and Management Symposium (NOMS),
2016.

[18] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You Ever Wanted to
Know About Dynamic Taint Analysis and Forward Symbolic Execution
(but might have been afraid to ask),” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P). IEEE, 2010.

[19] D. Jaeger, M. Ussath, F. Cheng, and C. Meinel, “Multi-step attack
pattern detection on normalized event logs,” in Proceedings of the
IEEE International Conference on Cyber Security and Cloud Computing
(CSCloud), Nov. 2015.

[20] N. Hayashi, “Chinese Underground Creates Tool Exploiting Apache
Struts Vulnerability,” Aug. 2013.

[21] SensePost, “Pushing the Camel through the Eye of a Needle,” Black Hat
USA, 2008.

[22] M. Ussath, D. Jaeger, F. Cheng, and C. Meinel, “Pushing the Limits
of Cyber Threat Intelligence: Extending STIX to Support Complex
Patterns,” in Proceedings of the International Conference on Information
Technology : New Generations (ITNG), 2016.

