
Particle Swarm Optimisation Representations
for Simultaneous Clustering and Feature Selection

Andrew Lensen, Bing Xue, Mengjie Zhang
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

{andrew.lensen, bing.xue, mengjie.zhang}@ecs.vuw.ac.nz

Abstract—Clustering, the process of grouping unlabelled data,
is an important task in data analysis. It is regarded as one of the
most difficult tasks due to the large search space that must be
explored. Feature selection is commonly used to reduce the size
of a search space, and evolutionary computation (EC) is a group
of techniques which are known to give good solutions to difficult
problems such as clustering or feature selection. However, there
has been relatively little work done on simultaneous clustering
and feature selection using EC methods. In this paper we
compare medoid and centroid representations that allow particle
swarm optimisation (PSO) to perform simultaneous clustering
and feature selection. We propose several new techniques which
improve clustering performance and ensure valid solutions are
generated. Experiments are conducted on a variety of real-world
and synthetic datasets in order to analyse the effectiveness of
the PSO representations across several different criteria. We
show that a medoid representation can achieve superior results
compared to the widely used centroid representation.

I. INTRODUCTION

Clustering is an important part of exploratory data mining
which aims to group similar items (instances) of a dataset
together into a number of natural groups (clusters) [1]. Unlike
other common data mining tasks such as classification and
regression, clustering is an unsupervised learning task; there
are generally no provided labels for the data that can be used
for training. Instead, the performance of a clustering solution
(partition) is measured by using one or more of a wide range
of metrics which give an indication of the quality of a partition
[2], [3]. Furthermore, the clustering problem has been shown
to be NP-hard when there are more than two clusters [4].

Feature selection (FS), the technique of selecting a subset
of effective features (i.e. data attributes) for use in the learning
process, is used widely in both supervised and unsupervised
learning [5]. Using only a subset of features can improve
performance by removing redundant, irrelevant, or even mis-
leading features [6] as well as reducing the search space size.
In addition, solutions which use fewer features are generally
more comprehensible and thus give a better understanding of
the data being explored and solutions produced [7].

Evolutionary Computation (EC) [8] is a field of Artificial
Intelligence which contains algorithms that use nature-inspired
evolutionary principles to perform a population-based search.
EC techniques have been widely applied to NP-hard problems
due to their ability to produce high-quality solutions in rea-
sonable computational time [8]. While EC has been widely
used for clustering [1], [3], only a few methods have been
proposed which simultaneously perform clustering and FS

(herein notated as C+FS). Performing both tasks concurrently
allows the minimal number of useful features to be chosen
for a particular partition. The existing methods use a centroid
representation which may limit performance, and have been
tested only on datasets with a small number of clusters.

In this paper, we investigate a variety of representations for
performing C+FS using Particle Swarm Optimisation (PSO),
a commonly used EC method for clustering and FS tasks [6],
[9]. In particular, we aim to:
• Present and compare extensions of the centroid and

medoid clustering representations which perform C+FS
when the number of clusters (K) is known in advance,

• Investigate techniques to improve the centroid represen-
tation to prevent invalid solutions being generated,

• Propose a novel technique which uses a medoid repre-
sentation to find K when it is not pre-defined, and

• Evaluate these techniques across real-world and synthetic
datasets, for a range of feature set and dataset sizes.

II. BACKGROUND

This section begins with an overview of the core concepts
involved in PSO, feature selection, and clustering. We then
discuss previous work which uses EC techniques for C+FS.

A. PSO

PSO is an EC technique inspired by bird flocking behaviour
[10]. In PSO, the swarm (population) consists of a number of
particles (individuals) which explore the search space based
on their personal experience as well as the swarm’s social
knowledge of good areas of the search space. Each particle
encodes a single solution to the problem being optimised
as a position vector which represents the particle’s position
in the search space. This position vector takes the form
[x1, x2, ..., xD], where D is the number of dimensions in the
search space. The velocity of a particle encodes its movement
through the search space and is represented using a vector
of the form [v1, v2, ..., vD]. During each iteration of the PSO
search process, a particle’s velocity is updated based on its
previous best position (pbest) and the swarm’s overall best
known position (gbest). The particle then updates its position
based on its current velocity, giving an updated position and
hence a new candidate solution. The position and velocity
updates are formally defined as follows:

xt+1
id = xt

id + vt+1
id (1)

vt+1
id = w×vtid + c1r1× (pid−xt

id) + c2r2× (pgd−xt
id) (2)

where t represents the tth iteration of the PSO process and
d ∈ D represents the dth dimension of the search space.
The inertia weight, w, is used to balance the exploration
and exploitation behaviour of the particles. c1 and c2 are
acceleration constants which balance the contributions of the
pbest and gbest positions respectively. r1 and r2 are randomly
generated values in the range [0, 1] which introduce variance
to the training process. pid and pgd are used to represent the
values of pbest and gbest in the dth dimension. The updated
velocity, vt+1

id , is restricted to the range [−vmax, vmax] for
some maximum velocity, vmax, in order to limit oscillation.

B. Feature Selection

There have been a large number of methods proposed for
performing FS, which can generally be classified into one of
three categories: filter, wrapper, or embedded approaches [7].
Filter methods perform feature selection as a pre-processing
step, independent of the learning algorithm being used. This
is the most commonly used approach in traditional clustering
methods (e.g. k-means, DBSCAN) as it is the easiest to
implement and generally has the lowest computational cost.
Wrapper methods utilise the learning algorithm to evaluate the
quality of the selected feature subset by running the learning
algorithm multiple times using different feature subsets. While
wrapper approaches generally give better results, they are
much more expensive to run [11]. Embedded approaches per-
form feature selection directly as part of the training process
in the learning algorithm. Embedded approaches can therefore
achieve high quality results during only a single run of the
learning algorithm, but are generally more difficult to design
and specific to the learning algorithm being used.

EC techniques have also been widely used for FS [6] with
genetic algorithms (GAs) and PSO being used for both filter
and wrapper approaches. These two algorithms are both well-
suited for FS tasks as they use a vector encoding, where each
feature can be represented by a single value which determines
if that feature is selected. Other EC algorithms such as Genetic
Programming (GP) and Ant Colony Optimisation (ACO) have
also seen some use for FS tasks [6].

C. Clustering

Clustering is a diverse problem which has produced many
different types of algorithms that are effective on different
domains and datasets [12]. Hierarchical clustering algorithms
(e.g. single- or complete-linkage clustering) build a hierarchy
of clusters, merging or splitting clusters at different levels
of the hierarchy. Density-based clustering algorithms (e.g.
DBSCAN) define clusters as being regions of high density and
label instances in sparse regions as outliers [12]. Prototype-
based clustering algorithms such as k-means use a single
feature-vector (called a “prototype”) to represent the centre
of a cluster and then perform clustering by assigning each
instance in the dataset to the cluster with the closest prototype
[12]. Other algorithms using distribution, subspace or graph-
based models have also been proposed [12].

Most EC techniques have focused on performing hard
partitional clustering (where every instance is assigned to
exactly one cluster) [3], [13] with the majority of techniques
using a prototype-based approach. Clustering performance is
generally measured in terms of connectedness (how well sim-
ilar instances are assigned to the same cluster), compactness
(how densely packed a cluster is) or separability (how well
clusters are separated from each other) [13].

The centroid representation, where the co-ordinates of the
cluster prototypes are directly encoded in the solution rep-
resentation, is the most commonly used by PSO and GA
methods for prototype-based clustering. Such an encoding
contains K sets of m co-ordinates (where m is the number
of features), giving K centroids. Each instance is assigned to
the closest prototype using a distance measure (e.g. Euclidean
distance). A less commonly used representation is the medoid,
where instances are used as cluster prototypes. Each instance
in the dataset is assigned a value in the solution encoding, and
an instance’s value determines if it is a cluster prototype. As
before, instances are assigned to their nearest prototype.

A number of factors must be considered when performing
clustering; we discuss the key issues in this study below.

1) Representations: The centroid and medoid representa-
tions each have their share of benefits and limitations. The
centroid representation scales well as the number of instances
in a dataset grows as Km is independent of n, but may give
poor performance when K or m is large compared to n, in
which case the medoid representation may be more effective.
The medoid representation is restricted to choosing cluster
prototypes which are instances in the dataset [13]. As a result,
it may not be able to perform exploitation (i.e. local searching)
as effectively as the centroid representation, which can produce
centroids located at any point in the search space. This is less
likely to be an issue on datasets where there is a large number
of instances as there will be a higher level of granularity in
terms of the medoids available.

It is possible for the centroid representation to produce
invalid solutions when a cluster is not assigned any instances.
This occurs if all instances have found closer prototypes. This
behaviour is especially prevalent on datasets with high K
where it is proportionally less likely that a cluster will have
any instances assigned to it. This problem does not occur with
a medoid representation; at a minimum, the instance acting as
a medoid must be assigned to its own cluster.

2) Determining K: Clustering methods can also be broadly
categorised based on whether they require K to be pre-defined,
or if they are able to automatically determine an acceptable K
in the learning process. While the latter case is more flexible
and hence is generally more useful, it may happen that a
domain expert is available and is able to determine an optimum
K, in which case the former methods are likely to perform
better as they search a much smaller search space.

3) Simultaneous Clustering and Feature Selection: While
a range of EC techniques have been proposed for either
clustering or FS, only a few of these techniques perform
simultaneous clustering and FS. All of these techniques use

C11 ...Fm C1m CK1F1 CKm
...... ...

Fig. 1: Centroid representation for simultaneous clustering
and feature selection.

a centroid encoding [14], [15] to perform clustering, and a
binary encoding for performing FS. An example of such a
representation is shown in Figure 1 for m features and K
clusters. The first m dimensions correspond to the m features
in the dataset. The value for a given feature determines if it
has been selected. The remaining Km dimensions correspond
to the co-ordinates of the K cluster prototypes.

D. Related Work

One of the most influential works in the EC domain for
C+FS is the NMA CFS [14] method, which uses a GA to si-
multaneously perform FS, find K, and cluster the dataset. The
authors use niching and local search techniques to improve
the performance and consistency of the method. The niching
approach requires a number of parameters to be set in order
to optimise performance. NMA CFS uses a variable-length
encoding where the solution size is relative to the number
of clusters produced. While the method produced impressive
results, the datasets used for testing contained a small number
of clusters (a maximum of 6 and 7 in the synthetic and real-
world datasets respectively) and a small number of features
(m) with a maximum of 20 and 30 on synthetic and real-
world datasets respectively. In practice, datasets may have
many more clusters and features; it is not obvious how well
NMA CFS would scale as K and m increase.

The use of a variable-length encoding also reduces training
effectiveness due to the inability of candidate solutions to fully
exchange information when they vary in length. A centroid
encoding also introduces an implicit ordering to the clusters in
the solution when clusters do not have any ordering in reality.
For example, consider the two solutions shown in FIgure 2 –
both solutions will produce the same cluster partition, but as
their two centroids are in different orders, the training process
will incorrectly attempt to move each solution towards the
other. In a GA approach, for example, this could mean that
crossover produces a solution which contains conflicting or
even duplicate centroids.

C11 C13C12 C21 C23C22

(a) Solution A

C11 C13C12C21 C23C22

(b) Solution B

Fig. 2: Two centroid solutions with different centroid
orderings which produce the same partition.

Javani et. al. proposed a PSO-based method which uses
a similar centroid representation to the NMA CFS [14] ap-
proach, but requires K to be pre-fixed [15]. A fitness function
was proposed which considers a partition’s connectedness,

compactness, and separability. The proposed method was
shown to generally perform better than NMA CFS [14] on
the synthetic datasets. However, NMA CFS [14] is able to be
used when K is unknown which likely makes it a more useful
method in the general case.

In addition to the above work which uses EC techniques to
solve the combined C+FS problem, there has also been a num-
ber of publications which use PSO for clustering or FS and
use a non-EC technique to perform the other task. Marinakis et
al. [16] proposed a two-phase approach using PSO for feature
selection and a greedy randomised adaptive search procedure
(GRASP) for clustering. Their second paper [17] uses a multi-
swarm version of PSO using a constriction factor in order to
improve the feature selection performance compared to the
first paper [16]. Kuo et al. [18] used Principle Component
Analysis (PCA) to perform dimensionality reduction before
using a hybrid GA-PSO approach to perform clustering for
an unknown number of clusters. Another method used the
Projection Pursuit (PP) model to reduce dimensionality and
then used PSO to perform clustering [19].

E. Summary

Existing EC methods for C+FS use centroid encodings
which may produce invalid solutions, fail to train effectively
due to centroid ordering, and are difficult to use effectively
when K is not pre-determined. In this work we propose
variations to the centroid representation to prevent invalid
solutions and introduce a new medoid encoding which does
not produce any ordering and which can be used with a fixed-
length encoding when K is not pre-determined.

III. PROPOSED METHODS

This section proposes PSO methods for both the cases where
K is pre-defined and where K is automatically determined by
the learning process. We also propose a fitness function which
can be used to give good C+FS solutions in both cases.

A. Pre-defined K

We use a centroid representation (as shown in Figure 1)
as a base PSO method for performing C+FS. This is the
same representation as in the NMA CFS approach, but here
we only use it when K is known and hence it has a fixed
length of m+Km, where the first m dimensions correspond
to the m features in the dataset. The position value for a
given feature determines if it has been selected by the PSO
algorithm. A position value greater than 0 indicates a selected
feature; less than 0 indicates the feature is not selected. The
remaining Km dimensions correspond to the co-ordinates of
the K cluster prototypes. Instances are assigned to the cluster
with the closest prototype by Euclidean distance based on the
selected features only.

To address the issue where the centroid representation could
produce invalid solutions, we propose two seeding techniques
which ensure at least one of the initial particles in the swarm
will contain centroids which produce a valid partition with the
correct K. These two techniques are described below.

I1 ...Fm InF1 ...

Fig. 3: Medoid representation for simultaneous clustering
and feature selection, where K is known.

ΘFmF1 ... I1 ... In

Fig. 4: Medoid representation for simultaneous clustering
and feature selection, where K is unknown.

The k-means seeded centroid approach first runs the k-
means algorithm on the dataset to give K viable centroids.
One particle in the swarm is initialised to contain these K
centroids and the remaining particles are initialised as normal
(i.e. randomly). For all particles, the FS component of the
particle is randomly initialised. This technique ensures at least
one viable particle is produced, while also using the result of
k-means as a good starting point for the PSO training process.

The dataset seeded centroid approach initialises the swarm
by randomly choosing instances from the dataset to act as ini-
tial centroids. Each particle is initialised by randomly choosing
K unique instances and using their feature values as the initial
positions of the K centroids. This approach still uses a centroid
representation; centroids are not constrained to take instance
values in subsequent iterations. This approach ensures that all
particles in the swarm will initially give valid solutions.

The medoid clustering approach can be extended to perform
FS by adding a dimension per feature, as shown in Figure 3.
This representation has a length of m + n for n instances in
the dataset, and uses the same FS technique as the centroid
approach. Instead of using centroids, each instance is assigned
a dimension, and the position value of an instance’s dimension
determines if it is a cluster prototype. The instances that
correspond to the K highest position values are chosen to
be the K prototypes. As before, instances are assigned to the
nearest prototype by Euclidean distance.

B. No pre-defined K

As discussed previously, the use of a centroid encoding
when K is not pre-defined requires a variable length encoding
(or a technique to turn centroids “on” and “off” [1]). The
medoid representation can be easily extended to allow for a
flexible number of clusters to be generated while maintaining
a fixed-length encoding. When K was fixed, the instances
with the K highest position values were chosen as medoids.
An alternative technique is to choose all instances where the
position values are above some threshold Θ. K will then
vary based on the number of instances meeting this threshold.
The representation for this dynamic medoid approach is
shown in Figure 4. This representation includes a single
additional dimension corresponding to Θ. The length of this
representation is m+n+1. While Θ could be a constant value
(e.g. 0), we suggest that it may be more effective to allow the
PSO process to automatically vary Θ as changing Θ can add
or remove multiple clusters from a solution at a time.

C. Fitness Function

In order to perform effective clustering and FS, a fitness
function must be used which encourages good clustering
performance while minimising the number of features selected.
The NMA CFS [14] algorithm used the J2 fitness function
(shown in Equation 3) which measures clustering performance
using the trace scatter metric and applies two penalty functions
to minimise the number of features and clusters selected.

J2 = trace(S−1w Sb)×
m−m

′

m− 1
× Kmax −K

K − 1
(3)

where m and m
′

are the total number of features and the
number of selected features respectively. K and Kmax are
the number of clusters and the maximum number of clusters
respectively. Kmax is defined as

√
n (as is common in the

literature [20]) where n is the number of instances in the
dataset. Sw and Sb are the within- and between-cluster scatter
matrices which measure cluster compactness and separability
respectively and are defined as follows:

Sw =
1

n

K∑
i=1

∑
Ia∈Ci

(Ia − Zi)(Ia − Zi)
T (4)

Sb =

K∑
i=1

|Ci|
n

(Zi − Z∗)(Zi − Z∗)T (5)

where Ci represents the ith cluster and Zi and |Ci| are the
mean of the ith cluster and the number of instances in the ith

cluster respectively. Ia is an instance within cluster Ci. The
dataset mean is given by Z∗.

While we base our fitness function on Equation 3, we
found that a number of improvements could be made to
improve performance. The clusters produced can be improved
by punishing outliers more heavily by using the sum of
squared Euclidean distances instead of the squared difference
to measure intra and inter-cluster dissimilarity. The number
of clusters should not be penalised linearly; we should apply
only a small penalty to smaller values of K, but apply an
increasingly larger penalty as K approaches Kmax. Doing
so allows a wider range of small potential K values to be
considered by the learning algorithm, while still penalising K
values which are so large as to produce overly specific clusters.
This change improved the accuracy of K for the dynamic
medoid approach. Our proposed fitness function with these
improvements is shown in Equation 6.

Fitness =
Betweensum

Withinsum
× m−m

′

m− 1
× (1− logK

logKmax
) (6)

Withinsum =
1

n

K∑
i=1

∑
Ia∈Ci

d(Ia, Zi)
2 (7)

Betweensum =

K∑
i=1

|Ci|
n

d(Zi, Z
∗)2 (8)

where d(Ia, Ib) is the Euclidean distance between instances
Ia and Ib, defined in the standard way:

d(Ia, Ib) =
√

(Ia1 − Ib1)2 + (Ia2 − Ib2)2 + ... + (Iam − Ibm)2

(9)
When computing the Euclidean distance between two ob-

jects, we use all features, not only the selected ones. If only
the selected features are used, the fitness function would
become overly biased towards a low K and m

′
; selecting

fewer features reduces the amount of information available to
the clustering method, reducing the extent to which the dataset
can be separated into smaller, more specific clusters. By using
all features, we ensure the original structure of the dataset is
considered when evaluating the performance of a solution.

IV. EXPERIMENT DESIGN

We evaluated the performance of the PSO representations
on a range of datasets using a variety of evaluation metrics.
We also compare our results to those produced by the standard
k-means when all features are used. As all of the methods are
non-deterministic, we ran each method 30 times and compute
the mean of each metric across all runs. Unfortunately we
were unable to compare to the NMA CFS algorithm as the
authors were unable to provide their source code and we were
not able to reproduce their results when we re-implemented
their approach. The remainder of this section will discuss the
datasets, evaluation metrics and PSO parameters used in detail.

A. Datasets

We tested the PSO representations across a variety of
real-world and synthetic datasets which are summarised in
Tables I and II respectively. The real-world datasets are ones
which are commonly used in the clustering literature, and
all are from the UCI machine learning repository [21]. All
of these are classification datasets; it is common practice to
use classification datasets for clustering by excluding the class
label from the training process. The class labels are then used
to evaluate how well the clusters produced match the known
classification. The synthetic datasets were generated by Handl
et. al. [22] and are also widely used. We used a range of
synthetic datasets which contain 10, 50 or 100 features and
10, 20 or 40 clusters. Testing the representations on large m
and K shows how they scale as the search space increases. All
datasets were normalised so that each feature had zero mean
and unit variance to ensure features contribute equally to the
clustering process.

B. Evaluation Metrics

We evaluated the performance of each of the representations
using five commonly used metrics. These included two internal
metrics, which directly measure the quality of a partition. The
first of these is the trace scatter metric (as defined in Section
III-C) which measures the compactness and separability of a
partition. In addition, we compute the sum of the intra-cluster
distances which measures compactness directly. This is the
metric that the k-means directly optimises.

TABLE I: Real-World UCI datasets from [21].

Name
No. of

Features
No. of

Instances
No. of
Classes

Iris 4 150 3
Wine 13 178 3
Movement Libras 90 360 15
Breast Cancer 9 683 2
Image Segmentation 18 683 7
Dermatology 34 359 6

TABLE II: Synthetic datasets from [22].

Name
No. of

Features
No. of

Instances
No. of
Classes

10d10c 10 2730 10
10d20c 10 1014 20
10d40c 10 1938 40
50d10c 50 2699 10
50d20c 50 1255 20
50d40c 50 2335 40
100d10c 100 2893 10
100d20c 100 1339 20
100d40c 100 2212 40

We also used three external metrics which measure how
well the clustering solution matches the dataset’s known clas-
sification. The class purity metric measures how homogeneous
each cluster is in terms of the class labels of the instances it
contains. The error rate (ER) is a metric proposed by Cura
[23] which measures how well pairs of instances agree on
their class labels and cluster memberships. The true positive
rate (TPR) measures the proportion of instances in the same
class that are also in the same cluster.

Each of the five metrics, asides from the scatter trace metric,
are defined as follows:

1) Sum intra-cluster distance:∑
Intra =

K∑
i=1

∑
Ia∈Ci

d(Ia, Zi) (10)

2) Class purity: computed according to the following steps:
a) For each cluster, find the majority class label of

the instances in that cluster.
b) Count the number of correctly classified instances,

where an instance is correctly classified if it be-
longs to the majority class.

c) Find the class purity as the fraction of correctly
classified instances across the whole partition.

3) ER [23]:

ER =
[2

n(n− 1)
×

n−1∑
a=1

n∑
b=a+1

disagree(Ia, Ib)
]
×100%

(11)
where disagree(Ia, Ib) is 0 if instances Ia and Ib are
either both in the same classes and same clusters or in
different classes and clusters, and 1 otherwise.

4) TPR:

TPR =
1

totalPairs
×

#Cl∑
i=1

∑
Ia,Ib∈Cli

agree(Ia, Ib) (12)

where Cli represents the ith class and #Cl is the
number of classes. agree(Ia, Ib) is 1 if Ia and Ib are
in the same cluster and 0 otherwise. totalPairs is the
sum of the number of pairs of instances in each class.

C. PSO Parameters

Several parameters must be set in the PSO algorithm. We
use commonly used parameters [24]: 100 iterations, a swarm
size of 30, vmax = 6, w = 0.729844, and c1 = c2 = 1.49618.
These parameters are constant across all datasets.

V. RESULTS AND ANALYSIS

The performance of the approaches are shown in Tables
III and IV respectively. KMS-Centroid is the k-means seeded
centroid approach, DS-Centroid is the dataset seeded centroid
approach, and D-Medoid is the dynamic medoid approach. We
provide the mean results for each of the evaluation metrics
discussed previously, as well as the mean number of features
selected (m

′
) and non-empty clusters produced (K). We label

each metric with a ↑ or ↓ to indicate if it should be maximised
or minimised. The best result for each external metric is
bolded, and a method is bolded if it has the best performance
on a majority of the external metrics. The results will be
analysed for the real-world and synthetic datasets in turn.

A. Real-World Results

Most of the pre-fixed representations perform similarly on
the easy Iris dataset, with the centroid approach achieving
slightly better results on the external metrics. On the more dif-
ficult of the real-world datasets, the centroid approach begins
to struggle; it is not able to generate 15 clusters successfully
on the Movement Libras dataset, and it has the worst per-
formance across the metrics on the Image Segmentation and
Dermatology datasets. The seeded centroid approaches (KMS
and DS) are able to outperform the normal centroid approach
on these datasets and are always able to correctly generate K
viable clusters. The medoid approach performs the best of the
pre-fixed approaches as it consistently selects a relatively small
number of features while achieving competitive performance
on both the internal and external metrics. For example, on
the Movement Libras dataset it selects only 20.67 features
on average while achieving similar results to both KMS and
k-means which use 39.57 and 90 features respectively.
k-means outperforms all of the PSO methods on the Wine

and Breast Cancer datasets, but performs poorly in comparison
on Iris. In general, the PSO methods are able to achieve good
performance given that they use many fewer features than k-
means. All of the methods struggle on the Movement Libras
dataset with TPR and purity values under 50%. This dataset
is known to be difficult for clustering algorithms [14] as the
class labels do not correspond well to hyper-spherical clusters.

TABLE III: Performance on Real-World Datasets.

(a) Iris

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 1 3 23.57 16.94 0.9111 10.21 0.8681
KMS-Centroid 1 3 22.93 16.92 0.9036 10.99 0.8612
DS-Centroid 1 3 22.50 16.91 0.8987 11.48 0.8568
Medoid 1 3 22.66 16.92 0.9004 11.30 0.8584
D-Medoid 1.100 3.167 23.83 16.64 0.9049 11.36 0.8308
k-means 4 3 12.03 16.93 0.7844 19.97 0.7718

(b) Wine

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 2.600 3 11.05 57.70 0.9045 11.79 0.8212
KMS-Centroid 2.633 3 11.51 57.13 0.9270 9.386 0.8536
DS-Centroid 2.267 3 10.86 57.34 0.9243 9.755 0.8479
Medoid 2.400 3 11.18 57.28 0.9232 9.887 0.8458
D-Medoid 2.733 3 10.11 57.72 0.9077 11.68 0.8237
k-means 13 3 13.69 56.39 0.9610 5.287 0.9152

(c) Movement Libras

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 45.37 10.63 12.52 336.0 0.2489 26.62 0.4164
KMS-Centroid 39.57 15 34.80 240.7 0.4506 9.877 0.3704
DS-Centroid 35.5 15 28.47 259.3 0.4148 11.04 0.3358
Medoid 20.67 15 36.07 237.8 0.4680 9.693 0.3820
D-Medoid 23.13 6.267 13.89 300.3 0.2799 18.57 0.4498
k-means 90 15 37.24 237.5 0.4640 9.569 0.3902

(d) Breast Cancer

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 1.333 2 5.505 142.5 0.9375 11.71 0.9094
KMS-Centroid 1.367 2 5.310 142.6 0.9366 11.87 0.9081
DS-Centroid 1.233 2 5.222 142.8 0.9348 12.18 0.9070
Medoid 1.167 2 5.294 143.0 0.9343 12.27 0.9071
D-Medoid 1.733 2.733 9.778 137.6 0.9414 13.80 0.8417
k-means 9 2 6.774 137.8 0.9587 7.925 0.9341

(e) Image Segmentation

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 6.300 7 35.28 661.3 0.5556 20.37 0.7226
KMS-Centroid 4.533 7 51.60 636.5 0.5845 17.07 0.7444
DS-Centroid 4 7 56.69 628.5 0.5857 16.44 0.7124
Medoid 3.800 7 67.51 611.4 0.6072 14.46 0.6684
D-Medoid 4.5 7.300 55.60 612.0 0.5950 15.20 0.6550
k-means 18 7 50.92 607.1 0.6043 15.30 0.6715

(f) Dermatology

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 11.60 6 46.70 183.6 0.7246 15.69 0.7288
KMS-Centroid 8.833 6 72.87 176.1 0.8024 11.79 0.7788
DS-Centroid 7.867 6 71.46 175.9 0.8044 10.97 0.8035
Medoid 6.5 6 86.21 172.9 0.8318 10.83 0.7554
D-Medoid 7.867 4.267 61.76 182.7 0.7344 14.84 0.9088
k-means 34 6 92.22 178.0 0.8099 12.26 0.7839

The dynamic medoid approach (D-Medoid) performs rea-
sonably well on the Iris, Wine, Breast Cancer and Image
Segmentation datasets, generating K within 1 of the actual
number of classes and achieving similar results on the metrics
to the other PSO methods. It struggles to achieve good results
on the Movement Libras dataset where it only finds 6.267
clusters on average and has a correspondingly high error rate.
It is interesting to note that on both the Movement Libras and

TABLE IV: Performance on Synthetic Datasets

(a) 10d10c

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 2.800 10 11.79 803.3 0.6448 13.59 0.5608
KMS-Centroid 4.033 10 14.69 703.3 0.8179 7.271 0.7103
DS-Centroid 3.333 10 14.34 734.3 0.7713 8.442 0.6918
Medoid 3.933 10 15.18 708.0 0.8056 7.864 0.6646
D-Medoid 3.767 7.467 11.83 753.8 0.7458 9.727 0.7379
k-means 10 10 17.50 643.8 0.9281 3.983 0.8001

(b) 10d20c

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 5.100 12.20 9.875 307.1 0.3854 22.84 0.6632
KMS-Centroid 5.167 20 55.55 159.5 0.8551 2.834 0.7914
DS-Centroid 4.767 20 45.13 174.0 0.8084 3.349 0.7543
Medoid 4.967 20 64.74 143.8 0.9160 1.504 0.8727
D-Medoid 4.300 12.73 39.17 188.8 0.7527 4.068 0.9037
k-means 10 20 70.37 143.8 0.9018 2.095 0.8306

(c) 10d40c

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 5.367 20.80 8.541 585.8 0.3334 16.13 0.6407
KMS-Centroid 5.300 40 55.08 311.4 0.8388 1.677 0.7411
DS-Centroid 5.233 40 39.87 362.8 0.7447 2.577 0.6260
Medoid 5.667 40 56.81 292.8 0.8734 1.305 0.7821
D-Medoid 3.900 13.10 20.19 502.4 0.4861 6.786 0.8267
k-means 10 40 73.06 261.2 0.9188 0.9848 0.8386

(d) 50d10c

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 22.97 10 23.72 1330 0.5807 23.94 0.5782
KMS-Centroid 17.67 10 56.70 972.9 0.7125 16.82 0.5545
DS-Centroid 16.60 10 52.43 995.2 0.6948 18.53 0.5524
Medoid 13.67 10 62.12 938.9 0.7470 14.36 0.5655
D-Medoid 13.47 18.23 133.5 717.6 0.8773 9.334 0.4115
k-means 50 10 70.98 967.0 0.7365 16.06 0.5698

(e) 50d20c

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 24.23 12.47 23.83 813.2 0.3314 29.54 0.6670
KMS-Centroid 22.30 20 119.0 480.6 0.6737 11.95 0.5876
DS-Centroid 20.43 20 99.82 529.8 0.6621 8.742 0.5879
Medoid 14.17 20 112.3 453.2 0.7459 7.216 0.6203
D-Medoid 15.33 17.40 97.53 486.5 0.7115 10.16 0.6655
k-means 50 20 136.0 477.6 0.6895 11.72 0.6021

(f) 50d40c

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 26.77 22.90 29.76 1520 0.2905 24.19 0.6073
KMS-Centroid 22.87 40 176.2 852.1 0.6696 8.309 0.5551
DS-Centroid 19.47 40 131.6 1001 0.6238 5.387 0.5272
Medoid 14.37 40 156.9 860.9 0.7053 4.135 0.5687
D-Medoid 14.53 22.80 84.56 1156 0.5042 11.58 0.6274
k-means 50 40 190.7 847.2 0.6786 9.822 0.5825

Dermatology datasets it has the highest TPR value despite
having incorrect K; this suggests it is creating a few big
clusters each of which contain multiple classes. This highlights
a fundamental issue in clustering when K is unknown – it can
be difficult to consistently determine across varying datasets
when one large cluster should be split into two smaller clusters.

In general, the medoid approach is superior to all other
pre-fixed approaches on the real-world datasets, including the

TABLE IV: Performance on Synthetic Datasets cont.

(g) 100d10c

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 47.5 10 29.04 2099 0.5883 22.00 0.5954
KMS-Centroid 39.53 10 65.85 1533 0.7392 14.04 0.6016
DS-Centroid 39.90 10 63.18 1572 0.7230 15.51 0.6035
Medoid 33.53 10 71.45 1470 0.7808 11.36 0.6488
D-Medoid 34.43 19.07 193.3 1060 0.9092 8.459 0.4302
k-means 100 10 94.17 1592 0.7600 13.76 0.6217

(h) 100d20c

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 49.80 12.93 27.24 1222 0.3239 30.39 0.6311
KMS-Centroid 46.90 20 149.8 740.1 0.6709 11.42 0.5933
DS-Centroid 45 20 138.8 777.4 0.6514 11.31 0.5852
Medoid 32.17 20 157.2 671.2 0.7610 7.653 0.6200
D-Medoid 35.63 18.5 146.3 711.8 0.7268 9.342 0.6414
k-means 100 20 186.2 733.7 0.6921 12.48 0.6184

(i) 100d40c

Method m
′

K Scatter ↑ Σ Intra ↓ Purity ↑ ER ↓ TPR ↑

Centroid 49.53 22.77 39.72 2052 0.2868 24.05 0.6019
KMS-Centroid 47.40 40 263.0 1152 0.6742 8.729 0.5618
DS-Centroid 43.60 40 217.9 1277 0.6625 6.074 0.5668
Medoid 32.73 40 246.5 1107 0.7382 4.398 0.5952
D-Medoid 34.97 22.93 136.3 1439 0.5516 14.14 0.6705
k-means 100 40 301.7 1148 0.6874 10.26 0.5903

centroid approaches which are much more widely used.

B. Synthetic Results

Unlike the real-world datasets, the synthetic datasets are de-
signed specifically for evaluating clustering algorithms. Hence,
they may give a better indication of the performance that can
be expected on an unlabelled dataset.

The basic centroid approach struggles to find K viable
clusters on all of the synthetic datasets that contain 20 or
40 clusters. Of the other pre-fixed K approaches, the medoid
approach selects the fewest number of features while achieving
the best results across the metrics on all of the synthetic
datasets with 50 or 100 features. This approach even outper-
forms the k-means approach on these datasets despite using
many fewer features. This suggests two things: the medoid
approach may be able to better explore the search space than
the centroid approaches as it can more effectively utilise the
social knowledge of the swarm (as theorised in Section II-D),
and secondly that k-means fails to scale well for large k or m
whereas PSO is able to scale effectively. On the datasets with
10 features, the KMS approach can also perform well relative
to the medoid approach. k-means is also able to perform well
– it has the lowest error rate and highest purity on 10d10c
and 10d40c, as well as the best results for the internal metrics.
These datasets have a small number of features and so k-means
does not struggle as it does on the other synthetic datasets.
Each of the two seeded centroid approaches perform better on
different datasets, with the DS approach generally performing
more effectively on the larger datasets.

The dynamic medoid approach is inaccurate in terms of
the mean number of clusters it produces on all synthetic

datasets asides from 10d10c, 50d20c and 100d20c. On the
datasets where it overestimates K (50d10c and 100d10c), it
achieves the best scatter, Σ intra, purity and ER results despite
obviously performing badly. This highlights the difficulty in
measuring good clustering performance and in designing a
good fitness function – if we used only scatter fitness as our
fitness function, we would likely produce many more clusters
than is correct. The purity and ER metrics are also biased
towards large K. As the number of clusters increases, the
homogeneity of any given cluster is likely to be higher as
clusters become smaller and more specific. This leads to an
increase in purity. In a similar vein, a higher K also tends to
decrease the ER: the more clusters present, the more likely
it is that instances from different classes will be assigned to
different clusters. As the majority of pairs of instances in a
dataset will belong to two different classes when there are
more than two classes, the number of disagreements between
instance pairs will tend to decrease as K is increased. The
TPR metric does not have this issue as it considers only
the true positives relative to the number of actual positives;
the dynamic medoid approach achieves a low TPR value on
50d10c and 100d10c. These issues demonstrate the need for
care when evaluating clustering algorithms, as the number of
clusters may have an unexpected effect on how metrics behave.

While the dynamic medoid approach performs poorly com-
pared to the pre-fixed approaches, the case where K is
unknown is a much more difficult problem [1]. We believe that
the success of the pre-fixed medoid approach and the fact that
the dynamic approach can use a fixed-length representation
suggests it is worth exploring this direction further.

VI. CONCLUSION

In this work we developed and compared a number of
different PSO representations for simultaneously performing
clustering and feature selection. We proposed an extension to
the medoid representation that enables it to be used in the case
where the number of clusters is unknown. An adaptation of an
existing fitness function was also proposed. A comprehensive
quantitative comparison of the different representations was
conducted across a number of real-world and synthetic datasets
with a range of different characteristics. It was found that
a medoid representation could achieve the best performance
when K is known, as it was able to select the fewest
features while outperforming k-means on the hardest synthetic
datasets. This finding highlights a gap in the current clustering
literature, which has focused primarily on centroid approaches.

While the dynamic medoid approach struggled on the
synthetic datasets, we believe it can be improved in future
work by finding a more effective way of restricting the search
space on the number of clusters. We would also like to explore
more effective fitness functions that can better balance cluster
performance and feature selection. As clustering in itself is
a multi-objective problem, we would like to investigate using
a multi- or many-objective approach that may produce better
results than the current linear combination of objectives we
used. Further work could also investigate more intelligent

centroid seeding techniques or better external metrics for
measuring cluster performance that are independent of K.

REFERENCES

[1] A. J. Garcı́a and W. Gómez-Flores, “Automatic clustering using nature-
inspired metaheuristics: A survey,” Appl. Soft Comput., vol. 41, pp. 192–
213, 2016.

[2] E. Müller, S. Günnemann, I. Assent, and T. Seidl, “Evaluating clustering
in subspace projections of high dimensional data,” PVLDB, vol. 2, no. 1,
pp. 1270–1281, 2009.

[3] S. J. Nanda and G. Panda, “A survey on nature inspired metaheuristic
algorithms for partitional clustering,” Swarm and Evolutionary Compu-
tation, vol. 16, pp. 1–18, 2014.

[4] E. Falkenauer, Genetic algorithms and grouping problems. John Wiley
& Sons, Inc., 1998.

[5] H. Liu and H. Motoda, Feature selection for knowledge discovery and
data mining. Springer Science & Business Media, 2012, vol. 454.

[6] B. Xue, M. Zhang, W. Browne, and X. Yao, “A survey on evolutionary
computation approaches to feature selection,” IEEE Transactions on
Evolutionary Computation, 2016.

[7] S. Alelyani, J. Tang, and H. Liu, “Feature selection for clustering: A
review,” in Data Clustering: Algorithms and Applications, 2013, pp.
29–60.

[8] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
ser. Natural Computing Series. Springer, 2015.

[9] A. A. A. Esmin, R. A. Coelho, and S. Matwin, “A review on parti-
cle swarm optimization algorithm and its variants to clustering high-
dimensional data,” Artif. Intell. Rev., vol. 44, no. 1, pp. 23–45, 2015.

[10] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Networks,
vol. 4. IEEE, 1995, pp. 1942–1948.

[11] H. Liu, H. Motoda, R. Setiono, and Z. Zhao, “Feature selection: An
ever evolving frontier in data mining,” in Proceedings of the Fourth
International Workshop on Feature Selection in Data Mining, 2010, pp.
4–13.

[12] C. C. Aggarwal and C. K. Reddy, Eds., Data Clustering: Algorithms
and Applications. CRC Press, 2014.

[13] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, and A. C. P. L. F.
de Carvalho, “A survey of evolutionary algorithms for clustering,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C, vol. 39, no. 2,
pp. 133–155, 2009.

[14] W. Sheng, X. Liu, and M. C. Fairhurst, “A niching memetic algorithm
for simultaneous clustering and feature selection,” IEEE Trans. Knowl.
Data Eng., vol. 20, no. 7, pp. 868–879, 2008.

[15] M. Javani, K. Faez, and D. Aghlmandi, “Clustering and feature selection
via PSO algorithm,” in International Symposium on Artificial Intelli-
gence and Signal Processing (AISP). IEEE, 2011, pp. 71–76.

[16] Y. Marinakis, M. Marinaki, and N. F. Matsatsinis, “A hybrid particle
swarm optimization algorithm for clustering analysis,” in Proceedings of
the 9th International Conference on Data Warehousing and Knowledge
Discovery (DaWaK), 2007, pp. 241–250.

[17] ——, “A hybrid clustering algorithm based on multi-swarm constriction
PSO and GRASP,” in Proceedings of the 10th International Conference
on Data Warehousing and Knowledge Discovery (DaWaK), 2008, pp.
186–195.

[18] R. J. Kuo, Y. J. Syu, Z. Chen, and F. Tien, “Integration of particle
swarm optimization and genetic algorithm for dynamic clustering,” Inf.
Sci., vol. 195, pp. 124–140, 2012.

[19] Q. Zhang, X. Lei, X. Huang, and A. Zhang, “An improved projection
pursuit clustering model and its application based on quantum-behaved
PSO,” in Proceedings of the Sixth International Conference on Natural
Computation (ICNC), 2010, pp. 2581–2585.

[20] N. R. Pal and J. C. Bezdek, “On cluster validity for the fuzzy c-means
model,” IEEE Trans. Fuzzy Systems, vol. 3, no. 3, pp. 370–379, 1995.

[21] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[22] J. Handl and J. D. Knowles, “An evolutionary approach to multiobjective
clustering,” IEEE Trans. Evolutionary Computation, vol. 11, no. 1, pp.
56–76, 2007.

[23] T. Cura, “A particle swarm optimization approach to clustering,” Expert
Syst. Appl., vol. 39, no. 1, pp. 1582–1588, 2012.

[24] F. Van Den Bergh, “An analysis of particle swarm optimizers,” Ph.D.
dissertation, University of Pretoria, 2006.

