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Abstract—Over the last two decades, different differential evo-
lution (DE) variants have been successfully used to solve different
optimization problems. However, no single DE algorithm has
consistently been the best for solving a wide range of them.
In the literature, this drawback has been tackled by using
multiple DE operators in a single framework. However, utilizing
a problem’s landscape in the design of an efficient selection
mechanism to emphasize the best-performing DE variant has
not yet been thoroughly explored. Motivated by this fact, in
this paper, a new two-phase (exploration and exploitation) multi-
operator DE algorithm is proposed. It starts with the exploration
phase, dynamically placing emphasis on the best-performing DE
based on two landscape indicators and its performance history,
and then repeats this process during the exploitation phase. To
judge the performance of this algorithm, a variety of real-world
optimization problems taken from different disciplines are solved.
According to the results obtained, this algorithm shows superior
performance to those of state-of-the-art algorithms.

Index Terms—differential evolution, multi-operator, landscape
indicators, real-world problems

I. INTRODUCTION

Many real-world problems in different fields, such as oper-
ations research, biology, data mining and engineering design,
can be formulated as optimization problems with one or more
objective functions subject to some constraints.

Due to the importance of solving these problems, re-
searchers and practitioners have proposed exact methods.
However, as they usually encounter many challenges, such as
(1) requiring specific mathematical properties, such as con-
vexity, continuity and differentiability, to be used; and/or (2)
maybe needing the problem to be simplified by making various
assumptions for the convenience of mathematical modeling
[1], their use in the majority of real-world cases is unverified.
For these reasons, many evolutionary algorithms (EAs) have
been proposed and implemented in order to tackle real-world
optimization problems. However, although they do not require
specific mathematical properties to be satisfied, are flexible
to dynamic changes, can handle evaluating each solution in
parallel, have the capability for self-organization and are more
broadly applicable in practice, there is no guarantee that
they can reach an optimal solution and the quality of their
solutions depends on their parameter settings. Indeed, selecting
an appropriate algorithm for solving an optimization problem
is not an easy task.

The family of EAs contains various algorithms, such as DE
[2], genetic algorithms (GAs) [3] and evolution strategy (ES)
[4], with the major difference among them the ways in which
they produce new solutions. Of EAs, DE has gained popularity
for solving continuous optimization problems [5][6]. However,
there is no guarantee that a DE algorithm, which performs
well for one or a certain class of problems will work well
for another or a range of problems. One reason for this is
the variability of the underlying mathematical properties of
optimization problems.

To overcome this limitation, multi-methods and/or multi-
operator algorithms, in which more than one algorithm and/or
search operator are used in a single framework with a
mechanism for emphasizing the best-performing one during
the search process [7], [8], have been developed. In the
literature, there are different categories of these methods,
such as ensemble-based [9][10], hyper-heuristics [11], mutli-
methods [12][13], multi-operators [7] and heterogeneous [14]
approaches. They all consist of a pool of different algorithms
and/or operators, and use a selection mechanism to empha-
size the best-performing algorithm and/or operator during
the search process based on different criteria, such as a re-
enforcement learning mechanism [15][16], improvement in the
solution quality and/or constraint violations and/or feasibility
rate [8], and convergence differences and progress ratios [17].

However, determining a way of combining these operators
and/or methods is still challenging. Also, utilizing a problem’s
landscape to design an efficient selection mechanism has not
been comprehensively explored. Although it has been noted
that the pool of operators is always fixed during the evolu-
tionary process, this may lead to consuming too much com-
putational effort because of poorly performing DE operators.
Therefore, in this paper, we investigate using landscape metrics
to obtain information about the characteristics of problems,
such as modality, separability, etc., and place emphasis on
better-performing DE operators, and changing the pool of DE
operators based on the optimization phase.

Consequently, a novel two-phase multi-operator DE with a
landscape selection mechanism, referred to as TP-MODE, is
proposed in this paper. In TP-MODE the whole evolutionary
process is divided into two phases based on the number



of fitness evaluations. In the first, a group of DE mutation
strategies which have the capability to maintain diversity are
chosen to generate trial vectors and, in the latter, other DE mu-
tation strategies characterized by their ability to converge fast
are chosen to produce offspring. Simultaneously, a landscape
metric is used to place more emphasis on the best-performing
operator in each phase. TP-MODE is tested on 22 benchmark
test functions taken from the IEEE CEC2011 competition for
solving real-world applications [18]. The experimental results
imply that the performance of TPMODE is better than those
of four other state-of-the-art DE variants.

The rest of this paper is organized as follows: in Section II,
a review of DE algorithms and operators, and some landscape
measures is presented. Section III describes the proposed
framework; the simulation results for the benchmark problems
and values of the parameters are provided in Section IV; and
finally, Section V discusses the conclusions drawn from this
study and possible future research directions.

II. DE AND THE RELATED WORK

In this section, a literature review of DE and the concept of
landscape analysis are discussed.

A. DE algorithm

Generally speaking, DE algorithm has shown good perfor-
mance for solving optimization problems. It has three main
operations (mutation, crossover, and selection) to evolve a
population of individuals during the search process. DE starts
with a uniform random population, such that

−→
X i,G = xmin

i,G + (xmax
i,G − xmin

i,G )× rand(1, D) (1)

where i ∈ NP , j = 1, 2, ..., D, NP is the number of
individuals, D the dimension of the problem and rand a
random real number uniformly generated between 0 and 1,
and G the generation number.

1) mutation: Before the mutation operator is applied, every
vector

−→
X i,G in the population is considered a parent

vector (target vector), and corresponding to each parent
vector, a mutant vector

−→
V i,G = (v1i,G, v

2
i,G, ..., v

D
i,G)

is produced by the weighted difference between two
random vectors to a third vector (the base vector) from
the current population (D is the number of decision
variables), such that

−→
V i,G =

−→
X ri1,G

+ F × (
−→
X ri2,G

−
−→
X ri3,G

) (2)

where ri1 6= ri2 6= ri3 are random integer numbers
selected from the range[1, NP ], which are all different
from the index i, the scaling factor F is the control
parameter for scaling the difference vectors and G the
generation number.

2) crossover: Following the mutation operation, a trial
vector

−→
U i,G = {u1

i,G, u
2
i,G, ..., u

D
i,G} is produced by

crossing a parent vector and its corresponding trial vecto,
such that

uj
i,G =

{
vji,G
xj
i,G

if (rand(0, 1) ≤ CR) or (j = jrand)

otherwise
(3)
where rand(0, 1) a random real number uniformly
generated between 0 and 1, CR the crossover control
parameter and jrand ∈ [1, 2, ..., D] a randomly chosen
index which ensures that the trail vector,

−→
U i,G obtains

at least one element from the mutant vector,
−→
V i,G.

3) selection: To decide whether parent
−→
X i,G or child

−→
U i,G

vectors survive to the next generation a selection oper-
ation is employed. This operation is performed using

−→
X i,G+1 =

{ −→
U i,G−→
X i,G

if f(
−→
U i,G) ≤ f(

−→
X i,G)

otherwise
(4)

where f(
−→
U i,G) and f(

−→
X i,G) are the objective functions

of the child and parent, respectively. Similar to other
EAs algorithms, DE repeats the aforementioned steps,
generation after generation, to evolve its population of
solutions until some specific termination condition is
met.

B. Improved DE Algorithms
In this section, commonly used improved variants of DE

are discussed.
As mentioned earlier, in DE the quality of the obtained

solutions depends on its parameter (population size NP ,
crossover rate CR, and scaling factor F ) settings. Thus, in
the literature there are some different adaptation schemes that
have been proposed, and we will review some of them in this
section.

A fuzzy adaptive DE algorithm (FADE), in which fuzzy
logic controllers were used to adapt the parameters F and
CR, was proposed by Liu and Lampinen [19]. An adaptive DE
algorithm (ADE) was proposed by Zaharie and Daniela [20],
in which F and CR were adapted with regard to population
diversity. A self-adaptive (jDE) strategy to adapt the F and
CR values of the DE algorithm, was proposed by Breast et
al. [21]. In jDE, both F and CR are also encoded into the
individuals and their values survive to the next generation
with a particular probability, τ1 and τ2, and otherwise, F and
CR values are randomly re-initialized to new values within
the given range for the next generation [22]. An adaptive
DE algorithm with an optional external memory (JADE)
was proposed by Zhang et al. [23], in which the control
parameters CR and F of each individual were automatically
updated according to previously successful experiences. Also,
it implements a “DE/current-to-pbest” mutation strategy, with
an external archive, which some of the good solutions are
stored on it to avoid premature convergence and also diversify
the population. Tanabe and Fukunaga [24] introduced success-
history based parameter adaptation for differential evolution
(SHADE), which is an improved version of JADE, uses a his-
tory based parameter adaptation method. The L-SHADE [25]



algorithm is a SHADE algorithm that uses linear population
size reduction (LPSR) to dynamically re-size the population
during a run. LPSR reduces the population linearly as the
number of fitness evaluations increases. L-SHADE showed
good performance, in comparison with other algorithm over a
set of unconstrained optimization problems. A new Sinusoidal
DE (SinDE), in which new sinusoidal formulas was used to
automatically adjust the values of F and CR, was proposed
by Draa et al. [26]. It was claimed by the author that, SinDE
especially gives good results for multi-modal and composition
functions. To dynamically select the a best compromise of pa-
rameters (i.e. F , CR and NP ) for solving a specific problem
in each run, Sarker et al. [27] designed a new mechanism
to do it. The experimental results demonstrated its superior
performance over the state-of-the-art DE variants.

To follow our discussion about DE algorithms and as
mentioned earlier that no single DE algorithm was able to
solve all kind of optimization problems, a considerable number
of DE algorithms, which uses more than one mutation strategy
or incorporated with other algorithms, have been proposed to
solve this drawback and here we will review some of them.

Sallam et. al [5] proposed a neuro-dynamic differential
evolution algorithm for solving CEC2015 single objective op-
timization problems. An adaptive mechanism was proposed for
the appropriate use of L-SHADE and neuro-dynamic during
the search process. A self-adaptive DE (SaDE) was proposed
by Qin et al. [28] for solving unconstrained real-parameter
optimization. In SaDE, both the trial vector generation strategy
and its associated control parameter values, were gradually
self-adapted by learning from their previous search experience.
A composite DE (CoDE) was proposed by Wang et al. [29] for
solving optimization problems. It uses three mutation strate-
gies randomly with three fixed control parameter settings for
generating a new trial vector at each generation. To generate
a new solution, three vectors were generated, then the best
one among them was selected to enter the next generation.
From the experimental results, it was concluded that CoDE is
a promising optimization algorithm for solving optimization
problems. A self adaptive multi-operator differential evolution
(SAMO-DE), for solving constrained optimization problems,
was proposed by Elsayed et al. [8]. In SAMO-DE, each
operator had its own sub-population which was evolved by
a different DE operator. Based on an improvement measure in
which the solution quality, constraint violation and feasibility
ratio were used to calculate the success of each operator, the
number of individuals in each sub-population was adaptively
updated and more emphasis was given to the operator with the
highest success. The results showed that SAMO-DE performed
better than other-state-of-the-art algorithms. Using a mix of
four different DE mutation strategies, two crossover opera-
tors and two constraint handling techniques for constrained
optimization problems was proposed by Elsayed et al. [30].
The experimental results show that the proposed algorithm
is better than other state-of-the-art algorithms. Mallipeddi et
al. [9] designed the ensemble differential evolution algorithms
(EPSDE). In these algorithms, a pool of distinct DE mutation

strategies, crossover strategies and a pool of associated values
for the control parameters not only coexist throughout the
evolutionary process, but also compete with each other to
produce offspring. All of the above mentioned methods did not
incorporate any landscape information in the selection phase.
For more inforatiomation regarding DE algorithms, readers are
refered to [31] [32].

In the recent past, researchers and practitioners have used
fitness landscape to determine and select an appropriate algo-
rithm or operator for solving optimization problems. In [33],
the authors suggested using a cost sensitive learning model to
select the best algorithm amongst a set of four algorithms. The
four algorithms were selected manually from the algorithms
solving Black-Box Optimization Benchmarking (BBOB) in
2009 and 2010 [34][35]. The functions in 10D were char-
acterized using 19 measurements extracted by the exploratory
landscape analysis (ELA) technique. In their work, low-level
features [36] were obtained by systematic sampling of the
functions on the search space. Then separability, modality, and
global structures of the optimization problem were measured
as the first step to characterize the landscape (this step was
done offline). Next, a machine learning model was constructed
to select the best algorithm from the portfolio. Based on two
different cross validation schemes, the model was validated.
However, the results may not be general for a knowledge
base with problems of different dimensionality such as 2D,
3D, 5D, and 20D. Also, because the low level features were
extracted in a different step, the authors did not add the
computational cost for calculating the features to the function
evaluations. Further, as the selection of the four algorithms was
done manually, this weakened its validation on unobserved
problems. In [37], decision trees were employed to predict
the failure of seven different particle swarm optimization
algorithms (PSO), by using a number of fitness landscape
metrics. In [38], an adaptive operator selection mechanism,
based on a set of four fitness landscape analysis techniques,
was used to train an online regression learning model (dynamic
weighted majority), which was used to predict the weight of
each operator in each generation. Their proposed mechanism
was used to determine the most suitable crossover operator,
among four crossover operators, to solve a set of Capacitated
Arc Routing Problem (CARP) instances. The authors used
instantaneous reward, in which the reward was considered as
the value computed at the last evaluation. In comparison with
some of the-state-of-the-art algorithms, the algorithm did not
show significant benefit.

III. TWO-PHASE MULTI-OPERATOR DE

In this section, the two-phase multi-operator DE with a
landscape selection mechanism is presented.

A. TP-MODE

In designing the proposed algorithm, two considerations
taken into account are that, (1) as no single mutation strategy
might be able to solve all kinds of problems, it is beneficial
to use a multi-operator [8], [13], and (2) the new algorithm



should exhibit an exploration capability in the early phase of
the evolution and fast convergence in a later one.

The framework of TP-MODE is presented in Algorithm 1.
Generally speaking, the entire evolutionary process is di-

vided into two phases, exploration and exploitation. In the first,
TP-MODE focuses on improving its exploration by using two
DE mutation strategies which maintain diversity and, in the
second, two other DE strategies which can converge quickly
are used. Initially, NP individuals are randomly generated
by equation 15. Subsequently, based on the type of phase,
two mutation strategies, in which each operator is randomly
assigned the same number of individuals (nop, ∀op = {1, 2}),
are implemented. Then, a new solution is generated using its
assigned DE variant and evaluated according to the fitness
function value. If it is better than its parent, it survives to
the next generation; otherwise its parent is retained for the
next generation. At the same time, two landscape metrics (the
information landscape negative searchability metric/ searcha-
bility indicator (SI), fitness distance correlation (FDC)) and
one performance measure (success rate (SR)) are calculated
for each operator, with the overall normalized measure com-
puted from these values using equation (13) based on which,
nop, ∀op = {1, 2} is updated. As this process may abandon
certain operators which could be useful in later stages of the
evolutionary process, we set a minimum number of individuals
for each operator. The above process is repeated until the
maximum number of fitness function evaluations (MAXFES)
is reached. In this paper, the algorithm switches from the
first to second phase based on a predefined number of FEs
(MAXFES

3 ).
In the following subsections, TP-MODE’s components are

discussed in more detail.
1) Two-phase mutation strategies:: As, in the first phase,

the main objective is to maintain exploration capability of
TP-MODE to avoid premature convergence, DE/rand/1/bin is
chosen to be placed in its pool while the second variant is
DE/φbest/1, where φ is set to [1, 0.6 ∗ NP ], as described in
[39].

On the other hand as, in the second phase, the aim is
to speed up convergence; information from the best solution
is of great interest. Therefore, DE/current-to-φbest/1/bin/with
archive and DE/φbest/1 are used, withφ is equal to 0.1 for
both operators.

2) Selection mechanism: As previously mentioned, in each
phase, two operators are used, with TP-MODE placing em-
phasis on the best-performing one based on three indicators:
(1) the SR; (2) SI; and (3) FDC.

• SR
The SR of each operator (SRop) is defined as the number
of successful offspring generated by a search operator
(op), divided by the number of individuals assigned to
op as :

SRop =
Number of successful offsprings

nop
, ∀op = {1, 2}

(5)

Then, the normalized value for the SR is calculated
using:

NMSRop =
SRop∑m

OP=1 SRop

(6)

where the SRop is the mean value of the SR of operator
op.

• SI
The searchability of the algorithm, which is the capa-
bility of its search operator to move to a region of the
search space with a better fitness value, is measured by
computing an information landscape metric based on the
difference between the information landscape vector of
the problem to be solved and a reference landscape vector.
The reference landscape is the landscape of a function
tthat can be easily optimized by any optimization algo-
rithm in any dimension [40] and the reference function
fref (

−→x ) is determined using:

fref (
−→x ) =

D∑
j=1

(xj − x∗
j )

2 (7)

where −→x ∗
i is the best individual in the sample.

An information matrix for a minimization problem M =
[ai,j ] is constructed using:

ai,j =


1 if f(xi) < f(xj)

0.5 if f(xi) = f(xj)

0 otherwise
(8)

Not all the entries in the information landscape are
required to define it [40] [41]. There are duplicates in
the entries due to symmetry (the lower triangle should
be omitted), the entries on the diagonal are always 0.5
(and should be omitted), and the row and column of the
optimum solution should also be omitted. Therefore, the
information matrix can be reduced to a vector LS =
(ls1, ls2, ..., ls|LS|), where the number of elements in LS
is: |LS| = (NP−1)×(NP−2)

2 .
After constructing the landscape vector of the problem
to be optimized (LSf ) and the vector landscape of the
reference function (LSref ), the SI is computed as:

LDop =
1

|LSf |
×

|LSf |∑
i=1

|ls1i − ls2i| (9)

When LD is close to 0, the problem is considered easy
and difficult when LD is close to 1.
The normalized value for the LD is then calculated as:

NMLDop
=

(1−MLDOP
)∑m

OP=1(1−MLDOP
)

(10)

where MLD is the mean value of information landscape.
• FDC

The FDC, which was proposed by Jones and Forrest [42]
and measures the correlation between the objective value



and distance to the nearest optimum in the search domain
is another method to determine a problem’s difficulty
[43].
Given a set of solutions X = {−→x 1,

−→x 2, ...,
−→x NP } and

their objective function values F = {f1, f2, ..., fNP }, the
FDC value is computed by:

FDCop =

∑NP
i=1(fi − f̄)op × (di − d̄)op

n× (σf × σd)op
(11)

where di is the distance between the ith individual and
the best solution in the population, f̄ , d̄, σf , and σd are
the mean and standard deviations of fitness function and
distance, respectively.
For a minimization problem, a value of FDCop closes
to 1 means that the problem is relatively easy, and one
near 0 that it is difficult.
The normalized FDC (NMFDC) is calculated using
equation by:

NMFDCop
=

FDCop∑m
OP=1 FDCop

(12)

where the FDCop is the mean value of FDC of operator
op.

Subsequently, the overall normalized value for each operator
is computed using:

ONMop,G =
NMSRop

+NMLDop
+NMFDCop∑m

op=1(NMSRop
+NMLDop

+NMFDCop
)
,

(13)
After determining the overall normalized value for each op-
erator, the number of individuals for each operator in each
generation, is calculated by:

nop,G = MSS +
ONMop,G∑m

op=1 ONMop,G
× (NP −MSS ×m)

(14)
where nop,G is the number of individuals operator op will
evolve at generation G, MSS is the minimum number of
individuals for operator op at generation G.

3) Population Initialization and Updating Method : In the
initialization phase, the Latin Hypercube Design, which is
a type of stratified sampling, is used to generate the initial
population because of its capability to generate a sample of
points thatmore efficiently covers the whole search region .

The initialization is performed using:

xi,j = xmin
i + (xmax

i − xmin
i )× lhd(1, NP )

i ∈ NP and j = 1, 2, ..., D
(15)

where lhd is a function that generates random numbers using
the Latin Hypercube Design.

Moreover, a linear population size reduction schema is used
to adaptively re-size the NP during the evolutionary process
[25], as follows:

NPt+1 = round[(
NPmin −NP init

MAXFES
)× FES +NP init]

(16)
where NPmin is the smallest number of individuals that the
proposed algorithm can use. FES is the current number of
fitness evaluations, MAXFES is the maximum number of
fitness evaluations.

4) Managing F and CR: As it is a fact that the perfor-
mance of the DE algorithm is affected by the values of the
control parameters (F and CR) in each phase [44] [45], we
use a different adaptation mechanism for their values. In the
first, the mechanism proposed by Elsayed et al. [46] is adopted
as it has shown its capability to maintain diversity.

Initially, for each individual in the population, two sets of
control parameters, F ∈ N(0.5, 15) and CR ∈ (0.5, 0.15),
are generated using a Gaussian distribution with mean and
standard deviation values of 0.5 and 0.15, respectively. Then,
as in [7], to generate new offspring, F and CR are calculated,
respectively,:

F = Fr1 +N(0, 0.5)× (Fr2 − Fr3) +N(0, 0.5)

(Fr4 − Fr5) +N(0, 0.5)× (Fr6 − Fr7) (17)

CR = CRr1 +N(0, 0.5)× (CRr2 − CRr3) +N(0, 0.5)

(CRr4 − CRr5) +N(0, 0.5)× (CRr6 − CRr7)
(18)

where ri1 6= ri2 6= ri3 6= ri4 6= ri5 6= ri6 6= ri7 are random
integer numbers selected from the range[1, NP ].

If the value of F is less than 0.1 or larger than 1, it is
truncated to 0.1 and 1, respectively, while if the value of CR
is less than 0.01 or larger than 1, it is truncated to 0.01 and
1, respectively.

In the second phase, inspired by [47], a scaling factor pool
(i.e., Fpool = [0.6, 0.8, 1.0]) and a crossover control parameter
pool (i.e., CRpool = [0.1, 0.2, 1.0]) are established in DE.
Then, at each generation, F and CR are randomly chosen
from Fpool and CRpool, respectively.

IV. EXPERIMENTAL RESULTS

In this section, the performances of the proposed algorithm
for solving a benchmark test set of 22 problems taken from
the CEC2011 competition considering real-world applications
is discussed [18]. The proposed algorithm was run following
the guidelines of the competition that required 25 independent
runs for each test problem with up to FESMAX = 150, 000
fitness evaluations. It was coded using Matlab R2014a and run
on a PC with a 3.4 GHz Core I7, 16 GB RAM, and windows
7.



Algorithm 1 Proposed framework
1: Generate an initial population (X) of size NP using Latin

Hypercube Design; FES ← 0;
2: Evaluae X;
3: FES ← FES +NP ;
4: nop1

=nop2
=NP

2 ;
5: while FES ≤MAXFES do
6: if FES ≤ limit then
7: {Phase1}
8: Set operators op1 = DE/φbest/1; op2 =

DE/rand/2;
9: Calculate F and CR using equations (17), and (18);

10: else
11: {Phase2}
12: Set operators op1 = DE/current − to −

φbest/1/Archive; op2 = DE/φbest/1;
13: Calculate control parameters F and CR as in the last

paragraph of Sec III-A4 ;
14: end if
15: Evolve individuals using its assigned operators op;
16: Compute NMSRop

, NMLDop
, and NMFDCop

using
equations (6), (10), and (11);

17: Update nop1 and nop2 using equation (14);
18: FES ← FES +NP ;
19: if FES == limit then
20: nop1

=nop2
=NP

2 ;
21: end if
22: Update the NP using equation (16);
23: end while

A. Algorithm Parameters and Operators

The default values of NP init of 200 and NPmin of 10
were set based on our empirical analysis, with ϕ set at a
value of 0.6 for DE/ϕbest/1 to maintain diversity, and 0.1
for the other two variants, to speed up the convergence rate.
For DE/current-to-φbest/1/bin/with archive the archive rate (A)
was set at a value of 1.4, limit the maximum limit for running
phase 1, after which phase two started, and set at a value of
FESMAX

3 was set based on our empirical analysis and this
parameter was fixed for all problems.

B. Detailed Results of proposed algorithm

The detailed results (best, worst, median, average, and stan-
dard deviation (Std.)) are shown in Table I. The performance
of TP-MODE was compared with those of three algorithms,
GA-MPC [48] (the winner of the CEC2011 competition),
SAMO-DE [7], an ensemble DE algorithm (EPSDE) [9], that
uses different strategies, and SHADE [24] . All Algorithms
used the same stopping criteria; i.e., 150, 000 fitness function
evaluations.

Table II presents the best, mean and standard deviation
values of these algorithms. Based on the best fitness values
obtained, TP-MODE was better than GA-MPC, SAMO-DE
and EPSDE for 7, 12 and 14 problems, respectively, and the
same for 9, 7 and 3, respectively, while it was inferior for 6, 3

and 5, respectively. Regarding the average fitness values, TP-
MODE was superior to GA-MPC, SAMO-DE and EPSDE for
10, 15 and 15 problems, respectively, obtained the same mean
results for only 4, 3 and 2, respectively, and was inferior for
8, 4 and 5, respectively.

As it is also possible to study the statistical difference
between any two algorithms using a non-parametric test, the
Wilcoxon Signed Rank Test [49] was performed, with the
results regarding the best and average fitness values presented
in Table III. As a null hypothesis, it was assumed that there
was no significant difference between the best and/or mean
values of two samples while an/the alternative hypothesis was
that there was a significant difference at a 10% significance
level. Based on the test results, we assigned one of three signs
(+, −, and ≈ ) for the comparison of any two algorithms
(shown in the last column), where the ”+” sign means the
first algorithm was significantly better than the second, the “−”
sign means that the first algorithm was significantly worse, and
the “≈” sign means that there was no significant difference
between thim. It is clear that, from Table III that TP-MODE
was superior to GA-MPC, SAMO-DE, EPSDE, and SHADE
in terms of the average results and very competitive with them
regarding the best.

Finally, the Friedman Test was conducted to rank all al-
gorithms, with the results shown in Table IV in which it is
clear that TP-MODE was superior to the other three algorithms
regarding both the best and average fitness results, followed
by GA-MPC, SHADE, EPSDE and SAMODE, respectively.

V. CONCLUSION AND FUTURE WORK

In this study, a new multi-operator DE algorithm for solving
real-world application problems was proposed. It focused on
diversity without losing convergence through dividing the
whole search process into two phases, with two DE mutation
operators used in each phase to achieve the aim of the cor-
responding phase. Furthermore, a new measure based on the
quality of solutions and characteristics of the landscape was
used to emphasize the best-performing operator in each phase.
The performance of the proposed algorithm was tested on
22 real-world application problems taken from the CEC2011
competition, with the results demonstrating its superiority over
three other state-of-the-art algorithms.

Possible extensions of this work include obtaining a dy-
namic balance between convergence and diversity, and ana-
lyzing each component in the algorithm’s design. Also, using
more than one EA may be of great interest.
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Table I
THE FUNCTION VALUES OBTAINED BY TP-MODE OVER 25 RUNS AND 150000 FITNESS FUNCTION EVALUATIONS

Problems Best Worst Median Mean Std.
P01 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
P02 -2.842253E+01 -2.163764E+01 -2.589359E+01 -2.573171E+01 1.594532E+00
P03 1.151489E-05 1.151489E-05 1.151489E-05 1.151489E-05 0.000000E+00
P04 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

P05.1 -3.684537E+01 -3.163659E+01 -3.479658E+01 -3.465468E+01 1.119970E+00
P05.2 -2.916612E+01 -2.300456E+01 -2.916612E+01 -2.822079E+01 1.385154E+00
P06 5.000000E-01 1.096765E+00 7.510147E-01 7.603013E-01 1.655763E-01
P07 2.200000E+02 2.200000E+02 2.200000E+02 2.200000E+02 0.000000E+00
P08 1.628873E+03 3.059153E+03 2.442968E+03 2.453615E+03 3.755708E+02
P09 -2.184235E+01 -2.164293E+01 -2.164414E+01 -2.165958E+01 5.411104E-02

P10.1 5.116130E+04 5.247562E+04 5.175826E+04 5.180184E+04 3.431911E+02
P10.2 1.068335E+06 1.076211E+06 1.072737E+06 1.072583E+06 1.572728E+03
P11.1 1.544419E+04 1.544419E+04 1.544419E+04 1.544419E+04 1.897504E-05
P11.2 1.812350E+04 1.867086E+04 1.833903E+04 1.835748E+04 1.507295E+02
P11.3 3.271559E+04 3.278829E+04 3.276597E+04 3.276269E+04 1.931411E+01
P11.4 1.259621E+05 1.295006E+05 1.279397E+05 1.278757E+05 1.111803E+03
P11.5 1.881031E+06 1.941075E+06 1.913161E+06 1.913606E+06 1.427120E+04
P12.1 9.362562E+05 9.420340E+05 9.392626E+05 9.392934E+05 1.544130E+03
P12.2 9.400879E+05 1.068943E+06 9.697023E+05 9.788815E+05 3.926205E+04
P12.3 9.362562E+05 9.420340E+05 9.392626E+05 9.392934E+05 1.544130E+03
P13 9.875190E+00 1.797719E+01 1.409832E+01 1.412068E+01 1.616015E+00
P14 8.593443E+00 1.877439E+01 9.827477E+00 1.147226E+01 3.270544E+00

Table II
THE FUNCTION VALUES ACHIVED BY TP-MODE, GA-MPC, SAMO-DE AND EPSDE OVER 25 RUNS AND 150000 FES

TP-MODE GA-MPC SAMO-DE EPSDE SHADE
Problems Best Mean Std. Best Mean Std. Best Mean Std. Best Mean Std. Best Mean Std.

P01 0.00000E+00 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.21203E+00 3.37622E+00 0.00000E+00 1.78000E+00 4.18000E+00 2.73700E-02 7.59030E-01 2.29845E+00
P02 -2.84225E+01 -2.573171E+01 1.59453E+00 -2.84225E+01 -2.77007E+01 4.67305E-01 -2.84225E+01 -2.70698E+01 6.62481E-01 -2.14000E+01 -1.83000E+01 1.65000E+00 -2.44943E+01 -2.30316E+01 7.46050E-01
P03 1.15149E-05 1.151489E-05 0.00000E+00 1.15149E-05 1.15149E-05 0.00000E+00 1.15149E-05 1.15149E-05 0.00000E+00 1.15149E-05 1.15149E-05 1.52000E-19 1.15000E-05 1.15000E-05 5.19000E-21
P04 0.00000E+00 0.000000E+00 0.00000E+00 1.37708E+01 1.38154E+01 1.54600E-01 1.37708E+01 1.39407E+01 2.50222E-01 1.38000E+01 1.67000E+01 3.26000E+00 0.00000E+00 0.00000E+00 0.00000E+00

P05.1 -3.68454E+01 -3.465468E+01 1.11997E+00 -3.68454E+01 -3.50388E+01 8.32925E-01 -3.68439E+01 -3.35947E+01 1.57514E+00 -3.20000E+01 -2.90000E+01 1.84000E+00 -3.66566E+01 -3.60052E+01 6.38070E-01
P05.2 -2.91661E+01 -2.822079E+01 1.38515E+00 -2.91661E+01 -2.74881E+01 1.78214E+00 -2.91661E+01 -2.76347E+01 1.92353E+00 -1.99000E+01 -1.70000E+01 2.68000E+00 -2.91420E+01 -2.90486E+01 1.23890E-01
P06 5.00000E-01 7.603013E-01 1.65576E-01 5.00000E-01 7.48409E-01 1.24914E-01 5.00000E-01 8.16624E-01 1.19367E-01 1.28000E+00 1.42000E+00 7.38000E-02 9.06410E-01 1.12130E+00 8.34400E-02
P07 2.20000E+02 2.200000E+02 0.00000E+00 2.20000E+02 2.20000E+02 0.00000E+00 2.20000E+02 2.20000E+02 0.00000E+00 2.20000E+02 2.20000E+02 0.00000E+00 2.20000E+02 2.20000E+02 0.00000E+00
P08 1.62887E+03 2.453615E+03 3.75571E+02 4.66763E+02 1.22059E+03 3.61119E+02 9.44119E+02 2.26440E+03 8.54213E+02 7.84500E+02 2.52900E+03 1.32800E+03 1.14114E+03 2.22875E+03 7.14195E+02
P09 -2.18424E+01 -2.165958E+01 5.41110E-02 -2.18425E+01 -2.17022E+01 1.16347E-01 -2.18217E+01 -2.16589E+01 1.12958E-01 -2.18000E+01 -1.56000E+01 3.79000E+00 -2.18425E+01 -2.16289E+01 1.40740E-01

P10.1 5.11613E+04 5.180184E+04 3.43191E+02 5.09251E+04 5.20546E+04 4.49912E+02 5.12682E+04 5.23475E+04 5.78021E+02 5.11000E+04 5.22000E+04 7.24000E+02 5.15596E+04 5.32252E+04 3.80380E+03
P10.2 1.06834E+06 1.072583E+06 1.57273E+03 1.06955E+06 1.07338E+06 1.61759E+03 1.07021E+06 1.07313E+06 1.70325E+03 1.06000E+06 1.07000E+06 2.13000E+03 1.07000E+06 1.10000E+06 5.34206E+04
P11.1 1.54442E+04 1.544419E+04 1.89750E-05 1.54442E+04 1.54442E+04 1.75112E-07 1.54442E+04 1.54442E+04 7.24128E-04 1.54000E+04 1.55000E+04 1.55000E+01 1.54442E+04 1.54442E+04 5.57000E-12
P11.2 1.81235E+04 1.835748E+04 1.50730E+02 1.81006E+04 1.82610E+04 6.98163E+01 1.82843E+04 1.85249E+04 1.34481E+02 1.81000E+04 1.81000E+04 4.39000E+01 1.80286E+04 1.81307E+04 5.17471E+01
P11.3 3.27156E+04 3.276269E+04 1.93141E+01 3.27238E+04 3.27698E+04 2.68249E+01 3.27840E+04 3.28462E+04 3.45006E+01 3.26000E+04 3.27000E+04 3.59000E+01 3.27429E+04 3.27600E+04 2.80246E+01
P11.4 1.25962E+05 1.278757E+05 1.11180E+03 1.29213E+05 1.33230E+05 1.87880E+03 1.30037E+05 1.32707E+05 1.14873E+03 1.28000E+05 1.31000E+05 2.47000E+03 1.26951E+05 1.29231E+05 1.58563E+03
P11.5 1.88103E+06 1.913606E+06 1.42712E+04 1.92026E+06 1.95332E+06 1.40836E+04 1.91925E+06 1.97709E+06 3.53818E+04 1.91000E+06 1.92000E+06 1.18000E+04 1.88000E+08 1.91000E+06 1.40754E+04
P12.1 9.36256E+05 9.392934E+05 1.54413E+03 9.49500E+05 9.71289E+05 1.03874E+04 9.43215E+05 9.48921E+05 3.91430E+03 9.39000E+05 9.43000E+05 2.63000E+03 9.37267E+05 9.40475E+05 2.16143E+03
P12.2 9.40088E+05 9.788815E+05 3.92621E+04 9.72102E+05 1.05630E+06 5.70416E+04 1.00815E+06 1.20594E+06 9.95328E+04 9.40000E+05 9.90000E+05 4.14000E+04 9.39771E+05 9.52462E+05 1.21308E+04
P12.3 9.36256E+05 9.392934E+05 1.54413E+03 9.46598E+05 9.75109E+05 1.18489E+04 9.47654E+05 9.58792E+05 5.99265E+03 9.39000E+05 9.43000E+05 2.63000E+03 9.34264E+05 9.40667E+05 2.99161E+03
P13 9.87519E+00 1.412068E+01 1.61602E+00 7.09556E+00 1.28182E+01 3.24134E+00 6.94322E+00 1.10675E+01 2.65228E+00 1.66000E+01 1.88000E+01 1.67000E+00 1.41104E+01 1.75903E+01 1.42842E+00
P14 8.59344E+00 1.147226E+01 3.27054E+00 8.39869E+00 9.35934E+00 9.45433E-01 8.61063E+00 1.09952E+01 2.38898E+00 8.78000E+00 1.39000E+01 4.08000E+00 1.31146E+01 1.99439E+01 2.87591E+00

Table III
COMPARISON SUMMARY BETWEEN TP-MODE AND OTHER

STATE-OF-THE-ART ALGORITHMS

Criteria Algorithms better equal worse Dec.

Best

TP-MODE vs. GA-MPC 8 8 6 ≈
TP-MODE vs. SAMO-DE 13 7 2 +

TP-MODE vs. EPSDE 12 3 7 ≈
SHADE 11 8 3 ≈

Mean

TP-MODE vs. GA-MPC 10 4 8 +
TP-MODE vs. SAMO-DE 15 3 4 +

TP-MODE vs. EPSDE 17 2 3 +
SHADE 11 6 5 ≈

Table IV
FRIEDMAN’S TEST RESULTS

Best results Mean results Overall mean rank OrderAlgorithm rank rank
TP-MODE 2.43 2.32 2.38 1
GA-MPC 2.73 2.84 2.79 2

SAMO-DE 3.50 3.50 3.50 5
EPSDE 3.18 3.70 3.44 4
SHADE 3.16 2.64 2.90 3
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